nass-micro-station-measurem.../disturbance-ty-sr/matlab/disturbance_ty_sr.m

251 lines
7.2 KiB
Mathematica
Raw Normal View History

%% Clear Workspace and Close figures
clear; close all; clc;
%% Intialize Laplace variable
s = zpk('s');
% Load data
ty_of = load('mat/data_050.mat', 'data'); ty_of = ty_of.data;
ty_on = load('mat/data_051.mat', 'data'); ty_on = ty_on.data;
ty_1h = load('mat/data_052.mat', 'data'); ty_1h = ty_1h.data;
% Voltage to Velocity
2020-04-27 11:35:57 +02:00
% We convert the measured voltage to velocity using the function =voltageToVelocityL22= (accessible [[file:~/Cloud/thesis/meas/srcindex.org][here]]).
gain = 40; % [dB]
ty_of(:, 1) = voltageToVelocityL22(ty_of(:, 1), ty_of(:, 3), gain);
ty_on(:, 1) = voltageToVelocityL22(ty_on(:, 1), ty_on(:, 3), gain);
ty_1h(:, 1) = voltageToVelocityL22(ty_1h(:, 1), ty_1h(:, 3), gain);
ty_of(:, 2) = voltageToVelocityL22(ty_of(:, 2), ty_of(:, 3), gain);
ty_on(:, 2) = voltageToVelocityL22(ty_on(:, 2), ty_on(:, 3), gain);
ty_1h(:, 2) = voltageToVelocityL22(ty_1h(:, 2), ty_1h(:, 3), gain);
% Time domain plots
figure;
hold on;
plot(ty_1h(:, 3), ty_1h(:, 1), 'DisplayName', 'Marble - Ty 1Hz');
plot(ty_on(:, 3), ty_on(:, 1), 'DisplayName', 'Marble - Ty ON');
plot(ty_of(:, 3), ty_of(:, 1), 'DisplayName', 'Marble - Ty OFF');
hold off;
xlabel('Time [s]'); ylabel('Velocity [m/s]');
xlim([0, 100]);
legend('Location', 'southwest');
% #+NAME: fig:ty_marble_time_zoom
% #+CAPTION: caption
% #+RESULTS: fig:ty_marble_time_zoom
% [[file:figs/ty_marble_time_zoom.png]]
figure;
hold on;
plot(ty_1h(:, 3), ty_1h(:, 2), 'DisplayName', 'Sample - Ty - 1Hz');
plot(ty_on(:, 3), ty_on(:, 2), 'DisplayName', 'Sample - Ty - ON');
plot(ty_of(:, 3), ty_of(:, 2), 'DisplayName', 'Sample - Ty - OFF');
hold off;
xlabel('Time [s]'); ylabel('Velocity [m/s]');
xlim([0, 100]);
legend('Location', 'southwest');
% Relative Velocity
figure;
hold on;
plot(ty_1h(:, 3), ty_1h(:, 2)-ty_1h(:, 1), 'DisplayName', 'Relative Velocity - Ty - 1Hz');
plot(ty_on(:, 3), ty_on(:, 2)-ty_on(:, 1), 'DisplayName', 'Relative Velocity - Ty - ON');
plot(ty_of(:, 3), ty_of(:, 2)-ty_of(:, 1), 'DisplayName', 'Relative Velocity - Ty - OFF');
hold off;
xlabel('Time [s]'); ylabel('Velocity [m/s]');
xlim([0, 100]);
legend('Location', 'southwest');
% Frequency Domain
% We first compute some parameters that will be used for the PSD computation.
dt = ty_of(2, 3)-ty_of(1, 3);
Fs = 1/dt; % [Hz]
win = hanning(ceil(10*Fs));
% Then we compute the Power Spectral Density using =pwelch= function.
% First for the geophone located on the marble
[pxof_m, f] = pwelch(ty_of(:, 1), win, [], [], Fs);
[pxon_m, ~] = pwelch(ty_on(:, 1), win, [], [], Fs);
[px1h_m, ~] = pwelch(ty_1h(:, 1), win, [], [], Fs);
% And for the geophone located at the sample position.
[pxof_s, f] = pwelch(ty_of(:, 2), win, [], [], Fs);
[pxon_s, ~] = pwelch(ty_on(:, 2), win, [], [], Fs);
[px1h_s, ~] = pwelch(ty_1h(:, 2), win, [], [], Fs);
% Finally, for the relative velocity.
[pxof_r, f] = pwelch(ty_of(:, 2)-ty_of(:, 1), win, [], [], Fs);
[pxon_r, ~] = pwelch(ty_on(:, 2)-ty_on(:, 1), win, [], [], Fs);
[px1h_r, ~] = pwelch(ty_1h(:, 2)-ty_1h(:, 1), win, [], [], Fs);
% And we plot the ASD of the measured velocities:
% - figure [[fig:psd_marble_compare]] for the geophone located on the marble
% - figure [[fig:psd_sample_compare]] for the geophone at the sample position
% - figure [[fig:psd_relative_compare]] for the relative velocity
figure;
hold on;
plot(f, sqrt(px1h_m), 'DisplayName', 'Marble - Ty 1Hz');
plot(f, sqrt(pxon_m), 'DisplayName', 'Marble - Ty ON');
plot(f, sqrt(pxof_m), 'DisplayName', 'Marble - Ty OFF');
hold off;
set(gca, 'xscale', 'log');
set(gca, 'yscale', 'log');
xlabel('Frequency [Hz]'); ylabel('ASD of the measured velocity $\left[\frac{m/s}{\sqrt{Hz}}\right]$')
legend('Location', 'southwest');
xlim([1, 500]);
% #+NAME: fig:psd_marble_compare
% #+CAPTION: Comparison of the ASD of the measured velocities from the Geophone on the marble
% #+RESULTS: fig:psd_marble_compare
% [[file:figs/psd_marble_compare.png]]
figure;
hold on;
plot(f, sqrt(px1h_s), 'DisplayName', 'Sample - Ty 1Hz');
plot(f, sqrt(pxon_s), 'DisplayName', 'Sample - Ty ON');
plot(f, sqrt(pxof_s), 'DisplayName', 'Sample - Ty OFF');
hold off;
set(gca, 'xscale', 'log');
set(gca, 'yscale', 'log');
xlabel('Frequency [Hz]'); ylabel('ASD of the measured velocity $\left[\frac{m/s}{\sqrt{Hz}}\right]$')
legend('Location', 'southwest');
xlim([2, 500]);
% #+NAME: fig:psd_sample_compare
% #+CAPTION: Comparison of the ASD of the measured velocities from the Geophone at the sample location
% #+RESULTS: fig:psd_sample_compare
% [[file:figs/psd_sample_compare.png]]
figure;
hold on;
plot(f, sqrt(px1h_r), 'DisplayName', 'Relative - Ty 1Hz');
plot(f, sqrt(pxon_r), 'DisplayName', 'Relative - Ty ON');
plot(f, sqrt(pxof_r), 'DisplayName', 'Relative - Ty OFF');
hold off;
set(gca, 'xscale', 'log');
set(gca, 'yscale', 'log');
xlabel('Frequency [Hz]'); ylabel('ASD of the measured velocity $\left[\frac{m/s}{\sqrt{Hz}}\right]$')
legend('Location', 'southwest');
xlim([2, 500]);
% #+RESULTS:
% #+begin_example
% 1 Elmo txt chart ver 2.0
% 2
% 3 [File Properties]
% 4 Creation Time,2019-05-13 05:33:43
% 5 Last Updated,2019-05-13 05:33:43
% 6 Resolution,0.001
% 7 Sampling Time,5E-05
% 8 Recording Time,5.461
% 9
% 10 [Chart Properties]
% 11 No.,Name,X Linear,X No.
% 12 1,Chart #1,True,0
% 13 2,Chart #2,True,0
% 14
% 15 [Chart Data]
% 16 Display No.,X No.,Y No.,X Unit,Y Unit,Color,Style,Width
% 17 1,1,2,sec,N/A,ff0000ff,Solid,TwoPoint
% 18 2,1,3,sec,N/A,ff0000ff,Solid,TwoPoint
% 19 2,1,4,sec,N/A,ff007f00,Solid,TwoPoint
% 20
% 21 [Signal Names]
% 22 1,Time (sec)
% 23 2,Position [cnt]
% 24 3,Current Command [A]
% 25 4,Total Current Command [A]
% 26
% 27 [Signals Data Group 1]
% 28 1,2,3,4,
% 29 0,-141044,-0.537239575086517,-0.537239575086517,
% 30 0.001,-143127,-0.530803752974691,-0.530803752974691,
% #+end_example
% The real data starts at line 29.
% We then load this =cvs= file starting at line 29.
ty_on = csvread("mat/Ty-when-Rz-1Hz.csv", 29, 0);
ty_1h = csvread("mat/Ty-when-Rz-1Hz-and-Ty-1Hz.csv", 29, 0);
% Time domain data
% We plot the position of the translation stage measured by the encoders.
% There is 200000 encoder count for each mm, we then divide by 200000 to obtain mm.
% The result is shown on figure [[fig:ty_position_time]].
figure;
subplot(1, 2, 1);
plot(ty_on(:, 1), (ty_on(:, 2)-mean(ty_on(:, 2)))/200000);
xlim([0, 5]);
xlabel('Time [s]'); ylabel('Position [mm]');
legend({'Ty - ON'}, 'Location', 'northeast');
subplot(1, 2, 2);
plot(ty_1h(:, 1), (ty_1h(:, 2)-mean(ty_1h(:, 2)))/200000);
xlim([0, 5]);
xlabel('Time [s]'); ylabel('Position [mm]');
legend({'Ty - 1Hz'}, 'Location', 'northeast');
% #+NAME: fig:ty_position_time
% #+CAPTION: Y position of the translation stage measured by the encoders
% #+RESULTS: fig:ty_position_time
% [[file:figs/ty_position_time.png]]
% We also plot the current as function of the time on figure [[fig:ty_current_time]].
figure;
subplot(1, 2, 1);
plot(ty_on(:, 1), ty_on(:, 3)-mean(ty_on(:, 3)));
xlim([0, 5]);
xlabel('Time [s]'); ylabel('Current [A]');
legend({'Ty - ON'}, 'Location', 'northeast');
subplot(1, 2, 2);
plot(ty_1h(:, 1), ty_1h(:, 3)-mean(ty_1h(:, 3)));
xlim([0, 5]);
xlabel('Time [s]'); ylabel('Current [A]');
legend({'Ty - 1Hz'}, 'Location', 'northeast');