Renamed one folder. Add analysis of vibrations when rotating

This commit is contained in:
2019-05-13 13:22:11 +02:00
parent ab2f2fae08
commit 7ae17e7a60
70 changed files with 839 additions and 5 deletions

Binary file not shown.

After

Width:  |  Height:  |  Size: 168 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 90 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 29 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 110 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 33 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 62 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 35 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 166 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 217 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 36 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 44 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 149 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 158 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 44 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 45 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 190 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 60 KiB

View File

@@ -0,0 +1 @@
*.mp4

Binary file not shown.

After

Width:  |  Height:  |  Size: 4.4 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.5 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.8 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 4.2 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.9 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 4.0 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 11 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 18 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 15 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 6.3 MiB

View File

@@ -0,0 +1,3 @@
invalid color string: rgba(50, 48, 47)
(termite:25037): GLib-WARNING **: 14:10:26.520: GChildWatchSource: Exit status of a child process was requested but ECHILD was received by waitpid(). See the documentation of g_child_watch_source_new() for possible causes.

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,841 @@
#+TITLE: Measurements On the Slip-Ring
#+SETUPFILE: ../config.org
* Effect of the Slip-Ring on the signal
:PROPERTIES:
:header-args:matlab+: :tangle matlab/meas_slip_ring_geophone.m
:header-args:matlab+: :comments org :mkdirp yes
:END:
<<sec:meas_slip_ring_geophone>>
#+begin_src bash :exports none :results none
if [ matlab/meas_slip_ring_geophone.m -nt data/meas_slip_ring_geophone.zip ]; then
cp matlab/meas_slip_ring_geophone.m meas_slip_ring_geophone.m;
zip data/meas_slip_ring_geophone \
mat/data_018.mat \
mat/data_019.mat \
meas_slip_ring_geophone.m;
rm meas_slip_ring_geophone.m;
fi
#+end_src
#+begin_note
All the files (data and Matlab scripts) are accessible [[file:data/meas_slip_ring_geophone.zip][here]].
#+end_note
** Experimental Setup
Two measurements are made with the control systems of all the stages turned OFF.
One geophone is located on the marble while the other is located at the sample location (figure [[fig:setup_slipring]]).
#+name: fig:setup_slipring
#+caption: Experimental Setup
#+attr_html: :width 500px
[[file:./img/IMG_20190430_112615.jpg]]
The two measurements are:
| Measurement File | Description |
|------------------+------------------------------------------------------------------|
| =meas_018.mat= | Signal from the top geophone does not goes through the Slip-ring |
| =meas_019.mat= | Signal goes through the Slip-ring (as shown on the figure above) |
Each of the measurement =mat= file contains one =data= array with 3 columns:
| Column number | Description |
|---------------+-------------------|
| 1 | Geophone - Marble |
| 2 | Geophone - Sample |
| 3 | Time |
** Matlab Init :noexport:ignore:
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
<<matlab-dir>>
#+end_src
#+begin_src matlab :exports none :results silent :noweb yes
<<matlab-init>>
#+end_src
** Load data
We load the data of the z axis of two geophones.
#+begin_src matlab :results none
d8 = load('mat/data_018.mat', 'data'); d8 = d8.data;
d9 = load('mat/data_019.mat', 'data'); d9 = d9.data;
#+end_src
** Analysis - Time Domain
First, we compare the time domain signals for the two experiments (figure [[fig:slipring_time]]).
#+begin_src matlab :results none
figure;
hold on;
plot(d9(:, 3), d9(:, 2), 'DisplayName', 'Slip-Ring');
plot(d8(:, 3), d8(:, 2), 'DisplayName', 'Wire');
hold off;
xlabel('Time [s]'); ylabel('Voltage [V]');
xlim([0, 50]);
legend('location', 'northeast');
#+end_src
#+NAME: fig:slipring_time
#+HEADER: :tangle no :exports results :results value raw replace :noweb yes
#+begin_src matlab :var filepath="figs/slipring_time.pdf" :var figsize="wide-tall" :post pdf2svg(file=*this*, ext="png")
<<plt-matlab>>
#+end_src
#+NAME: fig:slipring_time
#+CAPTION: Effect of the Slip-Ring on the measured signal - Time domain
#+RESULTS: fig:slipring_time
[[file:figs/slipring_time.png]]
** Analysis - Frequency Domain
We then compute the Power Spectral Density of the two signals and we compare them (figure [[fig:slipring_asd]]).
#+begin_src matlab :results none
dt = d8(2, 3) - d8(1, 3);
Fs = 1/dt;
win = hanning(ceil(1*Fs));
#+end_src
#+begin_src matlab :results none
[pxx8, f] = pwelch(d8(:, 2), win, [], [], Fs);
[pxx9, ~] = pwelch(d9(:, 2), win, [], [], Fs);
#+end_src
#+begin_src matlab :results none
figure;
hold on;
plot(f, sqrt(pxx9), 'DisplayName', 'Slip-Ring');
plot(f, sqrt(pxx8), 'DisplayName', 'Wire');
hold off;
set(gca, 'xscale', 'log');
set(gca, 'yscale', 'log');
xlabel('Frequency [Hz]'); ylabel('Amplitude Spectral Density $\left[\frac{V}{\sqrt{Hz}}\right]$')
xlim([1, 500]);
legend('Location', 'southwest');
#+end_src
#+NAME: fig:slipring_asd
#+HEADER: :tangle no :exports results :results value raw replace :noweb yes
#+begin_src matlab :var filepath="figs/slipring_asd.pdf" :var figsize="wide-tall" :post pdf2svg(file=*this*, ext="png")
<<plt-matlab>>
#+end_src
#+NAME: fig:slipring_asd
#+CAPTION: Effect of the Slip-Ring on the measured signal - Frequency domain
#+RESULTS: fig:slipring_asd
[[file:figs/slipring_asd.png]]
** Conclusion
#+begin_important
- Connecting the geophone through the Slip-Ring seems to induce a lot of noise.
#+end_important
#+begin_note
*Remaining questions to answer*:
- Why is there a sharp peak at 300Hz?
- Why the use of the Slip-Ring does induce a noise?
- Can the capacitive/inductive properties of the wires in the Slip-ring does not play well with the geophone? (resonant RLC circuit)
#+end_note
* Effect of the rotation of the Slip-Ring
:PROPERTIES:
:header-args:matlab+: :tangle matlab/meas_effect_sr.m
:header-args:matlab+: :comments org :mkdirp yes
:END:
<<sec:meas_effect_sr>>
#+begin_src bash :exports none :results none
if [ matlab/meas_effect_sr.m -nt data/meas_effect_sr.zip ]; then
cp matlab/meas_effect_sr.m meas_effect_sr.m;
zip data/meas_effect_sr \
mat/data_001.mat \
mat/data_002.mat \
meas_effect_sr.m;
rm meas_effect_sr.m;
fi
#+end_src
#+begin_note
All the files (data and Matlab scripts) are accessible [[file:data/meas_effect_sr.zip][here]].
#+end_note
** Measurement Description
Random Signal is generated by one DAC of the SpeedGoat.
The signal going out of the DAC is split into two:
- one BNC cable is directly connected to one ADC of the SpeedGoat
- one BNC cable goes two times in the Slip-Ring (from bottom to top and then from top to bottom) and then is connected to one ADC of the SpeedGoat
Two measurements are done.
| Data File | Description |
|--------------------+-----------------------|
| =mat/data_001.mat= | Slip-ring not turning |
| =mat/data_002.mat= | Slip-ring turning |
For each measurement, the measured signals are:
| Data File | Description |
|-----------+------------------------------------|
| =t= | Time vector |
| =x1= | Direct signal |
| =x2= | Signal going through the Slip-Ring |
The goal is to determine is the signal is altered when the spindle is rotating.
Here, the rotation speed of the Slip-Ring is set to 1rpm.
** Matlab Init :noexport:ignore:
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
<<matlab-dir>>
#+end_src
#+begin_src matlab :exports none :results silent :noweb yes
<<matlab-init>>
#+end_src
** Load data
We load the data of the z axis of two geophones.
#+begin_src matlab :results none
sr_off = load('mat/data_001.mat', 't', 'x1', 'x2');
sr_on = load('mat/data_002.mat', 't', 'x1', 'x2');
#+end_src
** Analysis
Let's first look at the signal produced by the DAC (figure [[fig:random_signal]]).
#+begin_src matlab :results none
figure;
hold on;
plot(sr_on.t, sr_on.x1);
hold off;
xlabel('Time [s]'); ylabel('Voltage [V]');
xlim([0 10]);
#+end_src
#+NAME: fig:random_signal
#+HEADER: :tangle no :exports results :results value raw replace :noweb yes
#+begin_src matlab :var filepath="figs/random_signal.pdf" :var figsize="wide-normal" :post pdf2svg(file=*this*, ext="png")
<<plt-matlab>>
#+end_src
#+NAME: fig:random_signal
#+CAPTION: Random signal produced by the DAC
#+RESULTS: fig:random_signal
[[file:figs/random_signal.png]]
We now look at the difference between the signal directly measured by the ADC and the signal that goes through the slip-ring (figure [[fig:slipring_comp_signals]]).
#+begin_src matlab :results none
figure;
hold on;
plot(sr_on.t, sr_on.x1 - sr_on.x2, 'DisplayName', 'Slip-Ring - $\omega = 1rpm$');
plot(sr_off.t, sr_off.x1 - sr_off.x2,'DisplayName', 'Slip-Ring off');
hold off;
xlabel('Time [s]'); ylabel('Voltage [V]');
xlim([0 10]);
legend('Location', 'northeast');
#+end_src
#+NAME: fig:slipring_comp_signals
#+HEADER: :tangle no :exports results :results value raw replace :noweb yes
#+begin_src matlab :var filepath="figs/slipring_comp_signals.pdf" :var figsize="wide-normal" :post pdf2svg(file=*this*, ext="png")
<<plt-matlab>>
#+end_src
#+NAME: fig:slipring_comp_signals
#+CAPTION: Alteration of the signal when the slip-ring is turning
#+RESULTS: fig:slipring_comp_signals
[[file:figs/slipring_comp_signals.png]]
#+begin_src matlab :results none
dt = sr_on.t(2) - sr_on.t(1);
Fs = 1/dt; % [Hz]
win = hanning(ceil(1*Fs));
#+end_src
#+begin_src matlab :results none
[pxx_on, f] = pwelch(sr_on.x1 - sr_on.x2, win, [], [], Fs);
[pxx_off, ~] = pwelch(sr_off.x1 - sr_off.x2, win, [], [], Fs);
#+end_src
#+begin_src matlab :results none :exports none
figure;
hold on;
plot(f, sqrt(pxx_on), 'DisplayName', 'Slip-Ring - $\omega = 1rpm$');
plot(f, sqrt(pxx_off),'DisplayName', 'Slip-Ring off');
hold off;
set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log');
xlabel('Frequency [Hz]'); ylabel('PSD $\left[\frac{V}{\sqrt{Hz}}\right]$');
legend('Location', 'northeast');
xlim([1, 500]); ylim([1e-5, 1e-3])
#+end_src
#+NAME: fig:psd_noise
#+HEADER: :tangle no :exports results :results value raw replace :noweb yes
#+begin_src matlab :var filepath="figs/psd_noise.pdf" :var figsize="wide-tall" :post pdf2svg(file=*this*, ext="png")
<<plt-matlab>>
#+end_src
#+NAME: fig:psd_noise
#+CAPTION: ASD of the measured noise
#+RESULTS: fig:psd_noise
[[file:figs/psd_noise.png]]
** Conclusion
#+begin_note
*Remaining questions*:
- Should the measurement be redone using voltage amplifiers?
- Use higher rotation speed and measure for longer periods (to have multiple revolutions) ?
#+end_note
* Measure of the noise induced by the Slip-Ring
:PROPERTIES:
:header-args:matlab+: :tangle matlab/meas_slip_ring.m
:header-args:matlab+: :comments org :mkdirp yes
:END:
<<sec:meas_slip_ring>>
#+begin_src bash :exports none :results none
if [ matlab/meas_slip_ring.m -nt data/meas_slip_ring.zip ]; then
cp matlab/meas_slip_ring.m meas_slip_ring.m;
zip data/meas_slip_ring \
mat/data_008.mat \
mat/data_009.mat \
mat/data_010.mat \
mat/data_011.mat \
meas_slip_ring.m;
rm meas_slip_ring.m;
fi
#+end_src
#+begin_note
All the files (data and Matlab scripts) are accessible [[file:data/meas_slip_ring.zip][here]].
#+end_note
** Measurement Description
*Goal*:
- Determine the noise induced by the slip-ring
*Setup*:
- 0V is generated by the DAC of the Speedgoat
- Using a T, one part goes directly to the ADC
- The other part goes to the slip-ring 2 times and then to the ADC
- The parameters of the Voltage Amplifier are: 80dB, AC, 1kHz
- Every stage of the station is OFF
First column: Direct measure
Second column: Slip-ring measure
*Measurements*:
- =data_008=: Slip-Ring OFF
- =data_009=: Slip-Ring ON
- =data_010=: Slip-Ring ON and omega=6rpm
- =data_011=: Slip-Ring ON and omega=60rpm
#+name: fig:setup_sr_6rpm
#+caption: Slip-Ring rotating at 6rpm
[[file:./img/VID_20190503_160831.gif]]
#+name: fig:setup_sr_60rpm
#+caption: Slip-Ring rotating at 60rpm
[[file:./img/VID_20190503_161401.gif]]
** Matlab Init :noexport:ignore:
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
<<matlab-dir>>
#+end_src
#+begin_src matlab :exports none :results silent :noweb yes
<<matlab-init>>
#+end_src
** Load data
We load the data of the z axis of two geophones.
#+begin_src matlab :results none
sr_off = load('mat/data_008.mat', 'data'); sr_off = sr_off.data;
sr_on = load('mat/data_009.mat', 'data'); sr_on = sr_on.data;
sr_6r = load('mat/data_010.mat', 'data'); sr_6r = sr_6r.data;
sr_60r = load('mat/data_011.mat', 'data'); sr_60r = sr_60r.data;
#+end_src
** Time Domain
We plot the time domain data for the direct measurement (figure [[fig:sr_direct_time]]) and for the signal going through the slip-ring (figure [[fig:sr_slipring_time]]);
#+begin_src matlab :results none :exports none
figure;
hold on;
plot(sr_60r(:, 3), sr_60r(:, 1), 'DisplayName', '60rpm');
plot(sr_6r(:, 3), sr_6r(:, 1), 'DisplayName', '6rpm');
plot(sr_on(:, 3), sr_on(:, 1), 'DisplayName', 'ON');
plot(sr_off(:, 3), sr_off(:, 1), 'DisplayName', 'OFF');
hold off;
xlabel('Time [s]'); ylabel('Voltage [V]');
legend('Location', 'northeast');
#+end_src
#+NAME: fig:sr_direct_time
#+HEADER: :tangle no :exports results :results value raw replace :noweb yes
#+begin_src matlab :var filepath="figs/sr_direct_time.pdf" :var figsize="wide-normal" :post pdf2svg(file=*this*, ext="png")
<<plt-matlab>>
#+end_src
#+NAME: fig:sr_direct_time
#+CAPTION: Direct measurement
#+RESULTS: fig:sr_direct_time
[[file:figs/sr_direct_time.png]]
#+begin_src matlab :results none :exports none
figure;
hold on;
plot(sr_60r(:, 3), sr_60r(:, 2), 'DisplayName', '60rpm');
plot(sr_6r(:, 3), sr_6r(:, 2), 'DisplayName', '6rpm');
plot(sr_on(:, 3), sr_on(:, 2), 'DisplayName', 'ON');
plot(sr_off(:, 3), sr_off(:, 2), 'DisplayName', 'OFF');
hold off;
xlabel('Time [s]'); ylabel('Voltage [V]');
legend('Location', 'northeast');
#+end_src
#+NAME: fig:sr_slipring_time
#+HEADER: :tangle no :exports results :results value raw replace :noweb yes
#+begin_src matlab :var filepath="figs/sr_slipring_time.pdf" :var figsize="wide-normal" :post pdf2svg(file=*this*, ext="png")
<<plt-matlab>>
#+end_src
#+NAME: fig:sr_slipring_time
#+CAPTION: Measurement of the signal going through the Slip-Ring
#+RESULTS: fig:sr_slipring_time
[[file:figs/sr_slipring_time.png]]
** Frequency Domain
We first compute some parameters that will be used for the PSD computation.
#+begin_src matlab :results none
dt = sr_off(2, 3)-sr_off(1, 3);
Fs = 1/dt; % [Hz]
win = hanning(ceil(10*Fs));
#+end_src
Then we compute the Power Spectral Density using =pwelch= function.
#+begin_src matlab :results none
[pxdir, f] = pwelch(sr_off(:, 1), win, [], [], Fs);
[pxoff, ~] = pwelch(sr_off(:, 2), win, [], [], Fs);
[pxon, ~] = pwelch(sr_on(:, 2), win, [], [], Fs);
[px6r, ~] = pwelch(sr_6r(:, 2), win, [], [], Fs);
[px60r, ~] = pwelch(sr_60r(:, 2), win, [], [], Fs);
#+end_src
And we plot the ASD of the measured signals (figure [[fig:sr_psd_compare]]);
#+begin_src matlab :results none
figure;
hold on;
plot(f, sqrt(pxoff), 'DisplayName', 'OFF');
plot(f, sqrt(pxon), 'DisplayName', 'ON');
plot(f, sqrt(px6r), 'DisplayName', '6rpm');
plot(f, sqrt(px60r), 'DisplayName', '60rpm');
plot(f, sqrt(pxdir), 'k-', 'DisplayName', 'Direct');
hold off;
set(gca, 'xscale', 'log');
set(gca, 'yscale', 'log');
xlabel('Frequency [Hz]'); ylabel('ASD of the measured Voltage $\left[\frac{V}{\sqrt{Hz}}\right]$')
legend('Location', 'northeast');
xlim([0.1, 500]);
#+end_src
#+NAME: fig:sr_psd_compare
#+HEADER: :tangle no :exports results :results value raw replace :noweb yes
#+begin_src matlab :var filepath="figs/sr_psd_compare.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
<<plt-matlab>>
#+end_src
#+NAME: fig:sr_psd_compare
#+CAPTION: Comparison of the ASD of the measured signals when the slip-ring is ON, OFF and turning
#+RESULTS: fig:sr_psd_compare
[[file:figs/sr_psd_compare.png]]
** Conclusion
#+begin_important
*Questions:*
- Why is there some sharp peaks? Can this be due to aliasing?
- It is possible that the amplifiers were saturating during the measurements => should redo the measurements with a low pass filter before the voltage amplifier
#+end_important
* Measure of the noise induced by the slip ring when using a geophone
:PROPERTIES:
:header-args:matlab+: :tangle matlab/meas_sr_geophone.m
:header-args:matlab+: :comments org :mkdirp yes
:END:
<<sec:meas_sr_geophone>>
#+begin_src bash :exports none :results none
if [ matlab/meas_sr_geophone.m -nt data/meas_sr_geophone.zip ]; then
cp matlab/meas_sr_geophone.m meas_sr_geophone.m;
zip data/meas_sr_geophone \
mat/data_012.mat \
mat/data_013.mat \
mat/data_016.mat \
mat/data_017.mat \
meas_sr_geophone.m;
rm meas_sr_geophone.m;
fi
#+end_src
#+begin_note
All the files (data and Matlab scripts) are accessible [[file:data/meas_sr_geophone.zip][here]].
#+end_note
** Matlab Init :noexport:ignore:
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
<<matlab-dir>>
#+end_src
#+begin_src matlab :exports none :results silent :noweb yes
<<matlab-init>>
#+end_src
** First Measurement without LPF
*** Measurement Description
*Goal*:
- Determine if the noise induced by the slip-ring is a limiting factor when measuring the signal coming from a geophone
*Setup*:
- The geophone is located at the sample location
- The two Voltage amplifiers have the same following settings:
- AC
- 60dB
- 1kHz
- The signal from the geophone is split into two using a T-BNC:
- One part goes directly to the voltage amplifier and then to the ADC.
- The other part goes to the slip-ring=>voltage amplifier=>ADC.
First column: Direct measure
Second column: Slip-ring measure
*Measurements*:
- =data_012=: Slip-Ring OFF
- =data_013=: Slip-Ring ON
*** Load data
We load the data of the z axis of two geophones.
#+begin_src matlab :results none
sr_off = load('mat/data_012.mat', 'data'); sr_off = sr_off.data;
sr_on = load('mat/data_013.mat', 'data'); sr_on = sr_on.data;
#+end_src
*** Time Domain
We compare the signal when the Slip-Ring is OFF (figure [[fig:sr_geophone_time_off]]) and when it is ON (figure [[fig:sr_geophone_time_on]]).
#+begin_src matlab :results none :exports none
figure;
hold on;
plot(sr_off(:, 3), sr_off(:, 1), 'DisplayName', 'Direct');
plot(sr_off(:, 3), sr_off(:, 2), 'DisplayName', 'Slip-Ring');
hold off;
legend('Location', 'northeast');
xlabel('Time [s]');
ylabel('Voltage [V]');
#+end_src
#+NAME: fig:sr_geophone_time_off
#+HEADER: :tangle no :exports results :results value raw replace :noweb yes
#+begin_src matlab :var filepath="figs/sr_geophone_time_off.pdf" :var figsize="wide-normal" :post pdf2svg(file=*this*, ext="png")
<<plt-matlab>>
#+end_src
#+NAME: fig:sr_geophone_time_off
#+CAPTION: Comparison of the time domain signals when the slip-ring is OFF
#+RESULTS: fig:sr_geophone_time_off
[[file:figs/sr_geophone_time_off.png]]
#+begin_src matlab :results none :exports none
figure;
hold on;
plot(sr_on(:, 3), sr_on(:, 1), 'DisplayName', 'Direct');
plot(sr_on(:, 3), sr_on(:, 2), 'DisplayName', 'Slip-Ring');
hold off;
legend('Location', 'northeast');
xlabel('Time [s]');
ylabel('Voltage [V]');
#+end_src
#+NAME: fig:sr_geophone_time_on
#+HEADER: :tangle no :exports results :results value raw replace :noweb yes
#+begin_src matlab :var filepath="figs/sr_geophone_time_on.pdf" :var figsize="wide-normal" :post pdf2svg(file=*this*, ext="png")
<<plt-matlab>>
#+end_src
#+NAME: fig:sr_geophone_time_on
#+CAPTION: Comparison of the time domain signals when the slip-ring is ON
#+RESULTS: fig:sr_geophone_time_on
[[file:figs/sr_geophone_time_on.png]]
*** Frequency Domain
We first compute some parameters that will be used for the PSD computation.
#+begin_src matlab :results none
dt = sr_off(2, 3)-sr_off(1, 3);
Fs = 1/dt; % [Hz]
win = hanning(ceil(10*Fs));
#+end_src
Then we compute the Power Spectral Density using =pwelch= function.
#+begin_src matlab :results none
% Direct measure
[pxdoff, ~] = pwelch(sr_off(:, 1), win, [], [], Fs);
[pxdon, ~] = pwelch(sr_on(:, 1), win, [], [], Fs);
% Slip-Ring measure
[pxsroff, f] = pwelch(sr_off(:, 2), win, [], [], Fs);
[pxsron, ~] = pwelch(sr_on(:, 2), win, [], [], Fs);
#+end_src
Finally, we compare the Amplitude Spectral Density of the signals (figure [[fig:sr_geophone_asd]]);
#+begin_src matlab :results none
figure;
hold on;
plot(f, sqrt(pxdoff), 'DisplayName', 'Direct - OFF');
plot(f, sqrt(pxsroff), 'DisplayName', 'Slip-Ring - OFF');
plot(f, sqrt(pxdon), 'DisplayName', 'Direct - ON');
plot(f, sqrt(pxsron), 'DisplayName', 'Slip-Ring - ON');
hold off;
set(gca, 'xscale', 'log');
set(gca, 'yscale', 'log');
xlabel('Frequency [Hz]'); ylabel('ASD of the measured Voltage $\left[\frac{V}{\sqrt{Hz}}\right]$')
legend('Location', 'northeast');
xlim([0.1, 500]);
#+end_src
#+NAME: fig:sr_geophone_asd
#+HEADER: :tangle no :exports results :results value raw replace :noweb yes
#+begin_src matlab :var filepath="figs/sr_geophone_asd.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
<<plt-matlab>>
#+end_src
#+NAME: fig:sr_geophone_asd
#+CAPTION: Comparison of the Amplitude Spectral Sensity
#+RESULTS: fig:sr_geophone_asd
[[file:figs/sr_geophone_asd.png]]
#+begin_src matlab :results none :exports none
xlim([100, 500]);
#+end_src
#+NAME: fig:sr_geophone_asd_zoom
#+HEADER: :tangle no :exports results :results value raw replace :noweb yes
#+begin_src matlab :var filepath="figs/sr_geophone_asd_zoom.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
<<plt-matlab>>
#+end_src
#+NAME: fig:sr_geophone_asd_zoom
#+CAPTION: Comparison of the Amplitude Spectral Sensity - Zoom
#+RESULTS: fig:sr_geophone_asd_zoom
[[file:figs/sr_geophone_asd_zoom.png]]
*** Conclusion
#+begin_important
- The fact that the Slip-Ring is turned ON adds some noise to the signal.
- The signal going through the Slip-Ring is less noisy than the one going directly to the ADC.
- This could be due to less good electromagnetic isolation.
*Questions*:
- Can the sharp peak on figure [[fig:sr_geophone_asd_zoom]] be due to the Aliasing?
#+end_important
** Measurement using an oscilloscope
*** Measurement Setup
Know we are measuring the same signals but using an oscilloscope instead of the Speedgoat ADC.
*** Observations
Then the Slip-Ring is ON (figure [[fig:oscilloscope_sr_on]]), we observe a signal at 40kHz with a peak-to-peak amplitude of 200mV for the direct measure and 100mV for the signal going through the Slip-Ring.
Then the Slip-Ring is OFF, we don't observe this 40kHz anymore (figure [[fig:oscilloscope_sr_off]]).
#+name: fig:oscilloscope_sr_on
#+caption: Signals measured by the oscilloscope - Slip-Ring ON - Yellow: Direct measure - Blue: Through Slip-Ring
#+attr_html: :width 500px
[[file:./img/IMG_20190506_160420.jpg]]
#+name: fig:oscilloscope_sr_off
#+caption: Signals measured by the oscilloscope - Slip-Ring OFF - Yellow: Direct measure - Blue: Through Slip-Ring
#+attr_html: :width 500px
[[file:./img/IMG_20190506_160438.jpg]]
*** Conclusion
#+begin_important
- By looking at the signals using an oscilloscope, there is a lot of high frequency noise when turning on the Slip-Ring
- This can eventually saturate the voltage amplifiers (seen by a led indicating saturation)
- The choice is to *add a Low pass filter before the voltage amplifiers* to not saturate them and filter the noise.
#+end_important
** New measurements with a LPF before the Voltage Amplifiers
*** Setup description
A first order low pass filter is added before the Voltage Amplifiers with the following values:
\begin{aligned}
R &= 1k\Omega \\
C &= 1\mu F
\end{aligned}
And we have a cut-off frequency of $f_c = \frac{1}{RC} = 160Hz$.
We are measuring the signal from a geophone put on the marble with and without the added LPF:
- with the slip ring OFF: =mat/data_016.mat=
- with the slip ring ON: =mat/data_017.mat=
*** Load data
We load the data of the z axis of two geophones.
#+begin_src matlab :results none
sr_lpf_off = load('mat/data_016.mat', 'data'); sr_lpf_off = sr_lpf_off.data;
sr_lpf_on = load('mat/data_017.mat', 'data'); sr_lpf_on = sr_lpf_on.data;
#+end_src
*** Time Domain
We compare the signal when the Slip-Ring is OFF (figure [[fig:sr_lpf_geophone_time_off]]) and when it is ON (figure [[fig:sr_lpf_geophone_time_on]]).
#+begin_src matlab :results none :exports none
figure;
hold on;
plot(sr_lpf_off(:, 3), sr_lpf_off(:, 1), 'DisplayName', 'Direct');
plot(sr_lpf_off(:, 3), sr_lpf_off(:, 2), 'DisplayName', 'Slip-Ring');
hold off;
legend('Location', 'northeast');
xlabel('Time [s]');
ylabel('Voltage [V]');
#+end_src
#+NAME: fig:sr_lpf_geophone_time_off
#+HEADER: :tangle no :exports results :results value raw replace :noweb yes
#+begin_src matlab :var filepath="figs/sr_lpf_geophone_time_off.pdf" :var figsize="wide-normal" :post pdf2svg(file=*this*, ext="png")
<<plt-matlab>>
#+end_src
#+NAME: fig:sr_lpf_geophone_time_off
#+CAPTION: Comparison of the time domain signals when the slip-ring is OFF
#+RESULTS: fig:sr_lpf_geophone_time_off
[[file:figs/sr_lpf_geophone_time_off.png]]
#+begin_src matlab :results none :exports none
figure;
hold on;
plot(sr_lpf_on(:, 3), sr_lpf_on(:, 1), 'DisplayName', 'Direct');
plot(sr_lpf_on(:, 3), sr_lpf_on(:, 2), 'DisplayName', 'Slip-Ring');
hold off;
legend('Location', 'northeast');
xlabel('Time [s]');
ylabel('Voltage [V]');
#+end_src
#+NAME: fig:sr_lpf_geophone_time_on
#+HEADER: :tangle no :exports results :results value raw replace :noweb yes
#+begin_src matlab :var filepath="figs/sr_lpf_geophone_time_on.pdf" :var figsize="wide-normal" :post pdf2svg(file=*this*, ext="png")
<<plt-matlab>>
#+end_src
#+NAME: fig:sr_lpf_geophone_time_on
#+CAPTION: Comparison of the time domain signals when the slip-ring is ON
#+RESULTS: fig:sr_lpf_geophone_time_on
[[file:figs/sr_lpf_geophone_time_on.png]]
*** Frequency Domain
We first compute some parameters that will be used for the PSD computation.
#+begin_src matlab :results none
dt = sr_lpf_off(2, 3)-sr_lpf_off(1, 3);
Fs = 1/dt; % [Hz]
win = hanning(ceil(10*Fs));
#+end_src
Then we compute the Power Spectral Density using =pwelch= function.
#+begin_src matlab :results none
% Direct measure
[pxd_lpf_off, ~] = pwelch(sr_lpf_off(:, 1), win, [], [], Fs);
[pxd_lpf_on, ~] = pwelch(sr_lpf_on(:, 1), win, [], [], Fs);
% Slip-Ring measure
[pxsr_lpf_off, f] = pwelch(sr_lpf_off(:, 2), win, [], [], Fs);
[pxsr_lpf_on, ~] = pwelch(sr_lpf_on(:, 2), win, [], [], Fs);
#+end_src
Finally, we compare the Amplitude Spectral Density of the signals (figure [[fig:sr_lpf_geophone_asd]]);
#+begin_src matlab :results none
figure;
hold on;
plot(f, sqrt(pxd_lpf_off), 'DisplayName', 'Direct - OFF');
plot(f, sqrt(pxsr_lpf_off), 'DisplayName', 'Slip-Ring - OFF');
plot(f, sqrt(pxd_lpf_on), 'DisplayName', 'Direct - ON');
plot(f, sqrt(pxsr_lpf_on), 'DisplayName', 'Slip-Ring - ON');
hold off;
set(gca, 'xscale', 'log');
set(gca, 'yscale', 'log');
xlabel('Frequency [Hz]'); ylabel('ASD of the measured Voltage $\left[\frac{V}{\sqrt{Hz}}\right]$')
legend('Location', 'northeast');
xlim([0.1, 500]);
#+end_src
#+NAME: fig:sr_lpf_geophone_asd
#+HEADER: :tangle no :exports results :results value raw replace :noweb yes
#+begin_src matlab :var filepath="figs/sr_lpf_geophone_asd.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
<<plt-matlab>>
#+end_src
#+NAME: fig:sr_lpf_geophone_asd
#+CAPTION: Comparison of the Amplitude Spectral Sensity
#+RESULTS: fig:sr_lpf_geophone_asd
[[file:figs/sr_lpf_geophone_asd.png]]
#+begin_src matlab :results none :exports none
xlim([100, 500]);
#+end_src
#+NAME: fig:sr_lpf_geophone_asd_zoom
#+HEADER: :tangle no :exports results :results value raw replace :noweb yes
#+begin_src matlab :var filepath="figs/sr_lpf_geophone_asd_zoom.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
<<plt-matlab>>
#+end_src
#+NAME: fig:sr_lpf_geophone_asd_zoom
#+CAPTION: Comparison of the Amplitude Spectral Sensity - Zoom
#+RESULTS: fig:sr_lpf_geophone_asd_zoom
[[file:figs/sr_lpf_geophone_asd_zoom.png]]
*** Comparison of with and without LPF
#+begin_src matlab :results none
figure;
hold on;
plot(f, sqrt(pxdon), 'DisplayName', 'Direct - ON');
plot(f, sqrt(pxsron), 'DisplayName', 'Slip-Ring - ON');
plot(f, sqrt(pxd_lpf_on), 'DisplayName', 'Direct - ON - LPF');
plot(f, sqrt(pxsr_lpf_on), 'DisplayName', 'Slip-Ring - ON - LPF');
hold off;
set(gca, 'xscale', 'log');
set(gca, 'yscale', 'log');
xlabel('Frequency [Hz]'); ylabel('ASD of the measured Voltage $\left[\frac{V}{\sqrt{Hz}}\right]$')
legend('Location', 'northeast');
xlim([0.1, 500]);
#+end_src
#+NAME: fig:comp_with_without_lpf
#+HEADER: :tangle no :exports results :results value raw replace :noweb yes
#+begin_src matlab :var filepath="figs/comp_with_without_lpf.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
<<plt-matlab>>
#+end_src
#+NAME: fig:comp_with_without_lpf
#+CAPTION: Comparison of the measured signals with and without LPF
#+RESULTS: fig:comp_with_without_lpf
[[file:figs/comp_with_without_lpf.png]]
*** Conclusion
#+begin_important
- Using the LPF, we don't have any perturbation coming from the slip-ring when it is on.
- However, we should use a smaller value of the capacitor to have a cut-off frequency at $1kHz$.
#+end_important

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

View File

@@ -0,0 +1,70 @@
% Matlab Init :noexport:ignore:
current_dir='/home/thomas/MEGA/These/meas/slip-ring-test/';
%% Clear Workspace and Close figures
clear; close all; clc;
%% Intialize Laplace variable
s = zpk('s');
% Load data
% We load the data of the z axis of two geophones.
sr_off = load('mat/data_001.mat', 't', 'x1', 'x2');
sr_on = load('mat/data_002.mat', 't', 'x1', 'x2');
% Analysis
% Let's first look at the signal produced by the DAC (figure [[fig:random_signal]]).
figure;
hold on;
plot(sr_on.t, sr_on.x1);
hold off;
xlabel('Time [s]'); ylabel('Voltage [V]');
xlim([0 10]);
% #+NAME: fig:random_signal
% #+CAPTION: Random signal produced by the DAC
% #+RESULTS: fig:random_signal
% [[file:figs/random_signal.png]]
% We now look at the difference between the signal directly measured by the ADC and the signal that goes through the slip-ring (figure [[fig:slipring_comp_signals]]).
figure;
hold on;
plot(sr_on.t, sr_on.x1 - sr_on.x2, 'DisplayName', 'Slip-Ring - $\omega = 1rpm$');
plot(sr_off.t, sr_off.x1 - sr_off.x2,'DisplayName', 'Slip-Ring off');
hold off;
xlabel('Time [s]'); ylabel('Voltage [V]');
xlim([0 10]);
legend('Location', 'northeast');
% #+NAME: fig:slipring_comp_signals
% #+CAPTION: Alteration of the signal when the slip-ring is turning
% #+RESULTS: fig:slipring_comp_signals
% [[file:figs/slipring_comp_signals.png]]
dt = sr_on.t(2) - sr_on.t(1);
Fs = 1/dt; % [Hz]
win = hanning(ceil(1*Fs));
[pxx_on, f] = pwelch(sr_on.x1 - sr_on.x2, win, [], [], Fs);
[pxx_off, ~] = pwelch(sr_off.x1 - sr_off.x2, win, [], [], Fs);
figure;
hold on;
plot(f, sqrt(pxx_on), 'DisplayName', 'Slip-Ring - $\omega = 1rpm$');
plot(f, sqrt(pxx_off),'DisplayName', 'Slip-Ring off');
hold off;
set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log');
xlabel('Frequency [Hz]'); ylabel('PSD $\left[\frac{V}{\sqrt{Hz}}\right]$');
legend('Location', 'northeast');
xlim([1, 500]); ylim([1e-5, 1e-3])

View File

@@ -0,0 +1,87 @@
% Matlab Init :noexport:ignore:
current_dir='/home/thomas/MEGA/These/meas/slip-ring-test/';
%% Clear Workspace and Close figures
clear; close all; clc;
%% Intialize Laplace variable
s = zpk('s');
% Load data
% We load the data of the z axis of two geophones.
sr_off = load('mat/data_008.mat', 'data'); sr_off = sr_off.data;
sr_on = load('mat/data_009.mat', 'data'); sr_on = sr_on.data;
sr_6r = load('mat/data_010.mat', 'data'); sr_6r = sr_6r.data;
sr_60r = load('mat/data_011.mat', 'data'); sr_60r = sr_60r.data;
% Time Domain
% We plot the time domain data for the direct measurement (figure [[fig:sr_direct_time]]) and for the signal going through the slip-ring (figure [[fig:sr_slipring_time]]);
figure;
hold on;
plot(sr_60r(:, 3), sr_60r(:, 1), 'DisplayName', '60rpm');
plot(sr_6r(:, 3), sr_6r(:, 1), 'DisplayName', '6rpm');
plot(sr_on(:, 3), sr_on(:, 1), 'DisplayName', 'ON');
plot(sr_off(:, 3), sr_off(:, 1), 'DisplayName', 'OFF');
hold off;
xlabel('Time [s]'); ylabel('Voltage [V]');
legend('Location', 'northeast');
% #+NAME: fig:sr_direct_time
% #+CAPTION: Direct measurement
% #+RESULTS: fig:sr_direct_time
% [[file:figs/sr_direct_time.png]]
figure;
hold on;
plot(sr_60r(:, 3), sr_60r(:, 2), 'DisplayName', '60rpm');
plot(sr_6r(:, 3), sr_6r(:, 2), 'DisplayName', '6rpm');
plot(sr_on(:, 3), sr_on(:, 2), 'DisplayName', 'ON');
plot(sr_off(:, 3), sr_off(:, 2), 'DisplayName', 'OFF');
hold off;
xlabel('Time [s]'); ylabel('Voltage [V]');
legend('Location', 'northeast');
% Frequency Domain
% We first compute some parameters that will be used for the PSD computation.
dt = sr_off(2, 3)-sr_off(1, 3);
Fs = 1/dt; % [Hz]
win = hanning(ceil(10*Fs));
% Then we compute the Power Spectral Density using =pwelch= function.
[pxdir, f] = pwelch(sr_off(:, 1), win, [], [], Fs);
[pxoff, ~] = pwelch(sr_off(:, 2), win, [], [], Fs);
[pxon, ~] = pwelch(sr_on(:, 2), win, [], [], Fs);
[px6r, ~] = pwelch(sr_6r(:, 2), win, [], [], Fs);
[px60r, ~] = pwelch(sr_60r(:, 2), win, [], [], Fs);
% And we plot the ASD of the measured signals (figure [[fig:sr_psd_compare]]);
figure;
hold on;
plot(f, sqrt(pxoff), 'DisplayName', 'OFF');
plot(f, sqrt(pxon), 'DisplayName', 'ON');
plot(f, sqrt(px6r), 'DisplayName', '6rpm');
plot(f, sqrt(px60r), 'DisplayName', '60rpm');
plot(f, sqrt(pxdir), 'k-', 'DisplayName', 'Direct');
hold off;
set(gca, 'xscale', 'log');
set(gca, 'yscale', 'log');
xlabel('Frequency [Hz]'); ylabel('ASD of the measured Voltage $\left[\frac{V}{\sqrt{Hz}}\right]$')
legend('Location', 'northeast');
xlim([0.1, 500]);

View File

@@ -0,0 +1,57 @@
% Matlab Init :noexport:ignore:
current_dir='/home/thomas/MEGA/These/meas/slip-ring-test/';
%% Go to current Directory
cd(current_dir);
%% Initialize ans with org-babel
ans = 0;
%% Clear Workspace and Close figures
clear; close all; clc;
%% Intialize Laplace variable
s = zpk('s');
% Load data
% We load the data of the z axis of two geophones.
d8 = load('mat/data_018.mat', 'data'); d8 = d8.data;
d9 = load('mat/data_019.mat', 'data'); d9 = d9.data;
% Analysis - Time Domain
% First, we compare the time domain signals for the two experiments (figure [[fig:slipring_time]]).
figure;
hold on;
plot(d9(:, 3), d9(:, 2), 'DisplayName', 'Slip-Ring');
plot(d8(:, 3), d8(:, 2), 'DisplayName', 'Wire');
hold off;
xlabel('Time [s]'); ylabel('Voltage [V]');
xlim([0, 50]);
legend('location', 'northeast');
% Analysis - Frequency Domain
% We then compute the Power Spectral Density of the two signals and we compare them (figure [[fig:slipring_asd]]).
dt = d8(2, 3) - d8(1, 3);
Fs = 1/dt;
win = hanning(ceil(1*Fs));
[pxx8, f] = pwelch(d8(:, 2), win, [], [], Fs);
[pxx9, ~] = pwelch(d9(:, 2), win, [], [], Fs);
figure;
hold on;
plot(f, sqrt(pxx9), 'DisplayName', 'Slip-Ring');
plot(f, sqrt(pxx8), 'DisplayName', 'Wire');
hold off;
set(gca, 'xscale', 'log');
set(gca, 'yscale', 'log');
xlabel('Frequency [Hz]'); ylabel('Amplitude Spectral Density $\left[\frac{V}{\sqrt{Hz}}\right]$')
xlim([1, 500]);
legend('Location', 'southwest');

View File

@@ -0,0 +1,193 @@
% Matlab Init :noexport:ignore:
current_dir='/home/thomas/MEGA/These/meas/slip-ring-test/';
%% Clear Workspace and Close figures
clear; close all; clc;
%% Intialize Laplace variable
s = zpk('s');
% Load data
% We load the data of the z axis of two geophones.
sr_off = load('mat/data_012.mat', 'data'); sr_off = sr_off.data;
sr_on = load('mat/data_013.mat', 'data'); sr_on = sr_on.data;
% Time Domain
% We compare the signal when the Slip-Ring is OFF (figure [[fig:sr_geophone_time_off]]) and when it is ON (figure [[fig:sr_geophone_time_on]]).
figure;
hold on;
plot(sr_off(:, 3), sr_off(:, 1), 'DisplayName', 'Direct');
plot(sr_off(:, 3), sr_off(:, 2), 'DisplayName', 'Slip-Ring');
hold off;
legend('Location', 'northeast');
xlabel('Time [s]');
ylabel('Voltage [V]');
% #+NAME: fig:sr_geophone_time_off
% #+CAPTION: Comparison of the time domain signals when the slip-ring is OFF
% #+RESULTS: fig:sr_geophone_time_off
% [[file:figs/sr_geophone_time_off.png]]
figure;
hold on;
plot(sr_on(:, 3), sr_on(:, 1), 'DisplayName', 'Direct');
plot(sr_on(:, 3), sr_on(:, 2), 'DisplayName', 'Slip-Ring');
hold off;
legend('Location', 'northeast');
xlabel('Time [s]');
ylabel('Voltage [V]');
% Frequency Domain
% We first compute some parameters that will be used for the PSD computation.
dt = sr_off(2, 3)-sr_off(1, 3);
Fs = 1/dt; % [Hz]
win = hanning(ceil(10*Fs));
% Then we compute the Power Spectral Density using =pwelch= function.
% Direct measure
[pxdoff, ~] = pwelch(sr_off(:, 1), win, [], [], Fs);
[pxdon, ~] = pwelch(sr_on(:, 1), win, [], [], Fs);
% Slip-Ring measure
[pxsroff, f] = pwelch(sr_off(:, 2), win, [], [], Fs);
[pxsron, ~] = pwelch(sr_on(:, 2), win, [], [], Fs);
% Finally, we compare the Amplitude Spectral Density of the signals (figure [[fig:sr_geophone_asd]]);
figure;
hold on;
plot(f, sqrt(pxdoff), 'DisplayName', 'Direct - OFF');
plot(f, sqrt(pxsroff), 'DisplayName', 'Slip-Ring - OFF');
plot(f, sqrt(pxdon), 'DisplayName', 'Direct - ON');
plot(f, sqrt(pxsron), 'DisplayName', 'Slip-Ring - ON');
hold off;
set(gca, 'xscale', 'log');
set(gca, 'yscale', 'log');
xlabel('Frequency [Hz]'); ylabel('ASD of the measured Voltage $\left[\frac{V}{\sqrt{Hz}}\right]$')
legend('Location', 'northeast');
xlim([0.1, 500]);
% #+NAME: fig:sr_geophone_asd
% #+CAPTION: Comparison of the Amplitude Spectral Sensity
% #+RESULTS: fig:sr_geophone_asd
% [[file:figs/sr_geophone_asd.png]]
xlim([100, 500]);
% Load data
% We load the data of the z axis of two geophones.
sr_lpf_off = load('mat/data_016.mat', 'data'); sr_lpf_off = sr_lpf_off.data;
sr_lpf_on = load('mat/data_017.mat', 'data'); sr_lpf_on = sr_lpf_on.data;
% Time Domain
% We compare the signal when the Slip-Ring is OFF (figure [[fig:sr_lpf_geophone_time_off]]) and when it is ON (figure [[fig:sr_lpf_geophone_time_on]]).
figure;
hold on;
plot(sr_lpf_off(:, 3), sr_lpf_off(:, 1), 'DisplayName', 'Direct');
plot(sr_lpf_off(:, 3), sr_lpf_off(:, 2), 'DisplayName', 'Slip-Ring');
hold off;
legend('Location', 'northeast');
xlabel('Time [s]');
ylabel('Voltage [V]');
% #+NAME: fig:sr_lpf_geophone_time_off
% #+CAPTION: Comparison of the time domain signals when the slip-ring is OFF
% #+RESULTS: fig:sr_lpf_geophone_time_off
% [[file:figs/sr_lpf_geophone_time_off.png]]
figure;
hold on;
plot(sr_lpf_on(:, 3), sr_lpf_on(:, 1), 'DisplayName', 'Direct');
plot(sr_lpf_on(:, 3), sr_lpf_on(:, 2), 'DisplayName', 'Slip-Ring');
hold off;
legend('Location', 'northeast');
xlabel('Time [s]');
ylabel('Voltage [V]');
% Frequency Domain
% We first compute some parameters that will be used for the PSD computation.
dt = sr_lpf_off(2, 3)-sr_lpf_off(1, 3);
Fs = 1/dt; % [Hz]
win = hanning(ceil(10*Fs));
% Then we compute the Power Spectral Density using =pwelch= function.
% Direct measure
[pxd_lpf_off, ~] = pwelch(sr_lpf_off(:, 1), win, [], [], Fs);
[pxd_lpf_on, ~] = pwelch(sr_lpf_on(:, 1), win, [], [], Fs);
% Slip-Ring measure
[pxsr_lpf_off, f] = pwelch(sr_lpf_off(:, 2), win, [], [], Fs);
[pxsr_lpf_on, ~] = pwelch(sr_lpf_on(:, 2), win, [], [], Fs);
% Finally, we compare the Amplitude Spectral Density of the signals (figure [[fig:sr_lpf_geophone_asd]]);
figure;
hold on;
plot(f, sqrt(pxd_lpf_off), 'DisplayName', 'Direct - OFF');
plot(f, sqrt(pxsr_lpf_off), 'DisplayName', 'Slip-Ring - OFF');
plot(f, sqrt(pxd_lpf_on), 'DisplayName', 'Direct - ON');
plot(f, sqrt(pxsr_lpf_on), 'DisplayName', 'Slip-Ring - ON');
hold off;
set(gca, 'xscale', 'log');
set(gca, 'yscale', 'log');
xlabel('Frequency [Hz]'); ylabel('ASD of the measured Voltage $\left[\frac{V}{\sqrt{Hz}}\right]$')
legend('Location', 'northeast');
xlim([0.1, 500]);
% #+NAME: fig:sr_lpf_geophone_asd
% #+CAPTION: Comparison of the Amplitude Spectral Sensity
% #+RESULTS: fig:sr_lpf_geophone_asd
% [[file:figs/sr_lpf_geophone_asd.png]]
xlim([100, 500]);
% Comparison of with and without LPF
figure;
hold on;
plot(f, sqrt(pxdon), 'DisplayName', 'Direct - ON');
plot(f, sqrt(pxsron), 'DisplayName', 'Slip-Ring - ON');
plot(f, sqrt(pxd_lpf_on), 'DisplayName', 'Direct - ON - LPF');
plot(f, sqrt(pxsr_lpf_on), 'DisplayName', 'Slip-Ring - ON - LPF');
hold off;
set(gca, 'xscale', 'log');
set(gca, 'yscale', 'log');
xlabel('Frequency [Hz]'); ylabel('ASD of the measured Voltage $\left[\frac{V}{\sqrt{Hz}}\right]$')
legend('Location', 'northeast');
xlim([0.1, 500]);

View File

@@ -0,0 +1,90 @@
* DONE Measure of the noise of the Voltage Amplifier
CLOSED: [2019-05-06 lun. 09:00]
- The two inputs (differential) of the voltage amplifier are shunted with 50Ohms
- The AC/DC option of the Voltage amplifier is on AC
- The low pass filter is set to 1hHz
Measure: Second Column
meas3: Ampli OFF
meas4: Ampli ON 20dB
meas5: Ampli ON 40dB
meas6: Ampli ON 60dB
meas7: Ampli ON 80dB
* DONE Measure of the noise induced by the Slip-Ring
CLOSED: [2019-05-06 lun. 09:28]
Setup:
- 0V is generated by the DAC of the Speedgoat
- Using a T, one part goes to ADC
- the other part goes to the slip-ring 2 times and then to the ADC
- Gain of the Voltage Amplifier: 80dB, AC, 1kHz
- Everything is OFF
We had some diffuculties to not have a lot of noise on the measurement.
First column: Direct measure
Second column: Slip-ring measure
Measurements:
- meas8: Slip-Ring OFF
- meas9: Slip-Ring ON
- meas10: Slip-Ring ON and omega=6rpm
- meas11: Slip-Ring ON and omega=60rpm
* DONE Measure of the noise induced by the slip ring when using a geophone
CLOSED: [2019-05-06 lun. 09:28]
The geophone is located at the sample location
The two Voltage amplifiers have the following settings:
- AC
- 60dB
- 1kHz
The signal from the geophone is split into two using a T-BNC.
On part goes directly to the voltage amplifier and then to the ADC.
The other part goes to the slip-ring=>voltage amplifier=>ADC.
The other two cables that go through the slip ring have 50Ohms resistors at one end, the other end is open circuit.
First column: Direct measure
Second column: Slip-ring measure
- meas12: Slip-Ring OFF
- meas13: Slip-Ring ON
Redone the measurements with 1kHz additional low pass filter:
- meas16: Slip-Ring OFF
- meas17: Slip-Ring ON
* DONE Measure of the influence of the AC/DC option on the voltage amplifiers
CLOSED: [2019-05-06 lun. 09:28]
One geophone is located on the marble.
It's signal goes to two voltage amplifiers with a gain of 60dB.
On voltage amplifier is on the AC option, the other on the DC option.
First column: AC
Second column: DC
- meas14: col-1 = amp1+AC. col-2 = amp2+DC.
- meas15: col-1 = amp1+DC. col-2 = amp2+AC.
* Measurement of the LPF
We are measuring the signal from from Geophone with a BNC T
On part goes to column 1 through the LPF
The other part goes to column 2 without the LPF
- meas18
New measurement with C = 150nF => fc = 1kHz
Voltage Ampli: 60dB, DC, 1kHz
- meas19
* Measure of the noise induced by the Slip-Ring - BIS
Same as before but with a LPF
Measurements:
- meas20: Slip-Ring OFF
- meas21: Slip-Ring ON
- meas22: Slip-Ring ON and omega=6rpm
- meas23: Slip-Ring ON and omega=60rpm