58 lines
1.4 KiB
Mathematica
58 lines
1.4 KiB
Mathematica
|
% Matlab Init :noexport:ignore:
|
||
|
|
||
|
current_dir='/home/thomas/MEGA/These/meas/slip-ring-test/';
|
||
|
%% Go to current Directory
|
||
|
cd(current_dir);
|
||
|
|
||
|
%% Initialize ans with org-babel
|
||
|
ans = 0;
|
||
|
|
||
|
%% Clear Workspace and Close figures
|
||
|
clear; close all; clc;
|
||
|
|
||
|
%% Intialize Laplace variable
|
||
|
s = zpk('s');
|
||
|
|
||
|
% Load data
|
||
|
% We load the data of the z axis of two geophones.
|
||
|
|
||
|
|
||
|
d8 = load('mat/data_018.mat', 'data'); d8 = d8.data;
|
||
|
d9 = load('mat/data_019.mat', 'data'); d9 = d9.data;
|
||
|
|
||
|
% Analysis - Time Domain
|
||
|
% First, we compare the time domain signals for the two experiments (figure [[fig:slipring_time]]).
|
||
|
|
||
|
|
||
|
|
||
|
figure;
|
||
|
hold on;
|
||
|
plot(d9(:, 3), d9(:, 2), 'DisplayName', 'Slip-Ring');
|
||
|
plot(d8(:, 3), d8(:, 2), 'DisplayName', 'Wire');
|
||
|
hold off;
|
||
|
xlabel('Time [s]'); ylabel('Voltage [V]');
|
||
|
xlim([0, 50]);
|
||
|
legend('location', 'northeast');
|
||
|
|
||
|
% Analysis - Frequency Domain
|
||
|
% We then compute the Power Spectral Density of the two signals and we compare them (figure [[fig:slipring_asd]]).
|
||
|
|
||
|
dt = d8(2, 3) - d8(1, 3);
|
||
|
Fs = 1/dt;
|
||
|
|
||
|
win = hanning(ceil(1*Fs));
|
||
|
|
||
|
[pxx8, f] = pwelch(d8(:, 2), win, [], [], Fs);
|
||
|
[pxx9, ~] = pwelch(d9(:, 2), win, [], [], Fs);
|
||
|
|
||
|
figure;
|
||
|
hold on;
|
||
|
plot(f, sqrt(pxx9), 'DisplayName', 'Slip-Ring');
|
||
|
plot(f, sqrt(pxx8), 'DisplayName', 'Wire');
|
||
|
hold off;
|
||
|
set(gca, 'xscale', 'log');
|
||
|
set(gca, 'yscale', 'log');
|
||
|
xlabel('Frequency [Hz]'); ylabel('Amplitude Spectral Density $\left[\frac{V}{\sqrt{Hz}}\right]$')
|
||
|
xlim([1, 500]);
|
||
|
legend('Location', 'southwest');
|