Renamed folder
BIN
disturbance-control-system/figs/coherence_two_geophones.png
Normal file
After Width: | Height: | Size: 80 KiB |
BIN
disturbance-control-system/figs/compare_tf_geophones.png
Normal file
After Width: | Height: | Size: 159 KiB |
BIN
disturbance-control-system/figs/psd_effect_ty.png
Normal file
After Width: | Height: | Size: 126 KiB |
BIN
disturbance-control-system/figs/psd_hexa_driver.png
Normal file
After Width: | Height: | Size: 147 KiB |
BIN
disturbance-control-system/figs/psd_hexa_driver_high_freq.png
Normal file
After Width: | Height: | Size: 180 KiB |
BIN
disturbance-control-system/figs/psd_marble_comp.png
Normal file
After Width: | Height: | Size: 180 KiB |
BIN
disturbance-control-system/figs/psd_marble_comp_high_freq.png
Normal file
After Width: | Height: | Size: 230 KiB |
BIN
disturbance-control-system/figs/psd_marble_comp_lpf.png
Normal file
After Width: | Height: | Size: 152 KiB |
After Width: | Height: | Size: 186 KiB |
BIN
disturbance-control-system/figs/psd_sample_comp.png
Normal file
After Width: | Height: | Size: 183 KiB |
BIN
disturbance-control-system/figs/psd_sample_comp_high_freq.png
Normal file
After Width: | Height: | Size: 217 KiB |
After Width: | Height: | Size: 190 KiB |
BIN
disturbance-control-system/figs/psd_sample_comp_lpf.png
Normal file
After Width: | Height: | Size: 150 KiB |
BIN
disturbance-control-system/figs/time_domain_effect_ty.png
Normal file
After Width: | Height: | Size: 71 KiB |
BIN
disturbance-control-system/figs/time_domain_hexa_driver.png
Normal file
After Width: | Height: | Size: 49 KiB |
BIN
disturbance-control-system/figs/time_domain_m_ry.png
Normal file
After Width: | Height: | Size: 37 KiB |
BIN
disturbance-control-system/figs/time_domain_m_ty.png
Normal file
After Width: | Height: | Size: 34 KiB |
BIN
disturbance-control-system/figs/time_domain_marble.png
Normal file
After Width: | Height: | Size: 111 KiB |
BIN
disturbance-control-system/figs/time_domain_marble_lpf.png
Normal file
After Width: | Height: | Size: 103 KiB |
BIN
disturbance-control-system/figs/time_domain_sample.png
Normal file
After Width: | Height: | Size: 122 KiB |
BIN
disturbance-control-system/figs/time_domain_sample_lpf.png
Normal file
After Width: | Height: | Size: 78 KiB |
BIN
disturbance-control-system/figs/time_domain_ty_ry.png
Normal file
After Width: | Height: | Size: 41 KiB |
BIN
disturbance-control-system/figs/trans_comp.png
Normal file
After Width: | Height: | Size: 181 KiB |
BIN
disturbance-control-system/img/IMG_20190430_112620.jpg
Normal file
After Width: | Height: | Size: 4.2 MiB |
BIN
disturbance-control-system/img/IMG_20190430_155330.jpg
Normal file
After Width: | Height: | Size: 3.8 MiB |
BIN
disturbance-control-system/img/IMG_20190430_155335.jpg
Normal file
After Width: | Height: | Size: 3.3 MiB |
BIN
disturbance-control-system/img/IMG_20190430_155342.jpg
Normal file
After Width: | Height: | Size: 4.2 MiB |
BIN
disturbance-control-system/img/IMG_20190430_163919.jpg
Normal file
After Width: | Height: | Size: 3.9 MiB |
BIN
disturbance-control-system/img/IMG_20190430_170405.jpg
Normal file
After Width: | Height: | Size: 3.0 MiB |
BIN
disturbance-control-system/img/IMG_20190430_170418.jpg
Normal file
After Width: | Height: | Size: 3.4 MiB |
BIN
disturbance-control-system/img/IMG_20190430_170425.jpg
Normal file
After Width: | Height: | Size: 3.3 MiB |
BIN
disturbance-control-system/img/IMG_20190507_101459.jpg
Normal file
After Width: | Height: | Size: 3.3 MiB |
BIN
disturbance-control-system/img/IMG_20190507_101502.jpg
Normal file
After Width: | Height: | Size: 3.3 MiB |
BIN
disturbance-control-system/img/IMG_20190507_101506.jpg
Normal file
After Width: | Height: | Size: 3.6 MiB |
1771
disturbance-control-system/index.html
Normal file
1178
disturbance-control-system/index.org
Normal file
BIN
disturbance-control-system/mat/data_001.mat
Normal file
BIN
disturbance-control-system/mat/data_002.mat
Normal file
BIN
disturbance-control-system/mat/data_003.mat
Normal file
BIN
disturbance-control-system/mat/data_004.mat
Normal file
BIN
disturbance-control-system/mat/data_005.mat
Normal file
BIN
disturbance-control-system/mat/data_006.mat
Normal file
BIN
disturbance-control-system/mat/data_007.mat
Normal file
BIN
disturbance-control-system/mat/data_008.mat
Normal file
BIN
disturbance-control-system/mat/data_010.mat
Normal file
BIN
disturbance-control-system/mat/data_011.mat
Normal file
BIN
disturbance-control-system/mat/data_012.mat
Normal file
BIN
disturbance-control-system/mat/data_013.mat
Normal file
BIN
disturbance-control-system/mat/data_014.mat
Normal file
BIN
disturbance-control-system/mat/data_015.mat
Normal file
BIN
disturbance-control-system/mat/data_016.mat
Normal file
BIN
disturbance-control-system/mat/data_017.mat
Normal file
BIN
disturbance-control-system/mat/data_018.mat
Normal file
BIN
disturbance-control-system/mat/data_019.mat
Normal file
173
disturbance-control-system/matlab/effect_control_all.m
Normal file
@@ -0,0 +1,173 @@
|
||||
%% Clear Workspace and Close figures
|
||||
clear; close all; clc;
|
||||
|
||||
%% Intialize Laplace variable
|
||||
s = zpk('s');
|
||||
|
||||
% Load data
|
||||
% We load the data of the z axis of two geophones.
|
||||
|
||||
d3 = load('mat/data_003.mat', 'data'); d3 = d3.data;
|
||||
d4 = load('mat/data_004.mat', 'data'); d4 = d4.data;
|
||||
d5 = load('mat/data_005.mat', 'data'); d5 = d5.data;
|
||||
d6 = load('mat/data_006.mat', 'data'); d6 = d6.data;
|
||||
d7 = load('mat/data_007.mat', 'data'); d7 = d7.data;
|
||||
d8 = load('mat/data_008.mat', 'data'); d8 = d8.data;
|
||||
|
||||
% Analysis - Time Domain
|
||||
% First, we can look at the time domain data and compare all the measurements:
|
||||
% - comparison for the geophone at the sample location (figure [[fig:time_domain_sample]])
|
||||
% - comparison for the geophone on the granite (figure [[fig:time_domain_marble]])
|
||||
|
||||
|
||||
figure;
|
||||
hold on;
|
||||
plot(d3(:, 3), d3(:, 2), 'DisplayName', 'All ON');
|
||||
plot(d4(:, 3), d4(:, 2), 'DisplayName', 'Ty OFF');
|
||||
plot(d5(:, 3), d5(:, 2), 'DisplayName', 'Ry OFF');
|
||||
plot(d6(:, 3), d6(:, 2), 'DisplayName', 'S-R OFF');
|
||||
plot(d7(:, 3), d7(:, 2), 'DisplayName', 'Rz OFF');
|
||||
plot(d8(:, 3), d8(:, 2), 'DisplayName', 'Hexa OFF');
|
||||
hold off;
|
||||
xlabel('Time [s]'); ylabel('Voltage [V]');
|
||||
xlim([0, 50]);
|
||||
legend('Location', 'bestoutside');
|
||||
|
||||
|
||||
|
||||
% #+NAME: fig:time_domain_sample
|
||||
% #+CAPTION: Comparison of the time domain data when turning off the control system of the stages - Geophone at the sample location
|
||||
% #+RESULTS: fig:time_domain_sample
|
||||
% [[file:figs/time_domain_sample.png]]
|
||||
|
||||
|
||||
|
||||
figure;
|
||||
hold on;
|
||||
plot(d3(:, 3), d3(:, 1), 'DisplayName', 'All ON');
|
||||
plot(d4(:, 3), d4(:, 1), 'DisplayName', 'Ty OFF');
|
||||
plot(d5(:, 3), d5(:, 1), 'DisplayName', 'Ry OFF');
|
||||
plot(d6(:, 3), d6(:, 1), 'DisplayName', 'S-R OFF');
|
||||
plot(d7(:, 3), d7(:, 1), 'DisplayName', 'Rz OFF');
|
||||
plot(d8(:, 3), d8(:, 1), 'DisplayName', 'Hexa OFF');
|
||||
hold off;
|
||||
xlabel('Time [s]'); ylabel('Voltage [V]');
|
||||
xlim([0, 50]);
|
||||
legend('Location', 'bestoutside');
|
||||
|
||||
% Analysis - Frequency Domain
|
||||
|
||||
dt = d3(2, 3) - d3(1, 3);
|
||||
|
||||
Fs = 1/dt;
|
||||
win = hanning(ceil(10*Fs));
|
||||
|
||||
% Vibrations at the sample location
|
||||
% First, we compute the Power Spectral Density of the signals coming from the Geophone located at the sample location.
|
||||
|
||||
[px3, f] = pwelch(d3(:, 2), win, [], [], Fs);
|
||||
[px4, ~] = pwelch(d4(:, 2), win, [], [], Fs);
|
||||
[px5, ~] = pwelch(d5(:, 2), win, [], [], Fs);
|
||||
[px6, ~] = pwelch(d6(:, 2), win, [], [], Fs);
|
||||
[px7, ~] = pwelch(d7(:, 2), win, [], [], Fs);
|
||||
[px8, ~] = pwelch(d8(:, 2), win, [], [], Fs);
|
||||
|
||||
|
||||
|
||||
% And we compare all the signals (figures [[fig:psd_sample_comp]] and [[fig:psd_sample_comp_high_freq]]).
|
||||
|
||||
figure;
|
||||
hold on;
|
||||
plot(f, sqrt(px3), 'DisplayName', 'All ON');
|
||||
plot(f, sqrt(px4), 'DisplayName', 'Ty OFF');
|
||||
plot(f, sqrt(px5), 'DisplayName', 'Ry OFF');
|
||||
plot(f, sqrt(px6), 'DisplayName', 'S-R OFF');
|
||||
plot(f, sqrt(px7), 'DisplayName', 'Rz OFF');
|
||||
plot(f, sqrt(px8), 'DisplayName', 'Hexa OFF');
|
||||
hold off;
|
||||
set(gca, 'xscale', 'log');
|
||||
set(gca, 'yscale', 'log');
|
||||
xlabel('Frequency [Hz]'); ylabel('Amplitude Spectral Density $\left[\frac{V}{\sqrt{Hz}}\right]$')
|
||||
xlim([0.1, 500]);
|
||||
legend('Location', 'southwest');
|
||||
|
||||
% Vibrations on the marble
|
||||
% Now we plot the same curves for the geophone located on the marble.
|
||||
|
||||
[px3, f] = pwelch(d3(:, 1), win, [], [], Fs);
|
||||
[px4, ~] = pwelch(d4(:, 1), win, [], [], Fs);
|
||||
[px5, ~] = pwelch(d5(:, 1), win, [], [], Fs);
|
||||
[px6, ~] = pwelch(d6(:, 1), win, [], [], Fs);
|
||||
[px7, ~] = pwelch(d7(:, 1), win, [], [], Fs);
|
||||
[px8, ~] = pwelch(d8(:, 1), win, [], [], Fs);
|
||||
|
||||
|
||||
|
||||
% And we compare the Amplitude Spectral Densities (figures [[fig:psd_marble_comp]] and [[fig:psd_marble_comp_high_freq]])
|
||||
|
||||
figure;
|
||||
hold on;
|
||||
plot(f, sqrt(px3), 'DisplayName', 'All ON');
|
||||
plot(f, sqrt(px4), 'DisplayName', 'Ty OFF');
|
||||
plot(f, sqrt(px5), 'DisplayName', 'Ry OFF');
|
||||
plot(f, sqrt(px6), 'DisplayName', 'S-R OFF');
|
||||
plot(f, sqrt(px7), 'DisplayName', 'Rz OFF');
|
||||
plot(f, sqrt(px8), 'DisplayName', 'Hexa OFF');
|
||||
hold off;
|
||||
set(gca, 'xscale', 'log');
|
||||
set(gca, 'yscale', 'log');
|
||||
xlabel('Frequency [Hz]'); ylabel('Amplitude Spectral Density $\left[\frac{V}{\sqrt{Hz}}\right]$')
|
||||
xlim([0.1, 500]);
|
||||
legend('Location', 'northeast');
|
||||
|
||||
% Effect of the control system on the transmissibility from ground to sample
|
||||
% As the feedback loops change the dynamics of the system, we should see differences on the transfer function from marble velocity to sample velocity when turning off the control systems (figure [[fig:trans_comp]]).
|
||||
|
||||
|
||||
dt = d3(2, 3) - d3(1, 3);
|
||||
|
||||
Fs = 1/dt;
|
||||
win = hanning(ceil(1*Fs));
|
||||
|
||||
|
||||
|
||||
% First, we compute the Power Spectral Density of the signals coming from the Geophone located at the sample location.
|
||||
|
||||
[T3, f] = tfestimate(d3(:, 1), d3(:, 2), win, [], [], Fs);
|
||||
[T4, ~] = tfestimate(d4(:, 1), d4(:, 2), win, [], [], Fs);
|
||||
[T5, ~] = tfestimate(d5(:, 1), d5(:, 2), win, [], [], Fs);
|
||||
[T6, ~] = tfestimate(d6(:, 1), d6(:, 2), win, [], [], Fs);
|
||||
[T7, ~] = tfestimate(d7(:, 1), d7(:, 2), win, [], [], Fs);
|
||||
[T8, ~] = tfestimate(d8(:, 1), d8(:, 2), win, [], [], Fs);
|
||||
|
||||
figure;
|
||||
ax1 = subplot(2, 1, 1);
|
||||
hold on;
|
||||
plot(f, abs(T3), 'DisplayName', 'All ON');
|
||||
plot(f, abs(T4), 'DisplayName', 'Ty OFF');
|
||||
plot(f, abs(T5), 'DisplayName', 'Ry OFF');
|
||||
plot(f, abs(T6), 'DisplayName', 'S-R OFF');
|
||||
plot(f, abs(T7), 'DisplayName', 'Rz OFF');
|
||||
plot(f, abs(T8), 'DisplayName', 'Hexa OFF');
|
||||
hold off;
|
||||
set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log');
|
||||
set(gca, 'XTickLabel',[]);
|
||||
ylabel('Magnitude');
|
||||
legend('Location', 'northwest');
|
||||
|
||||
ax2 = subplot(2, 1, 2);
|
||||
hold on;
|
||||
plot(f, mod(180+180/pi*phase(T3), 360)-180);
|
||||
plot(f, mod(180+180/pi*phase(T4), 360)-180);
|
||||
plot(f, mod(180+180/pi*phase(T5), 360)-180);
|
||||
plot(f, mod(180+180/pi*phase(T6), 360)-180);
|
||||
plot(f, mod(180+180/pi*phase(T7), 360)-180);
|
||||
plot(f, mod(180+180/pi*phase(T8), 360)-180);
|
||||
hold off;
|
||||
set(gca, 'xscale', 'log');
|
||||
ylim([-180, 180]);
|
||||
yticks([-180, -90, 0, 90, 180]);
|
||||
xlabel('Frequency [Hz]'); ylabel('Phase');
|
||||
|
||||
linkaxes([ax1,ax2],'x');
|
||||
xlim([1, 500]);
|
121
disturbance-control-system/matlab/effect_control_one.m
Normal file
@@ -0,0 +1,121 @@
|
||||
%% Clear Workspace and Close figures
|
||||
clear; close all; clc;
|
||||
|
||||
%% Intialize Laplace variable
|
||||
s = zpk('s');
|
||||
|
||||
% Load data
|
||||
% We load the data of the z axis of two geophones.
|
||||
|
||||
d_of = load('mat/data_013.mat', 'data'); d_of = d_of.data;
|
||||
d_ty = load('mat/data_014.mat', 'data'); d_ty = d_ty.data;
|
||||
d_ry = load('mat/data_015.mat', 'data'); d_ry = d_ry.data;
|
||||
d_sr = load('mat/data_016.mat', 'data'); d_sr = d_sr.data;
|
||||
d_rz = load('mat/data_017.mat', 'data'); d_rz = d_rz.data;
|
||||
d_he = load('mat/data_018.mat', 'data'); d_he = d_he.data;
|
||||
|
||||
% Analysis - Time Domain
|
||||
% First, we can look at the time domain data and compare all the measurements:
|
||||
% - comparison for the geophone at the sample location (figure [[fig:time_domain_sample_lpf]])
|
||||
% - comparison for the geophone on the granite (figure [[fig:time_domain_marble_lpf]])
|
||||
|
||||
|
||||
figure;
|
||||
hold on;
|
||||
plot(d_of(:, 3), d_of(:, 2), 'DisplayName', 'All OFF';
|
||||
plot(d_ty(:, 3), d_ty(:, 2), 'DisplayName', 'Ty ON');
|
||||
plot(d_ry(:, 3), d_ry(:, 2), 'DisplayName', 'Ry ON');
|
||||
plot(d_sr(:, 3), d_sr(:, 2), 'DisplayName', 'S-R ON');
|
||||
plot(d_rz(:, 3), d_rz(:, 2), 'DisplayName', 'Rz ON');
|
||||
plot(d_he(:, 3), d_he(:, 2), 'DisplayName', 'Hexa ON');
|
||||
hold off;
|
||||
xlabel('Time [s]'); ylabel('Voltage [V]');
|
||||
xlim([0, 50]);
|
||||
legend('Location', 'bestoutside');
|
||||
|
||||
|
||||
|
||||
% #+NAME: fig:time_domain_sample_lpf
|
||||
% #+CAPTION: Comparison of the time domain data when turning off the control system of the stages - Geophone at the sample location
|
||||
% #+RESULTS: fig:time_domain_sample_lpf
|
||||
% [[file:figs/time_domain_sample_lpf.png]]
|
||||
|
||||
|
||||
|
||||
figure;
|
||||
hold on;
|
||||
plot(d_of(:, 3), d_of(:, 1), 'DisplayName', 'All OFF');
|
||||
plot(d_ty(:, 3), d_ty(:, 1), 'DisplayName', 'Ty ON');
|
||||
plot(d_ry(:, 3), d_ry(:, 1), 'DisplayName', 'Ry ON');
|
||||
plot(d_sr(:, 3), d_sr(:, 1), 'DisplayName', 'S-R ON');
|
||||
plot(d_rz(:, 3), d_rz(:, 1), 'DisplayName', 'Rz ON');
|
||||
plot(d_he(:, 3), d_he(:, 1), 'DisplayName', 'Hexa ON');
|
||||
hold off;
|
||||
xlabel('Time [s]'); ylabel('Voltage [V]');
|
||||
xlim([0, 50]);
|
||||
legend('Location', 'bestoutside');
|
||||
|
||||
% Analysis - Frequency Domain
|
||||
|
||||
dt = d_of(2, 3) - d_of(1, 3);
|
||||
|
||||
Fs = 1/dt;
|
||||
win = hanning(ceil(10*Fs));
|
||||
|
||||
% Vibrations at the sample location
|
||||
% First, we compute the Power Spectral Density of the signals coming from the Geophone located at the sample location.
|
||||
|
||||
[px_of, f] = pwelch(d_of(:, 2), win, [], [], Fs);
|
||||
[px_ty, ~] = pwelch(d_ty(:, 2), win, [], [], Fs);
|
||||
[px_ry, ~] = pwelch(d_ry(:, 2), win, [], [], Fs);
|
||||
[px_sr, ~] = pwelch(d_sr(:, 2), win, [], [], Fs);
|
||||
[px_rz, ~] = pwelch(d_rz(:, 2), win, [], [], Fs);
|
||||
[px_he, ~] = pwelch(d_he(:, 2), win, [], [], Fs);
|
||||
|
||||
|
||||
|
||||
% And we compare all the signals (figures [[fig:psd_sample_comp_lpf]] and [[fig:psd_sample_comp_high_freq_lpf]]).
|
||||
|
||||
figure;
|
||||
hold on;
|
||||
plot(f, sqrt(px_of), 'DisplayName', 'All OFF');
|
||||
plot(f, sqrt(px_ty), 'DisplayName', 'Ty ON');
|
||||
plot(f, sqrt(px_ry), 'DisplayName', 'Ry ON');
|
||||
plot(f, sqrt(px_sr), 'DisplayName', 'S-R ON');
|
||||
plot(f, sqrt(px_rz), 'DisplayName', 'Rz ON');
|
||||
plot(f, sqrt(px_he), 'DisplayName', 'Hexa ON');
|
||||
hold off;
|
||||
set(gca, 'xscale', 'log');
|
||||
set(gca, 'yscale', 'log');
|
||||
xlabel('Frequency [Hz]'); ylabel('Amplitude Spectral Density $\left[\frac{V}{\sqrt{Hz}}\right]$')
|
||||
xlim([0.1, 500]);
|
||||
legend('Location', 'southwest');
|
||||
|
||||
% Vibrations on the marble
|
||||
% Now we plot the same curves for the geophone located on the marble.
|
||||
|
||||
[px_of, f] = pwelch(d_of(:, 1), win, [], [], Fs);
|
||||
[px_ty, ~] = pwelch(d_ty(:, 1), win, [], [], Fs);
|
||||
[px_ry, ~] = pwelch(d_ry(:, 1), win, [], [], Fs);
|
||||
[px_sr, ~] = pwelch(d_sr(:, 1), win, [], [], Fs);
|
||||
[px_rz, ~] = pwelch(d_rz(:, 1), win, [], [], Fs);
|
||||
[px_he, ~] = pwelch(d_he(:, 1), win, [], [], Fs);
|
||||
|
||||
|
||||
|
||||
% And we compare the Amplitude Spectral Densities (figures [[fig:psd_marble_comp_lpf]] and [[fig:psd_marble_comp_lpf_high_freq]])
|
||||
|
||||
figure;
|
||||
hold on;
|
||||
plot(f, sqrt(px_of), 'DisplayName', 'All OFF');
|
||||
plot(f, sqrt(px_ty), 'DisplayName', 'Ty ON');
|
||||
plot(f, sqrt(px_ry), 'DisplayName', 'Ry ON');
|
||||
plot(f, sqrt(px_sr), 'DisplayName', 'S-R ON');
|
||||
plot(f, sqrt(px_rz), 'DisplayName', 'Rz ON');
|
||||
plot(f, sqrt(px_he), 'DisplayName', 'Hexa ON');
|
||||
hold off;
|
||||
set(gca, 'xscale', 'log');
|
||||
set(gca, 'yscale', 'log');
|
||||
xlabel('Frequency [Hz]'); ylabel('Amplitude Spectral Density $\left[\frac{V}{\sqrt{Hz}}\right]$')
|
||||
xlim([0.1, 500]);
|
||||
legend('Location', 'northeast');
|
46
disturbance-control-system/matlab/effect_symetrie_driver.m
Normal file
@@ -0,0 +1,46 @@
|
||||
%% Clear Workspace and Close figures
|
||||
clear; close all; clc;
|
||||
|
||||
%% Intialize Laplace variable
|
||||
s = zpk('s');
|
||||
|
||||
% Load data
|
||||
% We load the data of the z axis of two geophones.
|
||||
|
||||
d_18 = load('mat/data_018.mat', 'data'); d_18 = d_18.data;
|
||||
d_19 = load('mat/data_019.mat', 'data'); d_19 = d_19.data;
|
||||
|
||||
% Analysis - Time Domain
|
||||
|
||||
figure;
|
||||
hold on;
|
||||
plot(d_19(:, 3), d_19(:, 1), 'DisplayName', 'Driver - Ground');
|
||||
plot(d_18(:, 3), d_18(:, 1), 'DisplayName', 'Driver - Granite');
|
||||
hold off;
|
||||
xlabel('Time [s]'); ylabel('Voltage [V]');
|
||||
xlim([0, 50]);
|
||||
legend('Location', 'bestoutside');
|
||||
|
||||
% Analysis - Frequency Domain
|
||||
|
||||
dt = d_18(2, 3) - d_18(1, 3);
|
||||
|
||||
Fs = 1/dt;
|
||||
win = hanning(ceil(10*Fs));
|
||||
|
||||
% Vibrations at the sample location
|
||||
% First, we compute the Power Spectral Density of the signals coming from the Geophone located at the sample location.
|
||||
|
||||
[px_18, f] = pwelch(d_18(:, 1), win, [], [], Fs);
|
||||
[px_19, ~] = pwelch(d_19(:, 1), win, [], [], Fs);
|
||||
|
||||
figure;
|
||||
hold on;
|
||||
plot(f, sqrt(px_19), 'DisplayName', 'Driver - Ground');
|
||||
plot(f, sqrt(px_18), 'DisplayName', 'Driver - Granite');
|
||||
hold off;
|
||||
set(gca, 'xscale', 'log');
|
||||
set(gca, 'yscale', 'log');
|
||||
xlabel('Frequency [Hz]'); ylabel('Amplitude Spectral Density $\left[\frac{V}{\sqrt{Hz}}\right]$')
|
||||
xlim([0.1, 500]);
|
||||
legend('Location', 'southwest');
|
124
disturbance-control-system/matlab/tf_stages_geophone.m
Normal file
@@ -0,0 +1,124 @@
|
||||
%% Clear Workspace and Close figures
|
||||
clear; close all; clc;
|
||||
|
||||
%% Intialize Laplace variable
|
||||
s = zpk('s');
|
||||
|
||||
% Load data
|
||||
% We load the data of the z axis of two geophones.
|
||||
|
||||
m_ty = load('mat/data_010.mat', 'data'); m_ty = m_ty.data;
|
||||
m_ry = load('mat/data_011.mat', 'data'); m_ry = m_ry.data;
|
||||
ty_ry = load('mat/data_012.mat', 'data'); ty_ry = ty_ry.data;
|
||||
|
||||
% Analysis - Time Domain
|
||||
% First, we can look at the time domain data.
|
||||
|
||||
|
||||
figure;
|
||||
hold on;
|
||||
plot(m_ty(:, 3), m_ty(:, 1), 'DisplayName', 'Marble');
|
||||
plot(m_ty(:, 3), m_ty(:, 2), 'DisplayName', 'Ty');
|
||||
hold off;
|
||||
xlabel('Time [s]'); ylabel('Voltage [V]');
|
||||
legend('Location', 'northeast');
|
||||
xlim([0, 500]);
|
||||
|
||||
|
||||
|
||||
% #+NAME: fig:time_domain_m_ty
|
||||
% #+CAPTION: Time domain - Marble and translation stage
|
||||
% #+RESULTS: fig:time_domain_m_ty
|
||||
% [[file:figs/time_domain_m_ty.png]]
|
||||
|
||||
|
||||
|
||||
figure;
|
||||
hold on;
|
||||
plot(m_ry(:, 3), m_ry(:, 1), 'DisplayName', 'Marble');
|
||||
plot(m_ry(:, 3), m_ry(:, 2), 'DisplayName', 'Ty');
|
||||
hold off;
|
||||
xlabel('Time [s]'); ylabel('Voltage [V]');
|
||||
legend('Location', 'northeast');
|
||||
xlim([0, 500]);
|
||||
|
||||
|
||||
|
||||
% #+NAME: fig:time_domain_m_ry
|
||||
% #+CAPTION: Time domain - Marble and tilt stage
|
||||
% #+RESULTS: fig:time_domain_m_ry
|
||||
% [[file:figs/time_domain_m_ry.png]]
|
||||
|
||||
|
||||
figure;
|
||||
hold on;
|
||||
plot(ty_ry(:, 3), ty_ry(:, 1), 'DisplayName', 'Ty');
|
||||
plot(ty_ry(:, 3), ty_ry(:, 2), 'DisplayName', 'Ry');
|
||||
hold off;
|
||||
xlabel('Time [s]'); ylabel('Voltage [V]');
|
||||
legend('Location', 'northeast');
|
||||
xlim([0, 500]);
|
||||
|
||||
% Analysis - Frequency Domain
|
||||
|
||||
dt = m_ty(2, 3) - m_ty(1, 3);
|
||||
|
||||
Fs = 1/dt;
|
||||
win = hanning(ceil(1*Fs));
|
||||
|
||||
|
||||
|
||||
% First, we compute the transfer function estimate between the two geophones for the 3 experiments (figure [[fig:compare_tf_geophones]]). We also plot their coherence (figure [[fig:coherence_two_geophones]]).
|
||||
|
||||
[T_m_ty, f] = tfestimate(m_ty(:, 1), m_ty(:, 2), win, [], [], Fs);
|
||||
[T_m_ry, ~] = tfestimate(m_ry(:, 1), m_ry(:, 2), win, [], [], Fs);
|
||||
[T_ty_ry, ~] = tfestimate(ty_ry(:, 1), ty_ry(:, 2), win, [], [], Fs);
|
||||
|
||||
figure;
|
||||
ax1 = subplot(2, 1, 1);
|
||||
hold on;
|
||||
plot(f, abs(T_m_ty), 'DisplayName', 'Marble - Ty');
|
||||
plot(f, abs(T_m_ry), 'DisplayName', 'Marble - Ry');
|
||||
plot(f, abs(T_ty_ry), 'DisplayName', 'Ty - Ry');
|
||||
hold off;
|
||||
set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log');
|
||||
set(gca, 'XTickLabel',[]);
|
||||
ylabel('Magnitude');
|
||||
legend('Location', 'northwest');
|
||||
|
||||
ax2 = subplot(2, 1, 2);
|
||||
hold on;
|
||||
plot(f, mod(180+180/pi*phase(T_m_ty), 360)-180);
|
||||
plot(f, mod(180+180/pi*phase(T_m_ry), 360)-180);
|
||||
plot(f, mod(180+180/pi*phase(T_ty_ry), 360)-180);
|
||||
hold off;
|
||||
set(gca, 'xscale', 'log');
|
||||
ylim([-180, 180]);
|
||||
yticks([-180, -90, 0, 90, 180]);
|
||||
xlabel('Frequency [Hz]'); ylabel('Phase');
|
||||
|
||||
linkaxes([ax1,ax2],'x');
|
||||
xlim([10, 500]);
|
||||
|
||||
|
||||
|
||||
% #+NAME: fig:compare_tf_geophones
|
||||
% #+CAPTION: Transfer function from the first geophone to the second geophone for the three experiments
|
||||
% #+RESULTS: fig:compare_tf_geophones
|
||||
% [[file:figs/compare_tf_geophones.png]]
|
||||
|
||||
|
||||
|
||||
[coh_m_ty, f] = mscohere(m_ty(:, 1), m_ty(:, 2), win, [], [], Fs);
|
||||
[coh_m_ry, ~] = mscohere(m_ry(:, 1), m_ry(:, 2), win, [], [], Fs);
|
||||
[coh_ty_ry, ~] = mscohere(ty_ry(:, 1), ty_ry(:, 2), win, [], [], Fs);
|
||||
|
||||
figure;
|
||||
hold on;
|
||||
plot(f, coh_m_ty, 'DisplayName', 'Marble - Ty');
|
||||
plot(f, coh_m_ry, 'DisplayName', 'Marble - Ry');
|
||||
plot(f, coh_ty_ry, 'DisplayName', 'Ty - Ry');
|
||||
hold off;
|
||||
set(gca, 'xscale', 'log');
|
||||
xlabel('Frequency [Hz]'); ylabel('Coherence');
|
||||
ylim([0, 1]); xlim([1, 500]);
|
70
disturbance-control-system/readme.org
Normal file
@@ -0,0 +1,70 @@
|
||||
#+TITLE: List of measurements
|
||||
|
||||
* Effect of control of each stage
|
||||
|
||||
| Ty on | data_001 |
|
||||
| Ty off | data_002 |
|
||||
|
||||
One geophone is on the marble, the other at the sample location.
|
||||
The signal from the top geophone goes through the slip-ring
|
||||
|
||||
* Measurement when signal from top geophone does not go trought the slip-ring
|
||||
|
||||
| Ty | Ry | Slip Ring | Spindle | Hexapod | Meas. file |
|
||||
|------+------+-----------+---------+---------+----------------|
|
||||
| *ON* | *ON* | *ON* | *ON* | *ON* | =meas_003.mat= |
|
||||
| OFF | *ON* | *ON* | *ON* | *ON* | =meas_004.mat= |
|
||||
| OFF | OFF | *ON* | *ON* | *ON* | =meas_005.mat= |
|
||||
| OFF | OFF | OFF | *ON* | *ON* | =meas_006.mat= |
|
||||
| OFF | OFF | OFF | OFF | *ON* | =meas_007.mat= |
|
||||
| OFF | OFF | OFF | OFF | OFF | =meas_008.mat= |
|
||||
|
||||
Meas009: everything off with signal goes through the slip-ring
|
||||
|
||||
* Measurement from one stage to the other
|
||||
** From Marble to Ty
|
||||
=meas_010.mat=
|
||||
Everything off, one geophone on the marble, one geophone on the Ty (measure on Z direction)
|
||||
|
||||
Channels:
|
||||
| 1 | Ground |
|
||||
| 2 | Ty |
|
||||
| 3 | Time |
|
||||
|
||||
** From Marble to Ry
|
||||
=meas_011.mat=
|
||||
Everything off, one geophone on the marble, one geophone on the Ry (measure on Z direction)
|
||||
|
||||
Channels:
|
||||
| 1 | Ground |
|
||||
| 2 | Ry |
|
||||
| 3 | Time |
|
||||
|
||||
** From Ty to Ry
|
||||
=meas_012.mat=
|
||||
Everything off, one geophone on the Ty, one geophone on the Ry (measure on Z direction)
|
||||
|
||||
Channels:
|
||||
| 1 | Ty |
|
||||
| 2 | Ry |
|
||||
| 3 | Time |
|
||||
|
||||
* New measurements 07/05
|
||||
|
||||
Low pass Filters at 1kHz are added before the voltage amplifiers
|
||||
|
||||
The voltage amplifiers are: 60db, DC(!) and 1kHz
|
||||
|
||||
Channel 1: marble motion
|
||||
Channel 2: Sample motion
|
||||
|
||||
- All OFF =meas_013.mat=
|
||||
- Ty ON =meas_014.mat=
|
||||
- Ry ON =meas_015.mat=
|
||||
- SR ON =meas_016.mat=
|
||||
- Rz ON =meas_017.mat=
|
||||
- Hexa ON =meas_018.mat=
|
||||
|
||||
* Test without the Hexapod Driver on the granite
|
||||
|
||||
- Hexa ON with on the ground meas_019.mat
|