Renamed folder

This commit is contained in:
2019-05-14 10:06:39 +02:00
parent dd4855e6e9
commit 98d6adeb69
60 changed files with 30 additions and 1 deletions

Binary file not shown.

After

Width:  |  Height:  |  Size: 80 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 159 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 126 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 147 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 180 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 180 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 230 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 152 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 186 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 183 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 217 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 190 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 150 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 71 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 49 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 37 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 34 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 111 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 103 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 122 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 78 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 41 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 181 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 4.2 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.8 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.3 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 4.2 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.9 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.0 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.4 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.3 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.3 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.3 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.6 MiB

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

View File

@@ -0,0 +1,173 @@
%% Clear Workspace and Close figures
clear; close all; clc;
%% Intialize Laplace variable
s = zpk('s');
% Load data
% We load the data of the z axis of two geophones.
d3 = load('mat/data_003.mat', 'data'); d3 = d3.data;
d4 = load('mat/data_004.mat', 'data'); d4 = d4.data;
d5 = load('mat/data_005.mat', 'data'); d5 = d5.data;
d6 = load('mat/data_006.mat', 'data'); d6 = d6.data;
d7 = load('mat/data_007.mat', 'data'); d7 = d7.data;
d8 = load('mat/data_008.mat', 'data'); d8 = d8.data;
% Analysis - Time Domain
% First, we can look at the time domain data and compare all the measurements:
% - comparison for the geophone at the sample location (figure [[fig:time_domain_sample]])
% - comparison for the geophone on the granite (figure [[fig:time_domain_marble]])
figure;
hold on;
plot(d3(:, 3), d3(:, 2), 'DisplayName', 'All ON');
plot(d4(:, 3), d4(:, 2), 'DisplayName', 'Ty OFF');
plot(d5(:, 3), d5(:, 2), 'DisplayName', 'Ry OFF');
plot(d6(:, 3), d6(:, 2), 'DisplayName', 'S-R OFF');
plot(d7(:, 3), d7(:, 2), 'DisplayName', 'Rz OFF');
plot(d8(:, 3), d8(:, 2), 'DisplayName', 'Hexa OFF');
hold off;
xlabel('Time [s]'); ylabel('Voltage [V]');
xlim([0, 50]);
legend('Location', 'bestoutside');
% #+NAME: fig:time_domain_sample
% #+CAPTION: Comparison of the time domain data when turning off the control system of the stages - Geophone at the sample location
% #+RESULTS: fig:time_domain_sample
% [[file:figs/time_domain_sample.png]]
figure;
hold on;
plot(d3(:, 3), d3(:, 1), 'DisplayName', 'All ON');
plot(d4(:, 3), d4(:, 1), 'DisplayName', 'Ty OFF');
plot(d5(:, 3), d5(:, 1), 'DisplayName', 'Ry OFF');
plot(d6(:, 3), d6(:, 1), 'DisplayName', 'S-R OFF');
plot(d7(:, 3), d7(:, 1), 'DisplayName', 'Rz OFF');
plot(d8(:, 3), d8(:, 1), 'DisplayName', 'Hexa OFF');
hold off;
xlabel('Time [s]'); ylabel('Voltage [V]');
xlim([0, 50]);
legend('Location', 'bestoutside');
% Analysis - Frequency Domain
dt = d3(2, 3) - d3(1, 3);
Fs = 1/dt;
win = hanning(ceil(10*Fs));
% Vibrations at the sample location
% First, we compute the Power Spectral Density of the signals coming from the Geophone located at the sample location.
[px3, f] = pwelch(d3(:, 2), win, [], [], Fs);
[px4, ~] = pwelch(d4(:, 2), win, [], [], Fs);
[px5, ~] = pwelch(d5(:, 2), win, [], [], Fs);
[px6, ~] = pwelch(d6(:, 2), win, [], [], Fs);
[px7, ~] = pwelch(d7(:, 2), win, [], [], Fs);
[px8, ~] = pwelch(d8(:, 2), win, [], [], Fs);
% And we compare all the signals (figures [[fig:psd_sample_comp]] and [[fig:psd_sample_comp_high_freq]]).
figure;
hold on;
plot(f, sqrt(px3), 'DisplayName', 'All ON');
plot(f, sqrt(px4), 'DisplayName', 'Ty OFF');
plot(f, sqrt(px5), 'DisplayName', 'Ry OFF');
plot(f, sqrt(px6), 'DisplayName', 'S-R OFF');
plot(f, sqrt(px7), 'DisplayName', 'Rz OFF');
plot(f, sqrt(px8), 'DisplayName', 'Hexa OFF');
hold off;
set(gca, 'xscale', 'log');
set(gca, 'yscale', 'log');
xlabel('Frequency [Hz]'); ylabel('Amplitude Spectral Density $\left[\frac{V}{\sqrt{Hz}}\right]$')
xlim([0.1, 500]);
legend('Location', 'southwest');
% Vibrations on the marble
% Now we plot the same curves for the geophone located on the marble.
[px3, f] = pwelch(d3(:, 1), win, [], [], Fs);
[px4, ~] = pwelch(d4(:, 1), win, [], [], Fs);
[px5, ~] = pwelch(d5(:, 1), win, [], [], Fs);
[px6, ~] = pwelch(d6(:, 1), win, [], [], Fs);
[px7, ~] = pwelch(d7(:, 1), win, [], [], Fs);
[px8, ~] = pwelch(d8(:, 1), win, [], [], Fs);
% And we compare the Amplitude Spectral Densities (figures [[fig:psd_marble_comp]] and [[fig:psd_marble_comp_high_freq]])
figure;
hold on;
plot(f, sqrt(px3), 'DisplayName', 'All ON');
plot(f, sqrt(px4), 'DisplayName', 'Ty OFF');
plot(f, sqrt(px5), 'DisplayName', 'Ry OFF');
plot(f, sqrt(px6), 'DisplayName', 'S-R OFF');
plot(f, sqrt(px7), 'DisplayName', 'Rz OFF');
plot(f, sqrt(px8), 'DisplayName', 'Hexa OFF');
hold off;
set(gca, 'xscale', 'log');
set(gca, 'yscale', 'log');
xlabel('Frequency [Hz]'); ylabel('Amplitude Spectral Density $\left[\frac{V}{\sqrt{Hz}}\right]$')
xlim([0.1, 500]);
legend('Location', 'northeast');
% Effect of the control system on the transmissibility from ground to sample
% As the feedback loops change the dynamics of the system, we should see differences on the transfer function from marble velocity to sample velocity when turning off the control systems (figure [[fig:trans_comp]]).
dt = d3(2, 3) - d3(1, 3);
Fs = 1/dt;
win = hanning(ceil(1*Fs));
% First, we compute the Power Spectral Density of the signals coming from the Geophone located at the sample location.
[T3, f] = tfestimate(d3(:, 1), d3(:, 2), win, [], [], Fs);
[T4, ~] = tfestimate(d4(:, 1), d4(:, 2), win, [], [], Fs);
[T5, ~] = tfestimate(d5(:, 1), d5(:, 2), win, [], [], Fs);
[T6, ~] = tfestimate(d6(:, 1), d6(:, 2), win, [], [], Fs);
[T7, ~] = tfestimate(d7(:, 1), d7(:, 2), win, [], [], Fs);
[T8, ~] = tfestimate(d8(:, 1), d8(:, 2), win, [], [], Fs);
figure;
ax1 = subplot(2, 1, 1);
hold on;
plot(f, abs(T3), 'DisplayName', 'All ON');
plot(f, abs(T4), 'DisplayName', 'Ty OFF');
plot(f, abs(T5), 'DisplayName', 'Ry OFF');
plot(f, abs(T6), 'DisplayName', 'S-R OFF');
plot(f, abs(T7), 'DisplayName', 'Rz OFF');
plot(f, abs(T8), 'DisplayName', 'Hexa OFF');
hold off;
set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log');
set(gca, 'XTickLabel',[]);
ylabel('Magnitude');
legend('Location', 'northwest');
ax2 = subplot(2, 1, 2);
hold on;
plot(f, mod(180+180/pi*phase(T3), 360)-180);
plot(f, mod(180+180/pi*phase(T4), 360)-180);
plot(f, mod(180+180/pi*phase(T5), 360)-180);
plot(f, mod(180+180/pi*phase(T6), 360)-180);
plot(f, mod(180+180/pi*phase(T7), 360)-180);
plot(f, mod(180+180/pi*phase(T8), 360)-180);
hold off;
set(gca, 'xscale', 'log');
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
xlabel('Frequency [Hz]'); ylabel('Phase');
linkaxes([ax1,ax2],'x');
xlim([1, 500]);

View File

@@ -0,0 +1,121 @@
%% Clear Workspace and Close figures
clear; close all; clc;
%% Intialize Laplace variable
s = zpk('s');
% Load data
% We load the data of the z axis of two geophones.
d_of = load('mat/data_013.mat', 'data'); d_of = d_of.data;
d_ty = load('mat/data_014.mat', 'data'); d_ty = d_ty.data;
d_ry = load('mat/data_015.mat', 'data'); d_ry = d_ry.data;
d_sr = load('mat/data_016.mat', 'data'); d_sr = d_sr.data;
d_rz = load('mat/data_017.mat', 'data'); d_rz = d_rz.data;
d_he = load('mat/data_018.mat', 'data'); d_he = d_he.data;
% Analysis - Time Domain
% First, we can look at the time domain data and compare all the measurements:
% - comparison for the geophone at the sample location (figure [[fig:time_domain_sample_lpf]])
% - comparison for the geophone on the granite (figure [[fig:time_domain_marble_lpf]])
figure;
hold on;
plot(d_of(:, 3), d_of(:, 2), 'DisplayName', 'All OFF';
plot(d_ty(:, 3), d_ty(:, 2), 'DisplayName', 'Ty ON');
plot(d_ry(:, 3), d_ry(:, 2), 'DisplayName', 'Ry ON');
plot(d_sr(:, 3), d_sr(:, 2), 'DisplayName', 'S-R ON');
plot(d_rz(:, 3), d_rz(:, 2), 'DisplayName', 'Rz ON');
plot(d_he(:, 3), d_he(:, 2), 'DisplayName', 'Hexa ON');
hold off;
xlabel('Time [s]'); ylabel('Voltage [V]');
xlim([0, 50]);
legend('Location', 'bestoutside');
% #+NAME: fig:time_domain_sample_lpf
% #+CAPTION: Comparison of the time domain data when turning off the control system of the stages - Geophone at the sample location
% #+RESULTS: fig:time_domain_sample_lpf
% [[file:figs/time_domain_sample_lpf.png]]
figure;
hold on;
plot(d_of(:, 3), d_of(:, 1), 'DisplayName', 'All OFF');
plot(d_ty(:, 3), d_ty(:, 1), 'DisplayName', 'Ty ON');
plot(d_ry(:, 3), d_ry(:, 1), 'DisplayName', 'Ry ON');
plot(d_sr(:, 3), d_sr(:, 1), 'DisplayName', 'S-R ON');
plot(d_rz(:, 3), d_rz(:, 1), 'DisplayName', 'Rz ON');
plot(d_he(:, 3), d_he(:, 1), 'DisplayName', 'Hexa ON');
hold off;
xlabel('Time [s]'); ylabel('Voltage [V]');
xlim([0, 50]);
legend('Location', 'bestoutside');
% Analysis - Frequency Domain
dt = d_of(2, 3) - d_of(1, 3);
Fs = 1/dt;
win = hanning(ceil(10*Fs));
% Vibrations at the sample location
% First, we compute the Power Spectral Density of the signals coming from the Geophone located at the sample location.
[px_of, f] = pwelch(d_of(:, 2), win, [], [], Fs);
[px_ty, ~] = pwelch(d_ty(:, 2), win, [], [], Fs);
[px_ry, ~] = pwelch(d_ry(:, 2), win, [], [], Fs);
[px_sr, ~] = pwelch(d_sr(:, 2), win, [], [], Fs);
[px_rz, ~] = pwelch(d_rz(:, 2), win, [], [], Fs);
[px_he, ~] = pwelch(d_he(:, 2), win, [], [], Fs);
% And we compare all the signals (figures [[fig:psd_sample_comp_lpf]] and [[fig:psd_sample_comp_high_freq_lpf]]).
figure;
hold on;
plot(f, sqrt(px_of), 'DisplayName', 'All OFF');
plot(f, sqrt(px_ty), 'DisplayName', 'Ty ON');
plot(f, sqrt(px_ry), 'DisplayName', 'Ry ON');
plot(f, sqrt(px_sr), 'DisplayName', 'S-R ON');
plot(f, sqrt(px_rz), 'DisplayName', 'Rz ON');
plot(f, sqrt(px_he), 'DisplayName', 'Hexa ON');
hold off;
set(gca, 'xscale', 'log');
set(gca, 'yscale', 'log');
xlabel('Frequency [Hz]'); ylabel('Amplitude Spectral Density $\left[\frac{V}{\sqrt{Hz}}\right]$')
xlim([0.1, 500]);
legend('Location', 'southwest');
% Vibrations on the marble
% Now we plot the same curves for the geophone located on the marble.
[px_of, f] = pwelch(d_of(:, 1), win, [], [], Fs);
[px_ty, ~] = pwelch(d_ty(:, 1), win, [], [], Fs);
[px_ry, ~] = pwelch(d_ry(:, 1), win, [], [], Fs);
[px_sr, ~] = pwelch(d_sr(:, 1), win, [], [], Fs);
[px_rz, ~] = pwelch(d_rz(:, 1), win, [], [], Fs);
[px_he, ~] = pwelch(d_he(:, 1), win, [], [], Fs);
% And we compare the Amplitude Spectral Densities (figures [[fig:psd_marble_comp_lpf]] and [[fig:psd_marble_comp_lpf_high_freq]])
figure;
hold on;
plot(f, sqrt(px_of), 'DisplayName', 'All OFF');
plot(f, sqrt(px_ty), 'DisplayName', 'Ty ON');
plot(f, sqrt(px_ry), 'DisplayName', 'Ry ON');
plot(f, sqrt(px_sr), 'DisplayName', 'S-R ON');
plot(f, sqrt(px_rz), 'DisplayName', 'Rz ON');
plot(f, sqrt(px_he), 'DisplayName', 'Hexa ON');
hold off;
set(gca, 'xscale', 'log');
set(gca, 'yscale', 'log');
xlabel('Frequency [Hz]'); ylabel('Amplitude Spectral Density $\left[\frac{V}{\sqrt{Hz}}\right]$')
xlim([0.1, 500]);
legend('Location', 'northeast');

View File

@@ -0,0 +1,46 @@
%% Clear Workspace and Close figures
clear; close all; clc;
%% Intialize Laplace variable
s = zpk('s');
% Load data
% We load the data of the z axis of two geophones.
d_18 = load('mat/data_018.mat', 'data'); d_18 = d_18.data;
d_19 = load('mat/data_019.mat', 'data'); d_19 = d_19.data;
% Analysis - Time Domain
figure;
hold on;
plot(d_19(:, 3), d_19(:, 1), 'DisplayName', 'Driver - Ground');
plot(d_18(:, 3), d_18(:, 1), 'DisplayName', 'Driver - Granite');
hold off;
xlabel('Time [s]'); ylabel('Voltage [V]');
xlim([0, 50]);
legend('Location', 'bestoutside');
% Analysis - Frequency Domain
dt = d_18(2, 3) - d_18(1, 3);
Fs = 1/dt;
win = hanning(ceil(10*Fs));
% Vibrations at the sample location
% First, we compute the Power Spectral Density of the signals coming from the Geophone located at the sample location.
[px_18, f] = pwelch(d_18(:, 1), win, [], [], Fs);
[px_19, ~] = pwelch(d_19(:, 1), win, [], [], Fs);
figure;
hold on;
plot(f, sqrt(px_19), 'DisplayName', 'Driver - Ground');
plot(f, sqrt(px_18), 'DisplayName', 'Driver - Granite');
hold off;
set(gca, 'xscale', 'log');
set(gca, 'yscale', 'log');
xlabel('Frequency [Hz]'); ylabel('Amplitude Spectral Density $\left[\frac{V}{\sqrt{Hz}}\right]$')
xlim([0.1, 500]);
legend('Location', 'southwest');

View File

@@ -0,0 +1,124 @@
%% Clear Workspace and Close figures
clear; close all; clc;
%% Intialize Laplace variable
s = zpk('s');
% Load data
% We load the data of the z axis of two geophones.
m_ty = load('mat/data_010.mat', 'data'); m_ty = m_ty.data;
m_ry = load('mat/data_011.mat', 'data'); m_ry = m_ry.data;
ty_ry = load('mat/data_012.mat', 'data'); ty_ry = ty_ry.data;
% Analysis - Time Domain
% First, we can look at the time domain data.
figure;
hold on;
plot(m_ty(:, 3), m_ty(:, 1), 'DisplayName', 'Marble');
plot(m_ty(:, 3), m_ty(:, 2), 'DisplayName', 'Ty');
hold off;
xlabel('Time [s]'); ylabel('Voltage [V]');
legend('Location', 'northeast');
xlim([0, 500]);
% #+NAME: fig:time_domain_m_ty
% #+CAPTION: Time domain - Marble and translation stage
% #+RESULTS: fig:time_domain_m_ty
% [[file:figs/time_domain_m_ty.png]]
figure;
hold on;
plot(m_ry(:, 3), m_ry(:, 1), 'DisplayName', 'Marble');
plot(m_ry(:, 3), m_ry(:, 2), 'DisplayName', 'Ty');
hold off;
xlabel('Time [s]'); ylabel('Voltage [V]');
legend('Location', 'northeast');
xlim([0, 500]);
% #+NAME: fig:time_domain_m_ry
% #+CAPTION: Time domain - Marble and tilt stage
% #+RESULTS: fig:time_domain_m_ry
% [[file:figs/time_domain_m_ry.png]]
figure;
hold on;
plot(ty_ry(:, 3), ty_ry(:, 1), 'DisplayName', 'Ty');
plot(ty_ry(:, 3), ty_ry(:, 2), 'DisplayName', 'Ry');
hold off;
xlabel('Time [s]'); ylabel('Voltage [V]');
legend('Location', 'northeast');
xlim([0, 500]);
% Analysis - Frequency Domain
dt = m_ty(2, 3) - m_ty(1, 3);
Fs = 1/dt;
win = hanning(ceil(1*Fs));
% First, we compute the transfer function estimate between the two geophones for the 3 experiments (figure [[fig:compare_tf_geophones]]). We also plot their coherence (figure [[fig:coherence_two_geophones]]).
[T_m_ty, f] = tfestimate(m_ty(:, 1), m_ty(:, 2), win, [], [], Fs);
[T_m_ry, ~] = tfestimate(m_ry(:, 1), m_ry(:, 2), win, [], [], Fs);
[T_ty_ry, ~] = tfestimate(ty_ry(:, 1), ty_ry(:, 2), win, [], [], Fs);
figure;
ax1 = subplot(2, 1, 1);
hold on;
plot(f, abs(T_m_ty), 'DisplayName', 'Marble - Ty');
plot(f, abs(T_m_ry), 'DisplayName', 'Marble - Ry');
plot(f, abs(T_ty_ry), 'DisplayName', 'Ty - Ry');
hold off;
set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log');
set(gca, 'XTickLabel',[]);
ylabel('Magnitude');
legend('Location', 'northwest');
ax2 = subplot(2, 1, 2);
hold on;
plot(f, mod(180+180/pi*phase(T_m_ty), 360)-180);
plot(f, mod(180+180/pi*phase(T_m_ry), 360)-180);
plot(f, mod(180+180/pi*phase(T_ty_ry), 360)-180);
hold off;
set(gca, 'xscale', 'log');
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
xlabel('Frequency [Hz]'); ylabel('Phase');
linkaxes([ax1,ax2],'x');
xlim([10, 500]);
% #+NAME: fig:compare_tf_geophones
% #+CAPTION: Transfer function from the first geophone to the second geophone for the three experiments
% #+RESULTS: fig:compare_tf_geophones
% [[file:figs/compare_tf_geophones.png]]
[coh_m_ty, f] = mscohere(m_ty(:, 1), m_ty(:, 2), win, [], [], Fs);
[coh_m_ry, ~] = mscohere(m_ry(:, 1), m_ry(:, 2), win, [], [], Fs);
[coh_ty_ry, ~] = mscohere(ty_ry(:, 1), ty_ry(:, 2), win, [], [], Fs);
figure;
hold on;
plot(f, coh_m_ty, 'DisplayName', 'Marble - Ty');
plot(f, coh_m_ry, 'DisplayName', 'Marble - Ry');
plot(f, coh_ty_ry, 'DisplayName', 'Ty - Ry');
hold off;
set(gca, 'xscale', 'log');
xlabel('Frequency [Hz]'); ylabel('Coherence');
ylim([0, 1]); xlim([1, 500]);

View File

@@ -0,0 +1,70 @@
#+TITLE: List of measurements
* Effect of control of each stage
| Ty on | data_001 |
| Ty off | data_002 |
One geophone is on the marble, the other at the sample location.
The signal from the top geophone goes through the slip-ring
* Measurement when signal from top geophone does not go trought the slip-ring
| Ty | Ry | Slip Ring | Spindle | Hexapod | Meas. file |
|------+------+-----------+---------+---------+----------------|
| *ON* | *ON* | *ON* | *ON* | *ON* | =meas_003.mat= |
| OFF | *ON* | *ON* | *ON* | *ON* | =meas_004.mat= |
| OFF | OFF | *ON* | *ON* | *ON* | =meas_005.mat= |
| OFF | OFF | OFF | *ON* | *ON* | =meas_006.mat= |
| OFF | OFF | OFF | OFF | *ON* | =meas_007.mat= |
| OFF | OFF | OFF | OFF | OFF | =meas_008.mat= |
Meas009: everything off with signal goes through the slip-ring
* Measurement from one stage to the other
** From Marble to Ty
=meas_010.mat=
Everything off, one geophone on the marble, one geophone on the Ty (measure on Z direction)
Channels:
| 1 | Ground |
| 2 | Ty |
| 3 | Time |
** From Marble to Ry
=meas_011.mat=
Everything off, one geophone on the marble, one geophone on the Ry (measure on Z direction)
Channels:
| 1 | Ground |
| 2 | Ry |
| 3 | Time |
** From Ty to Ry
=meas_012.mat=
Everything off, one geophone on the Ty, one geophone on the Ry (measure on Z direction)
Channels:
| 1 | Ty |
| 2 | Ry |
| 3 | Time |
* New measurements 07/05
Low pass Filters at 1kHz are added before the voltage amplifiers
The voltage amplifiers are: 60db, DC(!) and 1kHz
Channel 1: marble motion
Channel 2: Sample motion
- All OFF =meas_013.mat=
- Ty ON =meas_014.mat=
- Ry ON =meas_015.mat=
- SR ON =meas_016.mat=
- Rz ON =meas_017.mat=
- Hexa ON =meas_018.mat=
* Test without the Hexapod Driver on the granite
- Hexa ON with on the ground meas_019.mat