Add one link to speedgoat commands
This commit is contained in:
@@ -3,7 +3,7 @@
|
||||
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
|
||||
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
|
||||
<head>
|
||||
<!-- 2019-07-03 mer. 13:53 -->
|
||||
<!-- 2019-10-08 mar. 10:48 -->
|
||||
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1" />
|
||||
<title>Modal Analysis - Derivation of Mathematical Models</title>
|
||||
@@ -246,18 +246,261 @@ for the JavaScript code in this tag.
|
||||
}
|
||||
/*]]>*///-->
|
||||
</script>
|
||||
<script type="text/x-mathjax-config">
|
||||
MathJax.Hub.Config({
|
||||
displayAlign: "center",
|
||||
displayIndent: "0em",
|
||||
|
||||
"HTML-CSS": { scale: 100,
|
||||
linebreaks: { automatic: "false" },
|
||||
webFont: "TeX"
|
||||
},
|
||||
SVG: {scale: 100,
|
||||
linebreaks: { automatic: "false" },
|
||||
font: "TeX"},
|
||||
NativeMML: {scale: 100},
|
||||
TeX: { equationNumbers: {autoNumber: "AMS"},
|
||||
MultLineWidth: "85%",
|
||||
TagSide: "right",
|
||||
TagIndent: ".8em"
|
||||
}
|
||||
});
|
||||
</script>
|
||||
<script type="text/javascript"
|
||||
src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS_HTML"></script>
|
||||
</head>
|
||||
<body>
|
||||
<div id="org-div-home-and-up">
|
||||
<a accesskey="h" href="../index.html"> UP </a>
|
||||
<a accesskey="h" href="./index.html"> UP </a>
|
||||
|
|
||||
<a accesskey="H" href="../index.html"> HOME </a>
|
||||
</div><div id="content">
|
||||
<h1 class="title">Modal Analysis - Derivation of Mathematical Models</h1>
|
||||
<div id="table-of-contents">
|
||||
<h2>Table of Contents</h2>
|
||||
<div id="text-table-of-contents">
|
||||
<ul>
|
||||
<li><a href="#org93dde66">1. Type of Model</a></li>
|
||||
<li><a href="#orgfd7d140">2. <span class="todo TODO">TODO</span> Extract Physical Matrices</a></li>
|
||||
<li><a href="#orgdaaea25">3. Some notes about constraining the number of degrees of freedom</a></li>
|
||||
</ul>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org93dde66" class="outline-2">
|
||||
<h2 id="org93dde66"><span class="section-number-2">1</span> Type of Model</h2>
|
||||
<div class="outline-text-2" id="text-1">
|
||||
<p>
|
||||
The model that we want to obtain is a <b>multi-body model</b>.
|
||||
It is composed of several <b>solid bodies connected with springs and dampers</b>.
|
||||
The solid bodies are represented with different colors on figure <a href="#org4703119">1</a>.
|
||||
</p>
|
||||
|
||||
<p>
|
||||
In the simscape model, the solid bodies are:
|
||||
</p>
|
||||
<ul class="org-ul">
|
||||
<li>the granite (1 or 2 solids)</li>
|
||||
<li>the translation stage</li>
|
||||
<li>the tilt stage</li>
|
||||
<li>the spindle and slip-ring</li>
|
||||
<li>the hexapod</li>
|
||||
</ul>
|
||||
|
||||
|
||||
<div id="org4703119" class="figure">
|
||||
<p><img src="img/nass_solidworks.png" alt="nass_solidworks.png" width="800px" />
|
||||
</p>
|
||||
<p><span class="figure-number">Figure 1: </span>CAD view of the ID31 Micro-Station</p>
|
||||
</div>
|
||||
|
||||
<p>
|
||||
However, each of the DOF of the system may not be relevant for the modes present in the frequency band of interest.
|
||||
For instance, the translation stage may not vibrate in the Z direction for all the modes identified. Then, we can block this DOF and this simplifies the model.
|
||||
</p>
|
||||
|
||||
<p>
|
||||
The modal identification done here will thus permit us to determine <b>which DOF can be neglected</b>.
|
||||
</p>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-orgfd7d140" class="outline-2">
|
||||
<h2 id="orgfd7d140"><span class="section-number-2">2</span> <span class="todo TODO">TODO</span> Extract Physical Matrices</h2>
|
||||
<div class="outline-text-2" id="text-2">
|
||||
<p>
|
||||
<a class='org-ref-reference' href="#wang11_extrac_real_modes_physic_matric">wang11_extrac_real_modes_physic_matric</a>
|
||||
</p>
|
||||
|
||||
<p>
|
||||
Let's recall that:
|
||||
\[ \Lambda = \begin{bmatrix}
|
||||
s_1 & & 0 \\
|
||||
& \ddots & \\
|
||||
0 & & s_N
|
||||
\end{bmatrix}_{N \times N}; \quad \Psi = \begin{bmatrix}
|
||||
& & \\
|
||||
\{\psi_1\} & \dots & \{\psi_N\} \\
|
||||
& &
|
||||
\end{bmatrix}_{M \times N} ; \quad A = \begin{bmatrix}
|
||||
a_1 & & 0 \\
|
||||
& \ddots & \\
|
||||
0 & & a_N
|
||||
\end{bmatrix}_{N \times N}; \]
|
||||
</p>
|
||||
|
||||
|
||||
\begin{align}
|
||||
M &= \frac{1}{2} \left[ \text{Re}(\Psi A^{-1} \Lambda \Psi^T ) \right]^{-1} \\
|
||||
C &= -2 M \text{Re}(\Psi A^{-1} \Lambda^2 A^{-1} \Psi^T ) M \\
|
||||
K &= -\frac{1}{2} \left[ \text{Re}(\Psi \Lambda^{-1} A^{-1} \Psi^T) \right]^{-1}
|
||||
\end{align}
|
||||
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">psi = eigen_vec_CoM;
|
||||
a = modal_a_M;
|
||||
lambda = eigen_val_M;
|
||||
|
||||
M = <span class="org-highlight-numbers-number">0</span>.<span class="org-highlight-numbers-number">5</span><span class="org-type">*</span>inv<span class="org-rainbow-delimiters-depth-1">(</span>real<span class="org-rainbow-delimiters-depth-2">(</span>psi<span class="org-type">*</span>inv<span class="org-rainbow-delimiters-depth-3">(</span>a<span class="org-rainbow-delimiters-depth-3">)</span><span class="org-type">*</span>lambda<span class="org-type">*</span>psi'<span class="org-rainbow-delimiters-depth-2">)</span><span class="org-rainbow-delimiters-depth-1">)</span>;
|
||||
C = <span class="org-type">-</span><span class="org-highlight-numbers-number">2</span><span class="org-type">*</span>M<span class="org-type">*</span>real<span class="org-rainbow-delimiters-depth-1">(</span>psi<span class="org-type">*</span>inv<span class="org-rainbow-delimiters-depth-2">(</span>a<span class="org-rainbow-delimiters-depth-2">)</span><span class="org-type">*</span>lambda<span class="org-type">^</span><span class="org-highlight-numbers-number">2</span><span class="org-type">*</span>inv<span class="org-rainbow-delimiters-depth-2">(</span>a<span class="org-rainbow-delimiters-depth-2">)</span><span class="org-type">*</span>psi'<span class="org-rainbow-delimiters-depth-1">)</span><span class="org-type">*</span>M;
|
||||
K = <span class="org-type">-</span><span class="org-highlight-numbers-number">0</span>.<span class="org-highlight-numbers-number">5</span><span class="org-type">*</span>inv<span class="org-rainbow-delimiters-depth-1">(</span>real<span class="org-rainbow-delimiters-depth-2">(</span>psi<span class="org-type">*</span>inv<span class="org-rainbow-delimiters-depth-3">(</span>lambda<span class="org-rainbow-delimiters-depth-3">)</span><span class="org-type">*</span>inv<span class="org-rainbow-delimiters-depth-3">(</span>a<span class="org-rainbow-delimiters-depth-3">)</span><span class="org-type">*</span>psi'<span class="org-rainbow-delimiters-depth-2">)</span><span class="org-rainbow-delimiters-depth-1">)</span>;
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
<p>
|
||||
From <a class='org-ref-reference' href="#ewins00_modal">ewins00_modal</a>
|
||||
</p>
|
||||
|
||||
\begin{align}
|
||||
[M] &= [\Phi]^{-T} [I] [\Phi]^{-1} \\
|
||||
[K] &= [\Phi]^{-T} [\lambda_r^2] [\Phi]^{-1}
|
||||
\end{align}
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-orgdaaea25" class="outline-2">
|
||||
<h2 id="orgdaaea25"><span class="section-number-2">3</span> Some notes about constraining the number of degrees of freedom</h2>
|
||||
<div class="outline-text-2" id="text-3">
|
||||
<p>
|
||||
We want to have the two eigen matrices.
|
||||
</p>
|
||||
|
||||
<p>
|
||||
They should have the same size \(n \times n\) where \(n\) is the number of modes as well as the number of degrees of freedom.
|
||||
Thus, if we consider 21 modes, we should restrict our system to have only 21 DOFs.
|
||||
</p>
|
||||
|
||||
<p>
|
||||
Actually, we are measured 6 DOFs of 6 solids, thus we have 36 DOFs.
|
||||
</p>
|
||||
|
||||
<p>
|
||||
From the mode shapes animations, it seems that in the frequency range of interest, the two marbles can be considered as one solid.
|
||||
We thus have 5 solids and 30 DOFs.
|
||||
</p>
|
||||
|
||||
|
||||
<p>
|
||||
In order to determine which DOF can be neglected, two solutions seems possible:
|
||||
</p>
|
||||
<ul class="org-ul">
|
||||
<li>compare the mode shapes</li>
|
||||
<li>compare the FRFs</li>
|
||||
</ul>
|
||||
|
||||
<p>
|
||||
The question is: in which base (frame) should be express the modes shapes and FRFs?
|
||||
Is it meaningful to compare mode shapes as they give no information about the amplitudes of vibration?
|
||||
</p>
|
||||
|
||||
|
||||
<table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
|
||||
|
||||
|
||||
<colgroup>
|
||||
<col class="org-left" />
|
||||
|
||||
<col class="org-right" />
|
||||
|
||||
<col class="org-right" />
|
||||
|
||||
<col class="org-right" />
|
||||
|
||||
<col class="org-left" />
|
||||
</colgroup>
|
||||
<thead>
|
||||
<tr>
|
||||
<th scope="col" class="org-left">Stage</th>
|
||||
<th scope="col" class="org-right">Motion DOFs</th>
|
||||
<th scope="col" class="org-right">Parasitic DOF</th>
|
||||
<th scope="col" class="org-right">Total DOF</th>
|
||||
<th scope="col" class="org-left">Description of DOF</th>
|
||||
</tr>
|
||||
</thead>
|
||||
<tbody>
|
||||
<tr>
|
||||
<td class="org-left">Granite</td>
|
||||
<td class="org-right">0</td>
|
||||
<td class="org-right">3</td>
|
||||
<td class="org-right">3</td>
|
||||
<td class="org-left"> </td>
|
||||
</tr>
|
||||
|
||||
<tr>
|
||||
<td class="org-left">Ty</td>
|
||||
<td class="org-right">1</td>
|
||||
<td class="org-right">2</td>
|
||||
<td class="org-right">3</td>
|
||||
<td class="org-left">Ty, Rz</td>
|
||||
</tr>
|
||||
|
||||
<tr>
|
||||
<td class="org-left">Ry</td>
|
||||
<td class="org-right">1</td>
|
||||
<td class="org-right">2</td>
|
||||
<td class="org-right">3</td>
|
||||
<td class="org-left">Ry,</td>
|
||||
</tr>
|
||||
|
||||
<tr>
|
||||
<td class="org-left">Rz</td>
|
||||
<td class="org-right">1</td>
|
||||
<td class="org-right">2</td>
|
||||
<td class="org-right">3</td>
|
||||
<td class="org-left">Rz, Rx, Ry</td>
|
||||
</tr>
|
||||
|
||||
<tr>
|
||||
<td class="org-left">Hexapod</td>
|
||||
<td class="org-right">6</td>
|
||||
<td class="org-right">0</td>
|
||||
<td class="org-right">6</td>
|
||||
<td class="org-left">Txyz, Rxyz</td>
|
||||
</tr>
|
||||
</tbody>
|
||||
<tbody>
|
||||
<tr>
|
||||
<td class="org-left"> </td>
|
||||
<td class="org-right">9</td>
|
||||
<td class="org-right">9</td>
|
||||
<td class="org-right">18</td>
|
||||
<td class="org-left"> </td>
|
||||
</tr>
|
||||
</tbody>
|
||||
</table>
|
||||
</div>
|
||||
</div>
|
||||
<p>
|
||||
|
||||
<h1 class='org-ref-bib-h1'>Bibliography</h1>
|
||||
<ul class='org-ref-bib'><li><a id="wang11_extrac_real_modes_physic_matric">[wang11_extrac_real_modes_physic_matric]</a> <a name="wang11_extrac_real_modes_physic_matric"></a>Tong Wang, Lingmi Zhang & Kong Fah Tee, Extraction of Real Modes and Physical Matrices From Modal Testing, <i>Earthquake Engineering and Engineering Vibration</i>, <b>10(2)</b>, 219-227 (2011). <a href="https://doi.org/10.1007/s11803-011-0060-6">link</a>. <a href="http://dx.doi.org/10.1007/s11803-011-0060-6">doi</a>.</li>
|
||||
<li><a id="ewins00_modal">[ewins00_modal]</a> <a name="ewins00_modal"></a>Ewins, Modal testing: theory, practice and application, Wiley-Blackwell (2000).</li>
|
||||
</ul>
|
||||
</p>
|
||||
</div>
|
||||
<div id="postamble" class="status">
|
||||
<p class="author">Author: Dehaeze Thomas</p>
|
||||
<p class="date">Created: 2019-07-03 mer. 13:53</p>
|
||||
<p class="date">Created: 2019-10-08 mar. 10:48</p>
|
||||
<p class="validation"><a href="http://validator.w3.org/check?uri=referer">Validate</a></p>
|
||||
</div>
|
||||
</body>
|
||||
|
Reference in New Issue
Block a user