Deleted some mat files, finished the slip of the slip-ring measures
Before Width: | Height: | Size: 168 KiB |
Before Width: | Height: | Size: 90 KiB |
Before Width: | Height: | Size: 29 KiB |
Before Width: | Height: | Size: 118 KiB After Width: | Height: | Size: 116 KiB |
Before Width: | Height: | Size: 33 KiB |
Before Width: | Height: | Size: 66 KiB After Width: | Height: | Size: 66 KiB |
Before Width: | Height: | Size: 36 KiB |
Before Width: | Height: | Size: 47 KiB |
Before Width: | Height: | Size: 35 KiB |
Before Width: | Height: | Size: 217 KiB After Width: | Height: | Size: 217 KiB |
Before Width: | Height: | Size: 149 KiB After Width: | Height: | Size: 161 KiB |
Before Width: | Height: | Size: 158 KiB After Width: | Height: | Size: 185 KiB |
Before Width: | Height: | Size: 44 KiB After Width: | Height: | Size: 45 KiB |
Before Width: | Height: | Size: 45 KiB After Width: | Height: | Size: 45 KiB |
Before Width: | Height: | Size: 169 KiB |
Before Width: | Height: | Size: 164 KiB |
Before Width: | Height: | Size: 190 KiB |
Before Width: | Height: | Size: 59 KiB |
Before Width: | Height: | Size: 60 KiB |
Before Width: | Height: | Size: 4.4 MiB |
Before Width: | Height: | Size: 2.8 MiB |
Before Width: | Height: | Size: 4.0 MiB |
Before Width: | Height: | Size: 11 MiB |
Before Width: | Height: | Size: 18 MiB |
Before Width: | Height: | Size: 15 MiB |
Before Width: | Height: | Size: 6.3 MiB |
@ -184,15 +184,13 @@ We then compute the Power Spectral Density of the two signals and we compare the
|
|||||||
- The measurements will be redone
|
- The measurements will be redone
|
||||||
#+end_important
|
#+end_important
|
||||||
|
|
||||||
* TODO Measure of the noise induced by the Slip-Ring using voltage amplifiers - Geophone
|
* Measure of the noise induced by the Slip-Ring using voltage amplifiers - Geophone
|
||||||
:PROPERTIES:
|
:PROPERTIES:
|
||||||
:header-args:matlab+: :tangle matlab/meas_sr_geophone.m
|
:header-args:matlab+: :tangle matlab/meas_sr_geophone.m
|
||||||
:header-args:matlab+: :comments org :mkdirp yes
|
:header-args:matlab+: :comments org :mkdirp yes
|
||||||
:END:
|
:END:
|
||||||
<<sec:meas_sr_geophone>>
|
<<sec:meas_sr_geophone>>
|
||||||
|
|
||||||
- [ ] Where is the data_012 and 13 measurement ?
|
|
||||||
|
|
||||||
** ZIP file containing the data and matlab files :ignore:
|
** ZIP file containing the data and matlab files :ignore:
|
||||||
#+begin_src bash :exports none :results none
|
#+begin_src bash :exports none :results none
|
||||||
if [ matlab/meas_sr_geophone.m -nt data/meas_sr_geophone.zip ]; then
|
if [ matlab/meas_sr_geophone.m -nt data/meas_sr_geophone.zip ]; then
|
||||||
|
BIN
slip-ring-electrical-noise/mat/data_012.mat
Normal file
BIN
slip-ring-electrical-noise/mat/data_013.mat
Normal file
@ -1,67 +0,0 @@
|
|||||||
%% Clear Workspace and Close figures
|
|
||||||
clear; close all; clc;
|
|
||||||
|
|
||||||
%% Intialize Laplace variable
|
|
||||||
s = zpk('s');
|
|
||||||
|
|
||||||
% Load data
|
|
||||||
% We load the data of the z axis of two geophones.
|
|
||||||
|
|
||||||
sr_off = load('mat/data_001.mat', 't', 'x1', 'x2');
|
|
||||||
sr_on = load('mat/data_002.mat', 't', 'x1', 'x2');
|
|
||||||
|
|
||||||
% Analysis
|
|
||||||
% Let's first look at the signal produced by the DAC (figure [[fig:random_signal]]).
|
|
||||||
|
|
||||||
|
|
||||||
figure;
|
|
||||||
hold on;
|
|
||||||
plot(sr_on.t, sr_on.x1);
|
|
||||||
hold off;
|
|
||||||
xlabel('Time [s]'); ylabel('Voltage [V]');
|
|
||||||
xlim([0 10]);
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
% #+NAME: fig:random_signal
|
|
||||||
% #+CAPTION: Random signal produced by the DAC
|
|
||||||
% #+RESULTS: fig:random_signal
|
|
||||||
% [[file:figs/random_signal.png]]
|
|
||||||
|
|
||||||
% We now look at the difference between the signal directly measured by the ADC and the signal that goes through the slip-ring (figure [[fig:slipring_comp_signals]]).
|
|
||||||
|
|
||||||
|
|
||||||
figure;
|
|
||||||
hold on;
|
|
||||||
plot(sr_on.t, sr_on.x1 - sr_on.x2, 'DisplayName', 'Slip-Ring - $\omega = 1rpm$');
|
|
||||||
plot(sr_off.t, sr_off.x1 - sr_off.x2,'DisplayName', 'Slip-Ring off');
|
|
||||||
hold off;
|
|
||||||
xlabel('Time [s]'); ylabel('Voltage [V]');
|
|
||||||
xlim([0 10]);
|
|
||||||
legend('Location', 'northeast');
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
% #+NAME: fig:slipring_comp_signals
|
|
||||||
% #+CAPTION: Alteration of the signal when the slip-ring is turning
|
|
||||||
% #+RESULTS: fig:slipring_comp_signals
|
|
||||||
% [[file:figs/slipring_comp_signals.png]]
|
|
||||||
|
|
||||||
|
|
||||||
dt = sr_on.t(2) - sr_on.t(1);
|
|
||||||
Fs = 1/dt; % [Hz]
|
|
||||||
|
|
||||||
win = hanning(ceil(1*Fs));
|
|
||||||
|
|
||||||
[pxx_on, f] = pwelch(sr_on.x1 - sr_on.x2, win, [], [], Fs);
|
|
||||||
[pxx_off, ~] = pwelch(sr_off.x1 - sr_off.x2, win, [], [], Fs);
|
|
||||||
|
|
||||||
figure;
|
|
||||||
hold on;
|
|
||||||
plot(f, sqrt(pxx_on), 'DisplayName', 'Slip-Ring - $\omega = 1rpm$');
|
|
||||||
plot(f, sqrt(pxx_off),'DisplayName', 'Slip-Ring off');
|
|
||||||
hold off;
|
|
||||||
set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log');
|
|
||||||
xlabel('Frequency [Hz]'); ylabel('PSD $\left[\frac{V}{\sqrt{Hz}}\right]$');
|
|
||||||
legend('Location', 'northeast');
|
|
||||||
xlim([1, 500]); ylim([1e-5, 1e-3])
|
|
@ -1,84 +0,0 @@
|
|||||||
%% Clear Workspace and Close figures
|
|
||||||
clear; close all; clc;
|
|
||||||
|
|
||||||
%% Intialize Laplace variable
|
|
||||||
s = zpk('s');
|
|
||||||
|
|
||||||
% Load data
|
|
||||||
% We load the data of the z axis of two geophones.
|
|
||||||
|
|
||||||
sr_off = load('mat/data_008.mat', 'data'); sr_off = sr_off.data;
|
|
||||||
sr_on = load('mat/data_009.mat', 'data'); sr_on = sr_on.data;
|
|
||||||
sr_6r = load('mat/data_010.mat', 'data'); sr_6r = sr_6r.data;
|
|
||||||
sr_60r = load('mat/data_011.mat', 'data'); sr_60r = sr_60r.data;
|
|
||||||
|
|
||||||
% Time Domain
|
|
||||||
% We plot the time domain data for the direct measurement (figure [[fig:sr_direct_time]]) and for the signal going through the slip-ring (figure [[fig:sr_slipring_time]]);
|
|
||||||
|
|
||||||
|
|
||||||
figure;
|
|
||||||
hold on;
|
|
||||||
plot(sr_60r(:, 3), sr_60r(:, 1), 'DisplayName', '60rpm');
|
|
||||||
plot(sr_6r(:, 3), sr_6r(:, 1), 'DisplayName', '6rpm');
|
|
||||||
plot(sr_on(:, 3), sr_on(:, 1), 'DisplayName', 'ON');
|
|
||||||
plot(sr_off(:, 3), sr_off(:, 1), 'DisplayName', 'OFF');
|
|
||||||
hold off;
|
|
||||||
xlabel('Time [s]'); ylabel('Voltage [V]');
|
|
||||||
legend('Location', 'northeast');
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
% #+NAME: fig:sr_direct_time
|
|
||||||
% #+CAPTION: Direct measurement
|
|
||||||
% #+RESULTS: fig:sr_direct_time
|
|
||||||
% [[file:figs/sr_direct_time.png]]
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
figure;
|
|
||||||
hold on;
|
|
||||||
plot(sr_60r(:, 3), sr_60r(:, 2), 'DisplayName', '60rpm');
|
|
||||||
plot(sr_6r(:, 3), sr_6r(:, 2), 'DisplayName', '6rpm');
|
|
||||||
plot(sr_on(:, 3), sr_on(:, 2), 'DisplayName', 'ON');
|
|
||||||
plot(sr_off(:, 3), sr_off(:, 2), 'DisplayName', 'OFF');
|
|
||||||
hold off;
|
|
||||||
xlabel('Time [s]'); ylabel('Voltage [V]');
|
|
||||||
legend('Location', 'northeast');
|
|
||||||
|
|
||||||
% Frequency Domain
|
|
||||||
% We first compute some parameters that will be used for the PSD computation.
|
|
||||||
|
|
||||||
dt = sr_off(2, 3)-sr_off(1, 3);
|
|
||||||
|
|
||||||
Fs = 1/dt; % [Hz]
|
|
||||||
|
|
||||||
win = hanning(ceil(10*Fs));
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
% Then we compute the Power Spectral Density using =pwelch= function.
|
|
||||||
|
|
||||||
[pxdir, f] = pwelch(sr_off(:, 1), win, [], [], Fs);
|
|
||||||
[pxoff, ~] = pwelch(sr_off(:, 2), win, [], [], Fs);
|
|
||||||
[pxon, ~] = pwelch(sr_on(:, 2), win, [], [], Fs);
|
|
||||||
[px6r, ~] = pwelch(sr_6r(:, 2), win, [], [], Fs);
|
|
||||||
[px60r, ~] = pwelch(sr_60r(:, 2), win, [], [], Fs);
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
% And we plot the ASD of the measured signals (figure [[fig:sr_psd_compare]]);
|
|
||||||
|
|
||||||
|
|
||||||
figure;
|
|
||||||
hold on;
|
|
||||||
plot(f, sqrt(pxoff), 'DisplayName', 'OFF');
|
|
||||||
plot(f, sqrt(pxon), 'DisplayName', 'ON');
|
|
||||||
plot(f, sqrt(px6r), 'DisplayName', '6rpm');
|
|
||||||
plot(f, sqrt(px60r), 'DisplayName', '60rpm');
|
|
||||||
plot(f, sqrt(pxdir), 'k-', 'DisplayName', 'Direct');
|
|
||||||
hold off;
|
|
||||||
set(gca, 'xscale', 'log');
|
|
||||||
set(gca, 'yscale', 'log');
|
|
||||||
xlabel('Frequency [Hz]'); ylabel('ASD of the measured Voltage $\left[\frac{V}{\sqrt{Hz}}\right]$')
|
|
||||||
legend('Location', 'northeast');
|
|
||||||
xlim([0.1, 500]);
|
|
Before Width: | Height: | Size: 168 KiB |
Before Width: | Height: | Size: 90 KiB After Width: | Height: | Size: 89 KiB |
Before Width: | Height: | Size: 29 KiB After Width: | Height: | Size: 29 KiB |
Before Width: | Height: | Size: 118 KiB |
Before Width: | Height: | Size: 33 KiB After Width: | Height: | Size: 33 KiB |
Before Width: | Height: | Size: 66 KiB |
Before Width: | Height: | Size: 47 KiB After Width: | Height: | Size: 57 KiB |
Before Width: | Height: | Size: 35 KiB After Width: | Height: | Size: 36 KiB |
Before Width: | Height: | Size: 166 KiB |
Before Width: | Height: | Size: 217 KiB |
Before Width: | Height: | Size: 36 KiB |
Before Width: | Height: | Size: 44 KiB |
Before Width: | Height: | Size: 155 KiB |
Before Width: | Height: | Size: 41 KiB |
Before Width: | Height: | Size: 44 KiB |
Before Width: | Height: | Size: 149 KiB |
Before Width: | Height: | Size: 158 KiB |
Before Width: | Height: | Size: 44 KiB |
Before Width: | Height: | Size: 45 KiB |
Before Width: | Height: | Size: 190 KiB After Width: | Height: | Size: 196 KiB |
Before Width: | Height: | Size: 60 KiB After Width: | Height: | Size: 60 KiB |
Before Width: | Height: | Size: 4.4 MiB |
Before Width: | Height: | Size: 3.5 MiB |
Before Width: | Height: | Size: 2.8 MiB |
Before Width: | Height: | Size: 4.2 MiB |
Before Width: | Height: | Size: 3.9 MiB |
Before Width: | Height: | Size: 4.0 MiB |
Before Width: | Height: | Size: 11 MiB |
Before Width: | Height: | Size: 6.3 MiB |
@ -64,10 +64,7 @@ We determine if the slip-ring add some noise to the signal when it is turning:
|
|||||||
#+end_note
|
#+end_note
|
||||||
|
|
||||||
** Measurement Description
|
** Measurement Description
|
||||||
*Goal*:
|
*** Setup :ignore:
|
||||||
The goal is to determine if the signal is altered when the spindle is rotating.
|
|
||||||
|
|
||||||
|
|
||||||
*Setup*:
|
*Setup*:
|
||||||
Random Signal is generated by one SpeedGoat DAC.
|
Random Signal is generated by one SpeedGoat DAC.
|
||||||
|
|
||||||
@ -77,7 +74,11 @@ The signal going out of the DAC is split into two:
|
|||||||
|
|
||||||
All the stages are turned OFF except the Slip-Ring.
|
All the stages are turned OFF except the Slip-Ring.
|
||||||
|
|
||||||
|
*** Goal :ignore:
|
||||||
|
*Goal*:
|
||||||
|
The goal is to determine if the signal is altered when the spindle is rotating.
|
||||||
|
|
||||||
|
*** Measurements :ignore:
|
||||||
*Measurements*:
|
*Measurements*:
|
||||||
| Data File | Description |
|
| Data File | Description |
|
||||||
|--------------------+------------------------------|
|
|--------------------+------------------------------|
|
||||||
|
@ -1,48 +0,0 @@
|
|||||||
%% Clear Workspace and Close figures
|
|
||||||
clear; close all; clc;
|
|
||||||
|
|
||||||
%% Intialize Laplace variable
|
|
||||||
s = zpk('s');
|
|
||||||
|
|
||||||
% Load data
|
|
||||||
% We load the data of the z axis of two geophones.
|
|
||||||
|
|
||||||
|
|
||||||
meas_sr = load('mat/data_018.mat', 'data'); meas_sr = meas_sr.data;
|
|
||||||
meas_di = load('mat/data_019.mat', 'data'); meas_di = meas_di.data;
|
|
||||||
|
|
||||||
% Analysis - Time Domain
|
|
||||||
% First, we compare the time domain signals for the two experiments (figure [[fig:slipring_time]]).
|
|
||||||
|
|
||||||
|
|
||||||
figure;
|
|
||||||
hold on;
|
|
||||||
plot(meas_di(:, 3), meas_di(:, 2), 'DisplayName', 'Geophone - Direct');
|
|
||||||
plot(meas_sr(:, 3), meas_sr(:, 2), 'DisplayName', 'Geophone - Slip-Ring');
|
|
||||||
hold off;
|
|
||||||
xlabel('Time [s]'); ylabel('Voltage [V]');
|
|
||||||
xlim([0, 50]);
|
|
||||||
legend('location', 'northeast');
|
|
||||||
|
|
||||||
% Analysis - Frequency Domain
|
|
||||||
% We then compute the Power Spectral Density of the two signals and we compare them (figure [[fig:slipring_asd]]).
|
|
||||||
|
|
||||||
|
|
||||||
dt = meas_di(2, 3) - meas_di(1, 3);
|
|
||||||
Fs = 1/dt;
|
|
||||||
|
|
||||||
win = hanning(ceil(5*Fs));
|
|
||||||
|
|
||||||
[px_di, f] = pwelch(meas_di(:, 2), win, [], [], Fs);
|
|
||||||
[px_sr, ~] = pwelch(meas_sr(:, 2), win, [], [], Fs);
|
|
||||||
|
|
||||||
figure;
|
|
||||||
hold on;
|
|
||||||
plot(f, sqrt(px_sr), 'DisplayName', 'Slip-Ring');
|
|
||||||
plot(f, sqrt(px_di), 'DisplayName', 'Wire');
|
|
||||||
hold off;
|
|
||||||
set(gca, 'xscale', 'log');
|
|
||||||
set(gca, 'yscale', 'log');
|
|
||||||
xlabel('Frequency [Hz]'); ylabel('Amplitude Spectral Density $\left[\frac{V}{\sqrt{Hz}}\right]$')
|
|
||||||
xlim([1, 500]);
|
|
||||||
legend('Location', 'southwest');
|
|
109
slip-ring-noise-turning/matlab/meas_slip_ring_lpf.m
Normal file
@ -0,0 +1,109 @@
|
|||||||
|
%% Clear Workspace and Close figures
|
||||||
|
clear; close all; clc;
|
||||||
|
|
||||||
|
%% Intialize Laplace variable
|
||||||
|
s = zpk('s');
|
||||||
|
|
||||||
|
% Load data
|
||||||
|
% We load the data of the z axis of two geophones.
|
||||||
|
|
||||||
|
sr_of = load('mat/data_030.mat', 'data'); sr_of = sr_of.data;
|
||||||
|
sr_on = load('mat/data_031.mat', 'data'); sr_on = sr_on.data;
|
||||||
|
sr_6r = load('mat/data_032.mat', 'data'); sr_6r = sr_6r.data;
|
||||||
|
sr_60 = load('mat/data_033.mat', 'data'); sr_60 = sr_60.data;
|
||||||
|
|
||||||
|
% Time Domain
|
||||||
|
% We plot the time domain data for the direct measurement (figure [[fig:sr_direct_1khz_time]]) and for the signal going through the slip-ring (figure [[fig:sr_slipring_1khz_time]]);
|
||||||
|
|
||||||
|
|
||||||
|
figure;
|
||||||
|
hold on;
|
||||||
|
plot(sr_60(:, 3), sr_60(:, 1), 'DisplayName', '60rpm');
|
||||||
|
plot(sr_6r(:, 3), sr_6r(:, 1), 'DisplayName', '6rpm');
|
||||||
|
plot(sr_on(:, 3), sr_on(:, 1), 'DisplayName', 'ON');
|
||||||
|
plot(sr_of(:, 3), sr_of(:, 1), 'DisplayName', 'OFF');
|
||||||
|
hold off;
|
||||||
|
xlabel('Time [s]'); ylabel('Voltage [V]');
|
||||||
|
xlim([0, 100]);
|
||||||
|
legend('Location', 'northeast');
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
% #+NAME: fig:sr_direct_1khz_time
|
||||||
|
% #+CAPTION: Direct measurement
|
||||||
|
% #+RESULTS: fig:sr_direct_1khz_time
|
||||||
|
% [[file:figs/sr_direct_1khz_time.png]]
|
||||||
|
|
||||||
|
|
||||||
|
xlim([0, 0.2]); ylim([-2e-3, 2e-3]);
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
% #+NAME: fig:sr_direct_1khz_time_zoom
|
||||||
|
% #+CAPTION: Direct measurement - Zoom
|
||||||
|
% #+RESULTS: fig:sr_direct_1khz_time_zoom
|
||||||
|
% [[file:figs/sr_direct_1khz_time_zoom.png]]
|
||||||
|
|
||||||
|
|
||||||
|
figure;
|
||||||
|
hold on;
|
||||||
|
plot(sr_60(:, 3), sr_60(:, 2), 'DisplayName', '60rpm');
|
||||||
|
plot(sr_6r(:, 3), sr_6r(:, 2), 'DisplayName', '6rpm');
|
||||||
|
plot(sr_on(:, 3), sr_on(:, 2), 'DisplayName', 'ON');
|
||||||
|
plot(sr_of(:, 3), sr_of(:, 2), 'DisplayName', 'OFF');
|
||||||
|
hold off;
|
||||||
|
xlabel('Time [s]'); ylabel('Voltage [V]');
|
||||||
|
xlim([0, 100]);
|
||||||
|
legend('Location', 'northeast');
|
||||||
|
|
||||||
|
% Frequency Domain - Direct Signal
|
||||||
|
% We first compute some parameters that will be used for the PSD computation.
|
||||||
|
|
||||||
|
dt = sr_of(2, 3)-sr_of(1, 3);
|
||||||
|
|
||||||
|
Fs = 1/dt; % [Hz]
|
||||||
|
|
||||||
|
win = hanning(ceil(10*Fs));
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
% Then we compute the Power Spectral Density using =pwelch= function.
|
||||||
|
|
||||||
|
[px_d_of, f] = pwelch(sr_of(:, 1), win, [], [], Fs);
|
||||||
|
[px_d_on, ~] = pwelch(sr_on(:, 1), win, [], [], Fs);
|
||||||
|
[px_d_6r, ~] = pwelch(sr_6r(:, 1), win, [], [], Fs);
|
||||||
|
[px_d_60, ~] = pwelch(sr_60(:, 1), win, [], [], Fs);
|
||||||
|
|
||||||
|
figure;
|
||||||
|
hold on;
|
||||||
|
plot(f, sqrt(px_d_of), 'DisplayName', 'OFF');
|
||||||
|
plot(f, sqrt(px_d_on), 'DisplayName', 'ON');
|
||||||
|
plot(f, sqrt(px_d_6r), 'DisplayName', '6rpm');
|
||||||
|
plot(f, sqrt(px_d_60), 'DisplayName', '60rpm');
|
||||||
|
hold off;
|
||||||
|
set(gca, 'xscale', 'log');
|
||||||
|
set(gca, 'yscale', 'log');
|
||||||
|
xlabel('Frequency [Hz]'); ylabel('ASD of the measured Voltage $\left[\frac{V}{\sqrt{Hz}}\right]$')
|
||||||
|
legend('Location', 'northeast');
|
||||||
|
xlim([0.1, 5000]);
|
||||||
|
|
||||||
|
% Frequency Domain - Slip-Ring Signal
|
||||||
|
|
||||||
|
[px_sr_of, f] = pwelch(sr_of(:, 2), win, [], [], Fs);
|
||||||
|
[px_sr_on, ~] = pwelch(sr_on(:, 2), win, [], [], Fs);
|
||||||
|
[px_sr_6r, ~] = pwelch(sr_6r(:, 2), win, [], [], Fs);
|
||||||
|
[px_sr_60, ~] = pwelch(sr_60(:, 2), win, [], [], Fs);
|
||||||
|
|
||||||
|
figure;
|
||||||
|
hold on;
|
||||||
|
plot(f, sqrt(px_sr_of), 'DisplayName', 'OFF');
|
||||||
|
plot(f, sqrt(px_sr_on), 'DisplayName', 'ON');
|
||||||
|
plot(f, sqrt(px_sr_6r), 'DisplayName', '6rpm');
|
||||||
|
plot(f, sqrt(px_sr_60), 'DisplayName', '60rpm');
|
||||||
|
plot(f, sqrt(px_d_of), '-k', 'DisplayName', 'Direct');
|
||||||
|
hold off;
|
||||||
|
set(gca, 'xscale', 'log');
|
||||||
|
set(gca, 'yscale', 'log');
|
||||||
|
xlabel('Frequency [Hz]'); ylabel('ASD of the measured Voltage $\left[\frac{V}{\sqrt{Hz}}\right]$')
|
||||||
|
legend('Location', 'northeast');
|
||||||
|
xlim([0.1, 5000]);
|
@ -1,250 +0,0 @@
|
|||||||
%% Clear Workspace and Close figures
|
|
||||||
clear; close all; clc;
|
|
||||||
|
|
||||||
%% Intialize Laplace variable
|
|
||||||
s = zpk('s');
|
|
||||||
|
|
||||||
% Load data
|
|
||||||
% We load the data of the z axis of two geophones.
|
|
||||||
|
|
||||||
sr_off = load('mat/data_012.mat', 'data'); sr_off = sr_off.data;
|
|
||||||
sr_on = load('mat/data_013.mat', 'data'); sr_on = sr_on.data;
|
|
||||||
|
|
||||||
% Time Domain
|
|
||||||
% We compare the signal when the Slip-Ring is OFF (figure [[fig:sr_geophone_time_off]]) and when it is ON (figure [[fig:sr_geophone_time_on]]).
|
|
||||||
|
|
||||||
|
|
||||||
figure;
|
|
||||||
hold on;
|
|
||||||
plot(sr_off(:, 3), sr_off(:, 1), 'DisplayName', 'Direct');
|
|
||||||
plot(sr_off(:, 3), sr_off(:, 2), 'DisplayName', 'Slip-Ring');
|
|
||||||
hold off;
|
|
||||||
legend('Location', 'northeast');
|
|
||||||
xlabel('Time [s]');
|
|
||||||
ylabel('Voltage [V]');
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
% #+NAME: fig:sr_geophone_time_off
|
|
||||||
% #+CAPTION: Comparison of the time domain signals when the slip-ring is OFF
|
|
||||||
% #+RESULTS: fig:sr_geophone_time_off
|
|
||||||
% [[file:figs/sr_geophone_time_off.png]]
|
|
||||||
|
|
||||||
|
|
||||||
figure;
|
|
||||||
hold on;
|
|
||||||
plot(sr_on(:, 3), sr_on(:, 1), 'DisplayName', 'Direct');
|
|
||||||
plot(sr_on(:, 3), sr_on(:, 2), 'DisplayName', 'Slip-Ring');
|
|
||||||
hold off;
|
|
||||||
legend('Location', 'northeast');
|
|
||||||
xlabel('Time [s]');
|
|
||||||
ylabel('Voltage [V]');
|
|
||||||
|
|
||||||
% Frequency Domain
|
|
||||||
% We first compute some parameters that will be used for the PSD computation.
|
|
||||||
|
|
||||||
dt = sr_off(2, 3)-sr_off(1, 3);
|
|
||||||
|
|
||||||
Fs = 1/dt; % [Hz]
|
|
||||||
|
|
||||||
win = hanning(ceil(10*Fs));
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
% Then we compute the Power Spectral Density using =pwelch= function.
|
|
||||||
|
|
||||||
% Direct measure
|
|
||||||
[pxdoff, ~] = pwelch(sr_off(:, 1), win, [], [], Fs);
|
|
||||||
[pxdon, ~] = pwelch(sr_on(:, 1), win, [], [], Fs);
|
|
||||||
|
|
||||||
% Slip-Ring measure
|
|
||||||
[pxsroff, f] = pwelch(sr_off(:, 2), win, [], [], Fs);
|
|
||||||
[pxsron, ~] = pwelch(sr_on(:, 2), win, [], [], Fs);
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
% Finally, we compare the Amplitude Spectral Density of the signals (figure [[fig:sr_geophone_asd]]);
|
|
||||||
|
|
||||||
|
|
||||||
figure;
|
|
||||||
hold on;
|
|
||||||
plot(f, sqrt(pxdoff), 'DisplayName', 'Direct - OFF');
|
|
||||||
plot(f, sqrt(pxsroff), 'DisplayName', 'Slip-Ring - OFF');
|
|
||||||
plot(f, sqrt(pxdon), 'DisplayName', 'Direct - ON');
|
|
||||||
plot(f, sqrt(pxsron), 'DisplayName', 'Slip-Ring - ON');
|
|
||||||
hold off;
|
|
||||||
set(gca, 'xscale', 'log');
|
|
||||||
set(gca, 'yscale', 'log');
|
|
||||||
xlabel('Frequency [Hz]'); ylabel('ASD of the measured Voltage $\left[\frac{V}{\sqrt{Hz}}\right]$')
|
|
||||||
legend('Location', 'northeast');
|
|
||||||
xlim([0.1, 500]);
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
% #+NAME: fig:sr_geophone_asd
|
|
||||||
% #+CAPTION: Comparison of the Amplitude Spectral Sensity
|
|
||||||
% #+RESULTS: fig:sr_geophone_asd
|
|
||||||
% [[file:figs/sr_geophone_asd.png]]
|
|
||||||
|
|
||||||
|
|
||||||
xlim([100, 500]);
|
|
||||||
|
|
||||||
% Load data
|
|
||||||
% We load the data of the z axis of two geophones.
|
|
||||||
|
|
||||||
sr_lpf_off = load('mat/data_016.mat', 'data'); sr_lpf_off = sr_lpf_off.data;
|
|
||||||
sr_lpf_on = load('mat/data_017.mat', 'data'); sr_lpf_on = sr_lpf_on.data;
|
|
||||||
|
|
||||||
% Time Domain
|
|
||||||
% We compare the signal when the Slip-Ring is OFF (figure [[fig:sr_lpf_geophone_time_off]]) and when it is ON (figure [[fig:sr_lpf_geophone_time_on]]).
|
|
||||||
|
|
||||||
|
|
||||||
figure;
|
|
||||||
hold on;
|
|
||||||
plot(sr_lpf_off(:, 3), sr_lpf_off(:, 1)-mean(sr_lpf_off(:, 1)), 'DisplayName', 'Direct');
|
|
||||||
plot(sr_lpf_off(:, 3), sr_lpf_off(:, 2)-mean(sr_lpf_off(:, 2)), 'DisplayName', 'Slip-Ring');
|
|
||||||
hold off;
|
|
||||||
xlim([0, 100]); ylim([-1, 1]);
|
|
||||||
legend('Location', 'northeast');
|
|
||||||
xlabel('Time [s]');
|
|
||||||
ylabel('Voltage [V]');
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
% #+NAME: fig:sr_lpf_geophone_time_off
|
|
||||||
% #+CAPTION: Comparison of the time domain signals when the slip-ring is OFF
|
|
||||||
% #+RESULTS: fig:sr_lpf_geophone_time_off
|
|
||||||
% [[file:figs/sr_lpf_geophone_time_off.png]]
|
|
||||||
|
|
||||||
|
|
||||||
figure;
|
|
||||||
hold on;
|
|
||||||
plot(sr_lpf_on(:, 3), sr_lpf_on(:, 1)-mean(sr_lpf_on(:, 1)), 'DisplayName', 'Direct');
|
|
||||||
plot(sr_lpf_on(:, 3), sr_lpf_on(:, 2)-mean(sr_lpf_on(:, 2)), 'DisplayName', 'Slip-Ring');
|
|
||||||
hold off;
|
|
||||||
xlim([0, 100]); ylim([-1, 1]);
|
|
||||||
legend('Location', 'northeast');
|
|
||||||
xlabel('Time [s]');
|
|
||||||
ylabel('Voltage [V]');
|
|
||||||
|
|
||||||
% Frequency Domain
|
|
||||||
% We first compute some parameters that will be used for the PSD computation.
|
|
||||||
|
|
||||||
dt = sr_lpf_off(2, 3)-sr_lpf_off(1, 3);
|
|
||||||
|
|
||||||
Fs = 1/dt; % [Hz]
|
|
||||||
|
|
||||||
win = hanning(ceil(10*Fs));
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
% Then we compute the Power Spectral Density using =pwelch= function.
|
|
||||||
|
|
||||||
% Direct measure
|
|
||||||
[pxd_lpf_off, ~] = pwelch(sr_lpf_off(:, 1), win, [], [], Fs);
|
|
||||||
[pxd_lpf_on, ~] = pwelch(sr_lpf_on(:, 1), win, [], [], Fs);
|
|
||||||
|
|
||||||
% Slip-Ring measure
|
|
||||||
[pxsr_lpf_off, f] = pwelch(sr_lpf_off(:, 2), win, [], [], Fs);
|
|
||||||
[pxsr_lpf_on, ~] = pwelch(sr_lpf_on(:, 2), win, [], [], Fs);
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
% Finally, we compare the Amplitude Spectral Density of the signals (figure [[fig:sr_lpf_geophone_asd]]);
|
|
||||||
|
|
||||||
|
|
||||||
figure;
|
|
||||||
hold on;
|
|
||||||
plot(f, sqrt(pxd_lpf_off), 'DisplayName', 'Direct - OFF');
|
|
||||||
plot(f, sqrt(pxsr_lpf_off), 'DisplayName', 'Slip-Ring - OFF');
|
|
||||||
plot(f, sqrt(pxd_lpf_on), 'DisplayName', 'Direct - ON');
|
|
||||||
plot(f, sqrt(pxsr_lpf_on), 'DisplayName', 'Slip-Ring - ON');
|
|
||||||
hold off;
|
|
||||||
xlim([0.1, 500]);
|
|
||||||
set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log');
|
|
||||||
xlabel('Frequency [Hz]'); ylabel('ASD of the measured Voltage $\left[\frac{V}{\sqrt{Hz}}\right]$')
|
|
||||||
legend('Location', 'southwest');
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
% #+NAME: fig:sr_lpf_geophone_asd
|
|
||||||
% #+CAPTION: Comparison of the Amplitude Spectral Sensity
|
|
||||||
% #+RESULTS: fig:sr_lpf_geophone_asd
|
|
||||||
% [[file:figs/sr_lpf_geophone_asd.png]]
|
|
||||||
|
|
||||||
|
|
||||||
xlim([100, 500]);
|
|
||||||
|
|
||||||
% Load data
|
|
||||||
% We load the data of the z axis of two geophones.
|
|
||||||
|
|
||||||
sr_lpf_1khz_of = load('mat/data_035.mat', 'data'); sr_lpf_1khz_of = sr_lpf_1khz_of.data;
|
|
||||||
sr_lpf_1khz_on = load('mat/data_036.mat', 'data'); sr_lpf_1khz_on = sr_lpf_1khz_on.data;
|
|
||||||
|
|
||||||
% Time Domain
|
|
||||||
% We compare the signal when the Slip-Ring is OFF (figure [[fig:sr_lpf_1khz_geophone_time_off]]) and when it is ON (figure [[fig:sr_lpf_1khz_geophone_time_on]]).
|
|
||||||
|
|
||||||
|
|
||||||
figure;
|
|
||||||
hold on;
|
|
||||||
plot(sr_lpf_1khz_of(:, 3), sr_lpf_1khz_of(:, 1)-mean(sr_lpf_1khz_of(:, 1)), 'DisplayName', 'Direct');
|
|
||||||
plot(sr_lpf_1khz_of(:, 3), sr_lpf_1khz_of(:, 2)-mean(sr_lpf_1khz_of(:, 2)), 'DisplayName', 'Slip-Ring');
|
|
||||||
hold off;
|
|
||||||
xlim([0, 100]); ylim([-1, 1]);
|
|
||||||
legend('Location', 'northeast');
|
|
||||||
xlabel('Time [s]'); ylabel('Voltage [V]');
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
% #+NAME: fig:sr_lpf_1khz_geophone_time_off
|
|
||||||
% #+CAPTION: Comparison of the time domain signals when the slip-ring is OFF
|
|
||||||
% #+RESULTS: fig:sr_lpf_1khz_geophone_time_off
|
|
||||||
% [[file:figs/sr_lpf_1khz_geophone_time_off.png]]
|
|
||||||
|
|
||||||
|
|
||||||
figure;
|
|
||||||
hold on;
|
|
||||||
plot(sr_lpf_1khz_on(:, 3), sr_lpf_1khz_on(:, 1)-mean(sr_lpf_1khz_on(:, 1)), 'DisplayName', 'Direct');
|
|
||||||
plot(sr_lpf_1khz_on(:, 3), sr_lpf_1khz_on(:, 2)-mean(sr_lpf_1khz_on(:, 2)), 'DisplayName', 'Slip-Ring');
|
|
||||||
hold off;
|
|
||||||
xlim([0, 100]); ylim([-1, 1]);
|
|
||||||
legend('Location', 'northeast');
|
|
||||||
xlabel('Time [s]'); ylabel('Voltage [V]');
|
|
||||||
|
|
||||||
% Frequency Domain
|
|
||||||
% We first compute some parameters that will be used for the PSD computation.
|
|
||||||
|
|
||||||
dt = sr_lpf_1khz_of(2, 3)-sr_lpf_1khz_of(1, 3);
|
|
||||||
|
|
||||||
Fs = 1/dt; % [Hz]
|
|
||||||
|
|
||||||
win = hanning(ceil(10*Fs));
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
% Then we compute the Power Spectral Density using =pwelch= function.
|
|
||||||
|
|
||||||
% Direct measure
|
|
||||||
[pxdi_lpf_1khz_of, f] = pwelch(sr_lpf_1khz_of(:, 1), win, [], [], Fs);
|
|
||||||
[pxdi_lpf_1khz_on, ~] = pwelch(sr_lpf_1khz_on(:, 1), win, [], [], Fs);
|
|
||||||
|
|
||||||
% Slip-Ring measure
|
|
||||||
[pxsr_lpf_1khz_of, ~] = pwelch(sr_lpf_1khz_of(:, 2), win, [], [], Fs);
|
|
||||||
[pxsr_lpf_1khz_on, ~] = pwelch(sr_lpf_1khz_on(:, 2), win, [], [], Fs);
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
% Finally, we compare the Amplitude Spectral Density of the signals (figure [[fig:sr_lpf_1khz_geophone_asd]]);
|
|
||||||
|
|
||||||
|
|
||||||
figure;
|
|
||||||
hold on;
|
|
||||||
plot(f, sqrt(pxdi_lpf_1khz_of), 'DisplayName', 'Direct - OFF');
|
|
||||||
plot(f, sqrt(pxsr_lpf_1khz_of), 'DisplayName', 'Slip-Ring - OFF');
|
|
||||||
plot(f, sqrt(pxdi_lpf_1khz_on), 'DisplayName', 'Direct - ON');
|
|
||||||
plot(f, sqrt(pxsr_lpf_1khz_on), 'DisplayName', 'Slip-Ring - ON');
|
|
||||||
hold off;
|
|
||||||
xlim([0.1, 500]);
|
|
||||||
set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log');
|
|
||||||
xlabel('Frequency [Hz]'); ylabel('ASD of the measured Voltage $\left[\frac{V}{\sqrt{Hz}}\right]$')
|
|
||||||
legend('Location', 'southwest');
|
|