132 lines
4.1 KiB
Matlab
132 lines
4.1 KiB
Matlab
function [Res] = Spindle_error(data, NbTurn, texte, path)
|
|
%%
|
|
L = length(data);
|
|
res_per_rev = L/NbTurn;
|
|
|
|
P = 0:(res_per_rev*NbTurn-1);
|
|
Pos = P' * 360/res_per_rev;
|
|
Theta = deg2rad(Pos)';
|
|
|
|
% Temperature correction
|
|
x1 = myfit2(Pos, data);
|
|
|
|
% Convert data to frequency domain and scale accordingly
|
|
X2 = 2/(res_per_rev*NbTurn)*fft(x1);
|
|
f2 = (0:L-1)./NbTurn; %upr -> once per revolution
|
|
|
|
%% Separate the fft integers and not-integers
|
|
for i = 1:length(f2)
|
|
if mod(f2(i), 1) == 0
|
|
X2dec(i) = 0;
|
|
X2int(i) = X2(i);
|
|
else
|
|
X2dec(i) = X2(i);
|
|
X2int(i) = 0;
|
|
end
|
|
end
|
|
|
|
%% Case length(f2) is odd -> the mirror image of the FFT is reflected between 2 harmonique
|
|
if mod(length(f2),2) == 1
|
|
for i = length(f2)/2+1.5:length(f2)
|
|
if mod(f2(i-1), 1) == 0
|
|
X2dec(i) = 0;
|
|
X2int(i) = X2(i);
|
|
else
|
|
X2dec(i) = X2(i);
|
|
X2int(i) = 0;
|
|
end
|
|
end
|
|
else % Case length(f2) is even -> the mirror image of the FFT is reflected at the Nyquist frequency
|
|
for i = length(f2)/2+1:length(f2)
|
|
if mod(f2(i), 1) == 0
|
|
X2dec(i) = 0;
|
|
X2int(i) = X2(i);
|
|
else
|
|
X2dec(i) = X2(i);
|
|
X2int(i) = 0;
|
|
end
|
|
end
|
|
end
|
|
|
|
%%
|
|
X2int(1) = 0; %remove the data average/dc component
|
|
X2int(NbTurn+1) = 0; %Remove fondamental/eccentricity
|
|
% X2int(length(f2)) = 0; %remove the data average/dc component
|
|
X2int(length(f2)-NbTurn+1) = 0; %Remove eccentricity
|
|
|
|
|
|
%% Extract the fondamental -> exentricity
|
|
for i = 1:length(f2)
|
|
if i == NbTurn+1 || i == length(f2)-NbTurn+1
|
|
X2fond(i) = X2(i);
|
|
else
|
|
X2fond(i) = 0;
|
|
end
|
|
end
|
|
|
|
X2tot = X2int + X2dec;
|
|
|
|
Wxfond = real((res_per_rev*NbTurn)/2 * ifft(X2fond)); % Convert data to "time" domain and scale accordingly
|
|
Wxint = real((res_per_rev*NbTurn)/2 * ifft(X2int));
|
|
Wxdec = real((res_per_rev*NbTurn)/2 * ifft(X2dec));
|
|
Wxtot = real((res_per_rev*NbTurn)/2 * ifft(X2tot));
|
|
|
|
%%
|
|
fig = figure();
|
|
|
|
subplot(3, 2, 5);
|
|
bar(f2(1:50*NbTurn),1000*abs(X2int(1:50*NbTurn)),3);
|
|
axis([0,50,0,1000*max(abs(X2int(1:50*NbTurn)))]);
|
|
title ('Fourier integer');
|
|
xlabel('UPR'); ylabel ('nm')
|
|
|
|
subplot(3, 2, 6);
|
|
bar(f2(1:50*NbTurn),1000*abs(X2dec(1:50*NbTurn)),2);
|
|
title('Fourier non-integer');
|
|
axis([0,50,0,1000*max(abs(X2dec(1:50*NbTurn)))]);
|
|
title('Fourier non-integer');
|
|
xlabel('UPR'); ylabel ('nm')
|
|
|
|
% Eccentricity
|
|
Eccentricity = max(Wxfond) - min(Wxfond);
|
|
|
|
% total error motion X
|
|
Total_Error = max(Wxtot) - min(Wxtot);
|
|
|
|
% lsc X synchronous
|
|
Synchronous_Error = max(Wxint) - min(Wxint);
|
|
|
|
% lsc X Asynchronous
|
|
var = reshape(Wxdec,length(Wxdec)/NbTurn,NbTurn);
|
|
for i = 1:length(Wxdec)/NbTurn
|
|
Asynch(i) = max(var(i,:)) - min(var(i,:));
|
|
end
|
|
Asynchronous_Error = max(Asynch) - min(Asynch);
|
|
|
|
% Raw Error Motion without Exentricity (sync +asynch)
|
|
subplot(3, 2, 2);
|
|
polar2(Theta,Wxtot, 'b');
|
|
title ('Total error');
|
|
% Residual Synchronous Error Motion without Exentricity (ie fondamental sync err motion)
|
|
subplot(3, 2, 3);
|
|
polar2(Theta,Wxint,'b');
|
|
title('Residual synchronous error');
|
|
% Asynchronous Error Motion
|
|
subplot(3, 2, 4);
|
|
polar2(Theta,Wxdec, 'b');
|
|
title('Asynchronous error');
|
|
|
|
strmin0 = ['Eccentricity= ', num2str(Eccentricity), ' \mum '];
|
|
strmin1 = ['Total error = ', num2str(Total_Error*1000), ' nm'];
|
|
strmin2 = ['Residual synchronous error = ', num2str(Synchronous_Error*1000), ' nm' ];
|
|
strmin3 = ['Asynchronous error = ', num2str(Asynchronous_Error*1000), ' nm'];
|
|
dim0 = [0.1 0.55 0.3 .3];%x y w h basgauche to hautdroite
|
|
dim1 = [0.15 0.65 0.3 .3];
|
|
annotation('textbox',dim0, 'String',{ strmin0 ,strmin1 , strmin2, strmin3}, 'FitBoxToText', 'on')
|
|
annotation('textbox',dim1, 'String',texte, 'FitBoxToText', 'on')
|
|
|
|
saveas(fig,fullfile(path,char(texte)),'jpg');
|
|
Res = 1;
|
|
close all;
|
|
end
|