Add one link to speedgoat commands
This commit is contained in:
		@@ -3,7 +3,7 @@
 | 
			
		||||
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 | 
			
		||||
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
 | 
			
		||||
<head>
 | 
			
		||||
<!-- 2019-07-03 mer. 13:53 -->
 | 
			
		||||
<!-- 2019-10-08 mar. 10:48 -->
 | 
			
		||||
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
 | 
			
		||||
<meta name="viewport" content="width=device-width, initial-scale=1" />
 | 
			
		||||
<title>Modal Analysis - Derivation of Mathematical Models</title>
 | 
			
		||||
@@ -246,18 +246,261 @@ for the JavaScript code in this tag.
 | 
			
		||||
 }
 | 
			
		||||
/*]]>*///-->
 | 
			
		||||
</script>
 | 
			
		||||
<script type="text/x-mathjax-config">
 | 
			
		||||
    MathJax.Hub.Config({
 | 
			
		||||
        displayAlign: "center",
 | 
			
		||||
        displayIndent: "0em",
 | 
			
		||||
 | 
			
		||||
        "HTML-CSS": { scale: 100,
 | 
			
		||||
                        linebreaks: { automatic: "false" },
 | 
			
		||||
                        webFont: "TeX"
 | 
			
		||||
                       },
 | 
			
		||||
        SVG: {scale: 100,
 | 
			
		||||
              linebreaks: { automatic: "false" },
 | 
			
		||||
              font: "TeX"},
 | 
			
		||||
        NativeMML: {scale: 100},
 | 
			
		||||
        TeX: { equationNumbers: {autoNumber: "AMS"},
 | 
			
		||||
               MultLineWidth: "85%",
 | 
			
		||||
               TagSide: "right",
 | 
			
		||||
               TagIndent: ".8em"
 | 
			
		||||
             }
 | 
			
		||||
});
 | 
			
		||||
</script>
 | 
			
		||||
<script type="text/javascript"
 | 
			
		||||
        src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS_HTML"></script>
 | 
			
		||||
</head>
 | 
			
		||||
<body>
 | 
			
		||||
<div id="org-div-home-and-up">
 | 
			
		||||
 <a accesskey="h" href="../index.html"> UP </a>
 | 
			
		||||
 <a accesskey="h" href="./index.html"> UP </a>
 | 
			
		||||
 |
 | 
			
		||||
 <a accesskey="H" href="../index.html"> HOME </a>
 | 
			
		||||
</div><div id="content">
 | 
			
		||||
<h1 class="title">Modal Analysis - Derivation of Mathematical Models</h1>
 | 
			
		||||
<div id="table-of-contents">
 | 
			
		||||
<h2>Table of Contents</h2>
 | 
			
		||||
<div id="text-table-of-contents">
 | 
			
		||||
<ul>
 | 
			
		||||
<li><a href="#org93dde66">1. Type of Model</a></li>
 | 
			
		||||
<li><a href="#orgfd7d140">2. <span class="todo TODO">TODO</span> Extract Physical Matrices</a></li>
 | 
			
		||||
<li><a href="#orgdaaea25">3. Some notes about constraining the number of degrees of freedom</a></li>
 | 
			
		||||
</ul>
 | 
			
		||||
</div>
 | 
			
		||||
</div>
 | 
			
		||||
 | 
			
		||||
<div id="outline-container-org93dde66" class="outline-2">
 | 
			
		||||
<h2 id="org93dde66"><span class="section-number-2">1</span> Type of Model</h2>
 | 
			
		||||
<div class="outline-text-2" id="text-1">
 | 
			
		||||
<p>
 | 
			
		||||
The model that we want to obtain is a <b>multi-body model</b>.
 | 
			
		||||
It is composed of several <b>solid bodies connected with springs and dampers</b>.
 | 
			
		||||
The solid bodies are represented with different colors on figure <a href="#org4703119">1</a>.
 | 
			
		||||
</p>
 | 
			
		||||
 | 
			
		||||
<p>
 | 
			
		||||
In the simscape model, the solid bodies are:
 | 
			
		||||
</p>
 | 
			
		||||
<ul class="org-ul">
 | 
			
		||||
<li>the granite (1 or 2 solids)</li>
 | 
			
		||||
<li>the translation stage</li>
 | 
			
		||||
<li>the tilt stage</li>
 | 
			
		||||
<li>the spindle and slip-ring</li>
 | 
			
		||||
<li>the hexapod</li>
 | 
			
		||||
</ul>
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
<div id="org4703119" class="figure">
 | 
			
		||||
<p><img src="img/nass_solidworks.png" alt="nass_solidworks.png" width="800px" />
 | 
			
		||||
</p>
 | 
			
		||||
<p><span class="figure-number">Figure 1: </span>CAD view of the ID31 Micro-Station</p>
 | 
			
		||||
</div>
 | 
			
		||||
 | 
			
		||||
<p>
 | 
			
		||||
However, each of the DOF of the system may not be relevant for the modes present in the frequency band of interest.
 | 
			
		||||
For instance, the translation stage may not vibrate in the Z direction for all the modes identified. Then, we can block this DOF and this simplifies the model.
 | 
			
		||||
</p>
 | 
			
		||||
 | 
			
		||||
<p>
 | 
			
		||||
The modal identification done here will thus permit us to determine <b>which DOF can be neglected</b>.
 | 
			
		||||
</p>
 | 
			
		||||
</div>
 | 
			
		||||
</div>
 | 
			
		||||
 | 
			
		||||
<div id="outline-container-orgfd7d140" class="outline-2">
 | 
			
		||||
<h2 id="orgfd7d140"><span class="section-number-2">2</span> <span class="todo TODO">TODO</span> Extract Physical Matrices</h2>
 | 
			
		||||
<div class="outline-text-2" id="text-2">
 | 
			
		||||
<p>
 | 
			
		||||
<a class='org-ref-reference' href="#wang11_extrac_real_modes_physic_matric">wang11_extrac_real_modes_physic_matric</a>
 | 
			
		||||
</p>
 | 
			
		||||
 | 
			
		||||
<p>
 | 
			
		||||
Let's recall that:
 | 
			
		||||
\[ \Lambda = \begin{bmatrix}
 | 
			
		||||
  s_1 &        & 0 \\
 | 
			
		||||
      & \ddots &   \\
 | 
			
		||||
  0   &        & s_N
 | 
			
		||||
\end{bmatrix}_{N \times N}; \quad \Psi = \begin{bmatrix}
 | 
			
		||||
  & & \\
 | 
			
		||||
  \{\psi_1\} & \dots & \{\psi_N\} \\
 | 
			
		||||
  & &
 | 
			
		||||
\end{bmatrix}_{M \times N} ; \quad A = \begin{bmatrix}
 | 
			
		||||
  a_1 &        & 0   \\
 | 
			
		||||
      & \ddots &     \\
 | 
			
		||||
  0   &        & a_N
 | 
			
		||||
\end{bmatrix}_{N \times N}; \]
 | 
			
		||||
</p>
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
\begin{align}
 | 
			
		||||
  M &= \frac{1}{2} \left[ \text{Re}(\Psi A^{-1} \Lambda \Psi^T ) \right]^{-1} \\
 | 
			
		||||
  C &= -2 M \text{Re}(\Psi A^{-1} \Lambda^2 A^{-1} \Psi^T ) M \\
 | 
			
		||||
  K &= -\frac{1}{2} \left[ \text{Re}(\Psi \Lambda^{-1} A^{-1} \Psi^T) \right]^{-1}
 | 
			
		||||
\end{align}
 | 
			
		||||
 | 
			
		||||
<div class="org-src-container">
 | 
			
		||||
<pre class="src src-matlab">psi = eigen_vec_CoM;
 | 
			
		||||
a = modal_a_M;
 | 
			
		||||
lambda = eigen_val_M;
 | 
			
		||||
 | 
			
		||||
M = <span class="org-highlight-numbers-number">0</span>.<span class="org-highlight-numbers-number">5</span><span class="org-type">*</span>inv<span class="org-rainbow-delimiters-depth-1">(</span>real<span class="org-rainbow-delimiters-depth-2">(</span>psi<span class="org-type">*</span>inv<span class="org-rainbow-delimiters-depth-3">(</span>a<span class="org-rainbow-delimiters-depth-3">)</span><span class="org-type">*</span>lambda<span class="org-type">*</span>psi'<span class="org-rainbow-delimiters-depth-2">)</span><span class="org-rainbow-delimiters-depth-1">)</span>;
 | 
			
		||||
C = <span class="org-type">-</span><span class="org-highlight-numbers-number">2</span><span class="org-type">*</span>M<span class="org-type">*</span>real<span class="org-rainbow-delimiters-depth-1">(</span>psi<span class="org-type">*</span>inv<span class="org-rainbow-delimiters-depth-2">(</span>a<span class="org-rainbow-delimiters-depth-2">)</span><span class="org-type">*</span>lambda<span class="org-type">^</span><span class="org-highlight-numbers-number">2</span><span class="org-type">*</span>inv<span class="org-rainbow-delimiters-depth-2">(</span>a<span class="org-rainbow-delimiters-depth-2">)</span><span class="org-type">*</span>psi'<span class="org-rainbow-delimiters-depth-1">)</span><span class="org-type">*</span>M;
 | 
			
		||||
K = <span class="org-type">-</span><span class="org-highlight-numbers-number">0</span>.<span class="org-highlight-numbers-number">5</span><span class="org-type">*</span>inv<span class="org-rainbow-delimiters-depth-1">(</span>real<span class="org-rainbow-delimiters-depth-2">(</span>psi<span class="org-type">*</span>inv<span class="org-rainbow-delimiters-depth-3">(</span>lambda<span class="org-rainbow-delimiters-depth-3">)</span><span class="org-type">*</span>inv<span class="org-rainbow-delimiters-depth-3">(</span>a<span class="org-rainbow-delimiters-depth-3">)</span><span class="org-type">*</span>psi'<span class="org-rainbow-delimiters-depth-2">)</span><span class="org-rainbow-delimiters-depth-1">)</span>;
 | 
			
		||||
</pre>
 | 
			
		||||
</div>
 | 
			
		||||
 | 
			
		||||
<p>
 | 
			
		||||
From <a class='org-ref-reference' href="#ewins00_modal">ewins00_modal</a>
 | 
			
		||||
</p>
 | 
			
		||||
 | 
			
		||||
\begin{align}
 | 
			
		||||
  [M] &= [\Phi]^{-T} [I] [\Phi]^{-1} \\
 | 
			
		||||
  [K] &= [\Phi]^{-T} [\lambda_r^2] [\Phi]^{-1}
 | 
			
		||||
\end{align}
 | 
			
		||||
</div>
 | 
			
		||||
</div>
 | 
			
		||||
 | 
			
		||||
<div id="outline-container-orgdaaea25" class="outline-2">
 | 
			
		||||
<h2 id="orgdaaea25"><span class="section-number-2">3</span> Some notes about constraining the number of degrees of freedom</h2>
 | 
			
		||||
<div class="outline-text-2" id="text-3">
 | 
			
		||||
<p>
 | 
			
		||||
We want to have the two eigen matrices.
 | 
			
		||||
</p>
 | 
			
		||||
 | 
			
		||||
<p>
 | 
			
		||||
They should have the same size \(n \times n\) where \(n\) is the number of modes as well as the number of degrees of freedom.
 | 
			
		||||
Thus, if we consider 21 modes, we should restrict our system to have only 21 DOFs.
 | 
			
		||||
</p>
 | 
			
		||||
 | 
			
		||||
<p>
 | 
			
		||||
Actually, we are measured 6 DOFs of 6 solids, thus we have 36 DOFs.
 | 
			
		||||
</p>
 | 
			
		||||
 | 
			
		||||
<p>
 | 
			
		||||
From the mode shapes animations, it seems that in the frequency range of interest, the two marbles can be considered as one solid.
 | 
			
		||||
We thus have 5 solids and 30 DOFs.
 | 
			
		||||
</p>
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
<p>
 | 
			
		||||
In order to determine which DOF can be neglected, two solutions seems possible:
 | 
			
		||||
</p>
 | 
			
		||||
<ul class="org-ul">
 | 
			
		||||
<li>compare the mode shapes</li>
 | 
			
		||||
<li>compare the FRFs</li>
 | 
			
		||||
</ul>
 | 
			
		||||
 | 
			
		||||
<p>
 | 
			
		||||
The question is: in which base (frame) should be express the modes shapes and FRFs?
 | 
			
		||||
Is it meaningful to compare mode shapes as they give no information about the amplitudes of vibration?
 | 
			
		||||
</p>
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
<table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
<colgroup>
 | 
			
		||||
<col  class="org-left" />
 | 
			
		||||
 | 
			
		||||
<col  class="org-right" />
 | 
			
		||||
 | 
			
		||||
<col  class="org-right" />
 | 
			
		||||
 | 
			
		||||
<col  class="org-right" />
 | 
			
		||||
 | 
			
		||||
<col  class="org-left" />
 | 
			
		||||
</colgroup>
 | 
			
		||||
<thead>
 | 
			
		||||
<tr>
 | 
			
		||||
<th scope="col" class="org-left">Stage</th>
 | 
			
		||||
<th scope="col" class="org-right">Motion DOFs</th>
 | 
			
		||||
<th scope="col" class="org-right">Parasitic DOF</th>
 | 
			
		||||
<th scope="col" class="org-right">Total DOF</th>
 | 
			
		||||
<th scope="col" class="org-left">Description of DOF</th>
 | 
			
		||||
</tr>
 | 
			
		||||
</thead>
 | 
			
		||||
<tbody>
 | 
			
		||||
<tr>
 | 
			
		||||
<td class="org-left">Granite</td>
 | 
			
		||||
<td class="org-right">0</td>
 | 
			
		||||
<td class="org-right">3</td>
 | 
			
		||||
<td class="org-right">3</td>
 | 
			
		||||
<td class="org-left"> </td>
 | 
			
		||||
</tr>
 | 
			
		||||
 | 
			
		||||
<tr>
 | 
			
		||||
<td class="org-left">Ty</td>
 | 
			
		||||
<td class="org-right">1</td>
 | 
			
		||||
<td class="org-right">2</td>
 | 
			
		||||
<td class="org-right">3</td>
 | 
			
		||||
<td class="org-left">Ty, Rz</td>
 | 
			
		||||
</tr>
 | 
			
		||||
 | 
			
		||||
<tr>
 | 
			
		||||
<td class="org-left">Ry</td>
 | 
			
		||||
<td class="org-right">1</td>
 | 
			
		||||
<td class="org-right">2</td>
 | 
			
		||||
<td class="org-right">3</td>
 | 
			
		||||
<td class="org-left">Ry,</td>
 | 
			
		||||
</tr>
 | 
			
		||||
 | 
			
		||||
<tr>
 | 
			
		||||
<td class="org-left">Rz</td>
 | 
			
		||||
<td class="org-right">1</td>
 | 
			
		||||
<td class="org-right">2</td>
 | 
			
		||||
<td class="org-right">3</td>
 | 
			
		||||
<td class="org-left">Rz, Rx, Ry</td>
 | 
			
		||||
</tr>
 | 
			
		||||
 | 
			
		||||
<tr>
 | 
			
		||||
<td class="org-left">Hexapod</td>
 | 
			
		||||
<td class="org-right">6</td>
 | 
			
		||||
<td class="org-right">0</td>
 | 
			
		||||
<td class="org-right">6</td>
 | 
			
		||||
<td class="org-left">Txyz, Rxyz</td>
 | 
			
		||||
</tr>
 | 
			
		||||
</tbody>
 | 
			
		||||
<tbody>
 | 
			
		||||
<tr>
 | 
			
		||||
<td class="org-left"> </td>
 | 
			
		||||
<td class="org-right">9</td>
 | 
			
		||||
<td class="org-right">9</td>
 | 
			
		||||
<td class="org-right">18</td>
 | 
			
		||||
<td class="org-left"> </td>
 | 
			
		||||
</tr>
 | 
			
		||||
</tbody>
 | 
			
		||||
</table>
 | 
			
		||||
</div>
 | 
			
		||||
</div>
 | 
			
		||||
<p>
 | 
			
		||||
 | 
			
		||||
<h1 class='org-ref-bib-h1'>Bibliography</h1>
 | 
			
		||||
<ul class='org-ref-bib'><li><a id="wang11_extrac_real_modes_physic_matric">[wang11_extrac_real_modes_physic_matric]</a> <a name="wang11_extrac_real_modes_physic_matric"></a>Tong Wang, Lingmi Zhang & Kong Fah Tee, Extraction of Real Modes and Physical Matrices From Modal  Testing, <i>Earthquake Engineering and Engineering Vibration</i>, <b>10(2)</b>, 219-227 (2011). <a href="https://doi.org/10.1007/s11803-011-0060-6">link</a>. <a href="http://dx.doi.org/10.1007/s11803-011-0060-6">doi</a>.</li>
 | 
			
		||||
<li><a id="ewins00_modal">[ewins00_modal]</a> <a name="ewins00_modal"></a>Ewins, Modal testing: theory, practice and application, Wiley-Blackwell (2000).</li>
 | 
			
		||||
</ul>
 | 
			
		||||
</p>
 | 
			
		||||
</div>
 | 
			
		||||
<div id="postamble" class="status">
 | 
			
		||||
<p class="author">Author: Dehaeze Thomas</p>
 | 
			
		||||
<p class="date">Created: 2019-07-03 mer. 13:53</p>
 | 
			
		||||
<p class="date">Created: 2019-10-08 mar. 10:48</p>
 | 
			
		||||
<p class="validation"><a href="http://validator.w3.org/check?uri=referer">Validate</a></p>
 | 
			
		||||
</div>
 | 
			
		||||
</body>
 | 
			
		||||
 
 | 
			
		||||
		Reference in New Issue
	
	Block a user