Add every computation files and data

This commit is contained in:
2019-03-14 16:40:28 +01:00
parent 3929373a9d
commit c2aa389536
423 changed files with 2233847 additions and 0 deletions

Binary file not shown.

After

Width:  |  Height:  |  Size: 47 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 53 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 53 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 53 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 52 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 52 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 52 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 52 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 52 KiB

View File

@@ -0,0 +1,293 @@
% Title: id31 microstation in EXP hutch
% Date: 12 october 2018
% Description: measure on id31 microstation in exp hutch
% FS: =256Hz
% all L28 (31V/m/s) except CH1 L4-C (276V/m/s)
% ch1: marble Z
% ch2: outer frame Ty Z
% ch3: inner frame Tilt Z
% ch4: hexa Z
% ch5: marble H
% ch6: outer frame TY H
% ch7: inner frame Tilt H
% ch8: hexa H
% ch9: hammer
% measurements 12 october 2018
% ------------------------------------------------
% excitation Y marble corner
% Measurement1
% excitation Y outer frame corner
% Measurement2
% excitation Y hexa
% Measurement3
% ------------------------------------------------
% excitation Z marble corner
% Measurement4
% excitation Z outer frame corner
% Measurement5
% excitation Z hexa
% Measurement6
% ------------------------------------------------
% excitation X marble corner
% Measurement7
% excitation X outer frame corner
% Measurement8
% excitation X hexa
% Measurement9
%%
microstation=['Marble '; 'TY ';'Tilt '; 'Hexapod '];
%
% xxx_marble_x - excitation X direction on marble
% xxx_marble_y - excitation Y direction on marble
% xxx_marble_z - excitation Z direction on marble
% xxx_hexa_x - excitation X direction on hexa
% xxx_hexa_y - excitation Y direction on hexa
% xxx_hexa_z - excitation Z direction on hexa
% frf= transfert function acceleration/force en ms-2/N (complex)
% phs= phase
% coh= coherence
% freq_frf= frequencies
%% -------------------------------------------------------------------------
% LOAD SAVED FRF
% ------------------------------------------------------------------------
% ch_max=16;
% % --------------------------------
%
% mult=1e6; % --> m/s to micron/s
%
% nyqhp=2.56; % nyquist
% f_cut=0.5; % cut frequency for high pass filter
% t_win=4; % window length in sec
% t_ovlp=0; % overlap window in sec
warning off MATLAB:divideByZero
cd FRF_id31_microstation_12october2018
% specify capt # for which to run this
capt=[1:9];
for i=capt
eval(['load Measurement',num2str(i)])
for ch=1:8
eval(['freq_frf(:,',num2str(1),')=FFT1_H1_',num2str(2),'_9_RMS_X_Val;'])
%omeg=2*pi*freq;
eval(['av_spc(:,',num2str(ch),')=FFT1_AvSpc_',num2str(ch),'_RMS_Y_Val;'])
eval(['frf_mod(:,',num2str(ch),')=FFT1_H1_',num2str(ch),'_9_RMS_Y_Mod;'])
eval(['frf_phs(:,',num2str(ch),')=FFT1_H1_',num2str(ch),'_9_RMS_Y_Phas;'])
eval(['frf_reim(:,',num2str(ch),')=FFT1_H1_',num2str(ch),'_9_Y_ReIm;'])
%eval(['frf_coh(:,',num2str(ch),')=FFT1_Coh_',num2str(ch),'_9_RMS_Y_Val;'])
end
eval(['mod',num2str(i),'=frf_mod;'])
eval(['phs',num2str(i),'=frf_phs;'])
eval(['ReIm',num2str(i),'=frf_reim;'])
%eval(['coh',num2str(i),'=frf_coh;'])
eval(['avsp',num2str(i),'=av_spc;'])
end
%% --------plot settings for colors and linewidth----
proname(1)={'LineWidth'};
proname(2)={'Color'};
proname(3)={'LineStyle'};
val(1,1) = {.5} ;val(1,2) = {[0.6 0.2 1]} ;val(1,3) = {'-'};
val(2,1) = {2} ;val(2,2) = {[0 0 1]} ;val(2,3) = {'-'};
val(3,1) = {0.5} ;val(3,2) = {[0.25 0.9 0.65]} ;val(3,3) = {'-'};
val(4,1) = {2} ;val(4,2) = {[0 1 0]} ;val(4,3) = {'-'};
val(5,1) = {0.5} ;val(5,2) = {[1 0.4 0.4]} ;val(5,3) = {'-'};
val(6,1) = {2} ;val(6,2) = {[1 0 0]} ;val(6,3) = {'-'};
val(7,1) = {1} ;val(7,2) = {[0.8 0.8 0.8]} ;val(7,3) = {'-'};
val(8,1) = {2} ;val(8,2) = {[0.1 0.1 0.2]} ;val(8,3) = {'-'};
val(9,1) = {1} ;val(9,2) = {[0.7 0.8 0.4]} ;val(9,3) = {'-'};
val(10,1) = {2} ;val(10,2) = {[0.7 0.8 0.2]} ;val(10,3) = {'-'};
val(11,1) = {1} ;val(11,2) = {[0.9 0.7 0.35]} ;val(11,3) = {'-'};
val(12,1) = {2} ;val(12,2) = {[1 0.8 0.3]} ;val(12,3) = {'-'};
val(13,1) = {1} ;val(13,2) = {[0.5 0.4 0.3]} ;val(13,3) = {'-'};
val(14,1) = {2} ;val(14,2) = {[0.5 0.3 0.2]} ;val(14,3) = {'-'};
%% --------------------------------Plots
xlab=['Frequency in Hz'];
xlab1=['Hours since start: 06/07/2012 at 19:40'];
ylab1=['Velocity / Force in m.s^{-1}.N^{-1}.'];
ylab2=['PSD in \mum^{2}/Hz'];
ylab3=['Amplification'];
ylab4=['PSD in (\mum/s)^{2}/Hz'];
ylab5=['PSD in a.u.'];
ylab6=['Phase in deg.'];
ylab7=['Coherence'];
font_s=14;
%% ---------------------------------
tit_1=['ID31 microstation - (X) FRF - Hammer Marble'];
tit_1_a=['ID31 microstation - (X) FRF - Hammer TY'];
tit_1_b=['ID31 microstation - (X) FRF - Hammer hexa'];
tit_2=['ID31 microstation - (Y) FRF - Hammer Marble'];
tit_2_a=['ID31 microstation - (Y) FRF - Hammer TY'];
tit_2_b=['ID31 microstation - (Y) FRF - Hammer hexa'];
tit_3=['ID31 microstation - (Z) FRF - Hammer Marble'];
tit_3_a=['ID31 microstation - (Z) FRF - Hammer TY'];
tit_3_b=['ID31 microstation - (Z) FRF - Hammer hexa'];
% tit_4=['ID31 microstation - Horizontal (X) Phase'];
% tit_5=['ID31 microstation - Horizontal (Y) Phase'];
% tit_6=['ID31 microstation - Vertical (Z) Phase'];
% tit_7=['ID31 microstation - Horizontal (X) Coh'];
% tit_8=['ID31 microstation - Horizontal (Y) Coh'];
% tit_9=['ID31 microstation - Vertical (Z) Coh'];
legend1=['microstation(1,:),microstation(2,:),microstation(3,:),microstation(4,:),''Location'',''SouthEast'''];
%% FRF X direction
figure
h=semilogy(freq_frf,abs([ReIm7(:,5) ReIm7(:,6) ReIm7(:,7) ReIm7(:,8)]));
set(h,proname,val([6 4 2 8],1:3))
eval(['legend(',legend1,')'])
titlabel_font(tit_1,xlab,ylab1,font_s);
%axis([1 100 1e-2 1e2])
grid
saveas(gcf,'frf_x_hammer_marble','fig')
print -dpng frf_x_hammer_marble
figure
h=semilogy(freq_frf,abs([ReIm8(:,5) ReIm8(:,6) ReIm8(:,7) ReIm8(:,8)]));
set(h,proname,val([6 4 2 8],1:3))
eval(['legend(',legend1,')'])
titlabel_font(tit_1_a,xlab,ylab1,font_s);
%axis([1 100 1e-2 1e2])
grid
saveas(gcf,'frf_x_hammer_ty','fig')
print -dpng frf_x_hammer_ty
figure
h=semilogy(freq_frf,abs([ReIm9(:,5) ReIm9(:,6) ReIm9(:,7) ReIm9(:,8)]));
set(h,proname,val([6 4 2 8],1:3))
eval(['legend(',legend1,')'])
titlabel_font(tit_1_b,xlab,ylab1,font_s);
%axis([1 100 1e-2 1e2])
grid
saveas(gcf,'frf_x_hammer_hexa','fig')
print -dpng frf_x_hammer_hexa
%% FRF Y direction
figure
h=semilogy(freq_frf,abs([ReIm1(:,5) ReIm1(:,6) ReIm1(:,7) ReIm1(:,8)]));
set(h,proname,val([6 4 2 8],1:3))
eval(['legend(',legend1,')'])
titlabel_font(tit_2,xlab,ylab1,font_s);
%axis([1 100 1e-2 1e2])
grid
saveas(gcf,'frf_y_hammer_marble','fig')
print -dpng frf_y_hammer_marble
figure
h=semilogy(freq_frf,abs([ReIm2(:,5) ReIm2(:,6) ReIm2(:,7) ReIm2(:,8)]));
set(h,proname,val([6 4 2 8],1:3))
eval(['legend(',legend1,')'])
titlabel_font(tit_2_a,xlab,ylab1,font_s);
%axis([1 100 1e-2 1e2])
grid
saveas(gcf,'frf_y_hammer_ty','fig')
print -dpng frf_y_hammer_ty
figure
h=semilogy(freq_frf,abs([ReIm3(:,5) ReIm3(:,6) ReIm3(:,7) ReIm3(:,8)]));
set(h,proname,val([6 4 2 8],1:3))
eval(['legend(',legend1,')'])
titlabel_font(tit_2_b,xlab,ylab1,font_s);
%axis([1 100 1e-2 1e2])
grid
saveas(gcf,'frf_y_hammer_hexa','fig')
print -dpng frf_y_hammer_hexa
%% FRF Z direction
figure
h=semilogy(freq_frf,abs([ReIm4(:,5) ReIm4(:,6) ReIm4(:,7) ReIm4(:,8)]));
set(h,proname,val([6 4 2 8],1:3))
eval(['legend(',legend1,')'])
titlabel_font(tit_3,xlab,ylab1,font_s);
%axis([1 100 1e-2 1e2])dd
grid
saveas(gcf,'frf_z_hammer_marble','fig')
print -dpng frf_z_hammer_marble
figure
h=semilogy(freq_frf,abs([ReIm5(:,5) ReIm5(:,6) ReIm5(:,7) ReIm5(:,8)]));
set(h,proname,val([6 4 2 8],1:3))
eval(['legend(',legend1,')'])
titlabel_font(tit_3_a,xlab,ylab1,font_s);
%axis([1 100 1e-2 1e2])
grid
saveas(gcf,'frf_z_hammer_ty','fig')
print -dpng frf_z_hammer_ty
figure
h=semilogy(freq_frf,abs([ReIm6(:,5) ReIm6(:,6) ReIm6(:,7) ReIm6(:,8)]));
set(h,proname,val([6 4 2 8],1:3))
eval(['legend(',legend1,')'])
titlabel_font(tit_3_b,xlab,ylab1,font_s);
%axis([1 100 1e-2 1e2])
grid
saveas(gcf,'frf_z_hammer_hexa','fig')
print -dpng frf_z_hammer_hexa
%% save data
% save ('coher_marble_x.mat', 'coh1')
% save ('coher_marble_y.mat', 'coh3')
% save ('coher_marble_z.mat', 'coh5')
% save ('coher_hexa_z.mat', 'coh6')
% save ('coher_hexa_y.mat', 'coh4')
% save ('coher_hexa_x.mat', 'coh2')
save ('phs_ty_x.mat', 'phs8')
save ('phs_ty_y.mat', 'phs2')
save ('phs_ty_z.mat', 'phs5')
save ('phs_hexa_x.mat', 'phs9')
save ('phs_hexa_y.mat', 'phs3')
save ('phs_hexa_z.mat', 'phs6')
save ('phs_marble_x.mat', 'phs7')
save ('phs_marble_y.mat', 'phs1')
save ('phs_marble_z.mat', 'phs4')
save ('frf_ty_x.mat', 'ReIm8')
save ('frf_ty_y.mat', 'ReIm2')
save ('frf_ty_z.mat', 'ReIm5')
save ('frf_hexa_x.mat', 'ReIm9')
save ('frf_hexa_y.mat', 'ReIm3')
save ('frf_hexa_z.mat', 'ReIm6')
save ('frf_marble_x.mat', 'ReIm7')
save ('frf_marble_y.mat', 'ReIm1')
save ('frf_marble_z.mat', 'ReIm4')
save ('freq_frf.mat', 'freq_frf')

View File

@@ -0,0 +1,200 @@
%% Title: id31 microstation in EXP hutch for RAW data
% Date: 12 october 2018
%% NOTE
% With this file you can load the raw mat files
%% Description: measure on id31 microstation in exp hutch
% FS: =256Hz
% all L28 (31V/m/s) except CH1 L4-C (276V/m/s)
% ch1: marble Z
% ch2: outer frame Ty Z
% ch3: inner frame Tilt Z
% ch4: hexa Z
% ch5: marble H
% ch6: outer frame TY H
% ch7: inner frame Tilt H
% ch8: hexa H
% ch9: hammer
%% measurements 12 october 2018
% excitation Y marble corner
% Measurement1
% excitation Y outer frame corner
% Measurement2
% excitation Y hexa
% Measurement3
% ------------------------------------------------
% excitation Z marble corner
% Measurement4
% excitation Z outer frame corner
% Measurement5
% excitation Z hexa
% Measurement6
% ------------------------------------------------
% excitation X marble corner
% Measurement7
% excitation X outer frame corner
% Measurement8
% excitation X hexa
% Measurement9
%%
microstation=['Marble '; 'TY ';'Tilt '; 'Hexapod '];
%
%% PARAMETERS
beamline='ID31 Nanostation - Hammer testing';
% --------------------------------
%%----------OROS -----------------
ch_max=16;
% --------------------------------
%mult=1e6/276*173; % --> m/s to micron/s and sensitivity correction for L4-C
nyqhp=2.56; % nyquist
f_cut=0.5; % cut frequency for high pass filter
t_win=4; % window length in sec
t_ovlp=0; % overlap window in sec
%d=1.3; % distance between vertical sensors
warning off MATLAB:divideByZero
% specify capt # for which to run this
capt=[1:9];
% specify channels for which shut correction must be applied
shunt_ch=[1];
% in case of hammer inpacts specify capt # where it doesnt occur
no_hammer=[];
%no_hammer=[0];
% specify hammer channel (or ch to find peak due to impacts)
shock_ch=9;
%% main loop --------
% ------------------
for i=capt
eval(['load Measurement_raw',num2str(i)])
freq_max=Track1_TrueBandWidth;
dts=1/(freq_max*nyqhp);
freq=linspace(0,freq_max,t_win*freq_max);
wo=2*pi*freq;
for k=1:ch_max
vname=['Track',num2str(k)];
array_exist(k)=ismember(vname,who);
end
non_zero=find(array_exist);
for z=non_zero(1):length(non_zero)
track_nb=['Track',num2str(z)]';
eval(['data(:,z)=Track',num2str(z),';']);
end
c=data*mult;
%-------------
nbch=size(c,2);
%-------------
r=length(c);
if r/2~=fix(r/2) % loop to test for odd or even nb of samples
c=c(1:r-1,:); % take only even
else
end
%------------------------------
time=linspace(0,length(c)*dts,length(c));
for j=nbch %shunt_ch
[c(:,j),c_shut]=shut_c(c(:,j),1/dts); % correct for shunt
end
%c(:,8)=(c(:,5)-c(:,4))/d; % differential Theta Y angle
b=find(no_hammer==i); % if i==1 | i==2 | i==6
if b~=0
[psd_v,integ_v,psd_d,integ_d]=integrated_psd(c,t_win,t_ovlp,nyqhp,dts);
[frz_cut,crsp,pwsp,coherz,nsp]=fqresp(c,shock_ch,t_win,t_ovlp,nyqhp,dts);
else
thresh=0.5; % threshold of max value
sep=2.5; % separation minimum of peaks in sec
pre_ev=2; % pre event delay in sec
pos_ev=2; % post event delay in sec
[ti,t_impact]=findpeaks(c(:,shock_ch),'minpeakheight',max(c(:,shock_ch))*thresh,'minpeakdistance',ceil(sep/dts));
% find times at which there are impacts (threshold of max and separated by sep sec)
psd_v=zeros((pre_ev+pos_ev)/dts/nyqhp,nbch);
psd_d=zeros((pre_ev+pos_ev)/dts/nyqhp,nbch);
frz_cut=zeros((pre_ev+pos_ev)/dts/nyqhp,nbch);
for k=1:length(t_impact)
ibeg=fix(t_impact(k)-(pre_ev/dts));
iend=fix(t_impact(k)+(pos_ev/dts));
freq_s=linspace(0,freq_max,t_win/2*freq_max);
if ibeg>1 && iend<length(c) % eliminate indexes outside data range
[psd,integ_v,psd_int,integ_d]=integrated_psd(c(ibeg:iend,:),t_win,t_ovlp,nyqhp,dts);
psd_v=psd+psd_v;
psd_d=psd_int+psd_d;
[frz,crsp,pwsp,coherz,nsp]=fqresp(c(ibeg:iend,:),shock_ch,t_win,t_ovlp,nyqhp,dts);
frz_cut=frz+frz_cut;
end
end
psd_v=psd_v/length(t_impact);
psd_d=psd_d/length(t_impact);
frz_cut=frz_cut/length(t_impact);
end
drms=max(integ_d); % compute rms level
dc=hpfint(c,f_cut,dts); % filter and integrate in time domain
dppc=hpdpp(dc,t_win,t_ovlp,1,dts); % compute peak to peak level
%% transfer function, cross spectrum, power spectr. and coherence w.r.t. ch1
eval(['c',num2str(i),'=c;'])
eval(['dc',num2str(i),'=dc;'])
eval(['dppc',num2str(i),'=dppc;'])
eval(['drms',num2str(i),'=drms;'])
eval(['psd_v',num2str(i),'=psd_v;']) % already integrated in OROS
eval(['psd_d',num2str(i),'=psd_d;'])
eval(['integ_v',num2str(i),'=integ_v;'])
eval(['integ_d',num2str(i),'=integ_d;'])
eval(['frz',num2str(i),'=frz_cut;'])
% eval(['frh',num2str(i),'=frh_cut;'])
% eval(['frx',num2str(i),'=frx;'])
eval(['coherz',num2str(i),'=coherz;'])
eval(['time',num2str(i),'=time;'])
clear data c dc psd psd_v psd_d time c_shut % clean up the mess
end

View File

@@ -0,0 +1,3 @@
contient les mesures des r<>ponses avec marteau d'impact. Les fichiers xxx_raw sont sans traitement dans le domaine temporel (environ 10 impacts par fichier). Les fonctions de transfert avec phase sont dans le m<>me r<>pertoire avec des noms explicites (manquent les coh<6F>rences que je n'ai pas sorties)
Ces donn<6E>es ne me semblent pas de super qualit<69> en basse fr<66>quence, avec le Ty libre le mode <20> 5Hz est tr<74>s amorti.