nass-micro-station-measurem.../2018-10-12 - Marc/analysis/id31_microstation_raw_12october2018.m

200 lines
5.2 KiB
Mathematica
Raw Normal View History

2019-03-14 16:40:28 +01:00
%% Title: id31 microstation in EXP hutch for RAW data
% Date: 12 october 2018
%% NOTE
% With this file you can load the raw mat files
%% Description: measure on id31 microstation in exp hutch
% FS: =256Hz
% all L28 (31V/m/s) except CH1 L4-C (276V/m/s)
% ch1: marble Z
% ch2: outer frame Ty Z
% ch3: inner frame Tilt Z
% ch4: hexa Z
% ch5: marble H
% ch6: outer frame TY H
% ch7: inner frame Tilt H
% ch8: hexa H
% ch9: hammer
%% measurements 12 october 2018
% excitation Y marble corner
% Measurement1
% excitation Y outer frame corner
% Measurement2
% excitation Y hexa
% Measurement3
% ------------------------------------------------
% excitation Z marble corner
% Measurement4
% excitation Z outer frame corner
% Measurement5
% excitation Z hexa
% Measurement6
% ------------------------------------------------
% excitation X marble corner
% Measurement7
% excitation X outer frame corner
% Measurement8
% excitation X hexa
% Measurement9
%%
microstation=['Marble '; 'TY ';'Tilt '; 'Hexapod '];
%
%% PARAMETERS
beamline='ID31 Nanostation - Hammer testing';
% --------------------------------
%%----------OROS -----------------
ch_max=16;
% --------------------------------
%mult=1e6/276*173; % --> m/s to micron/s and sensitivity correction for L4-C
nyqhp=2.56; % nyquist
f_cut=0.5; % cut frequency for high pass filter
t_win=4; % window length in sec
t_ovlp=0; % overlap window in sec
%d=1.3; % distance between vertical sensors
warning off MATLAB:divideByZero
% specify capt # for which to run this
capt=[1:9];
% specify channels for which shut correction must be applied
shunt_ch=[1];
% in case of hammer inpacts specify capt # where it doesnt occur
no_hammer=[];
%no_hammer=[0];
% specify hammer channel (or ch to find peak due to impacts)
shock_ch=9;
%% main loop --------
% ------------------
for i=capt
eval(['load Measurement_raw',num2str(i)])
freq_max=Track1_TrueBandWidth;
dts=1/(freq_max*nyqhp);
freq=linspace(0,freq_max,t_win*freq_max);
wo=2*pi*freq;
for k=1:ch_max
vname=['Track',num2str(k)];
array_exist(k)=ismember(vname,who);
end
non_zero=find(array_exist);
for z=non_zero(1):length(non_zero)
track_nb=['Track',num2str(z)]';
eval(['data(:,z)=Track',num2str(z),';']);
end
c=data*mult;
%-------------
nbch=size(c,2);
%-------------
r=length(c);
if r/2~=fix(r/2) % loop to test for odd or even nb of samples
c=c(1:r-1,:); % take only even
else
end
%------------------------------
time=linspace(0,length(c)*dts,length(c));
for j=nbch %shunt_ch
[c(:,j),c_shut]=shut_c(c(:,j),1/dts); % correct for shunt
end
%c(:,8)=(c(:,5)-c(:,4))/d; % differential Theta Y angle
b=find(no_hammer==i); % if i==1 | i==2 | i==6
if b~=0
[psd_v,integ_v,psd_d,integ_d]=integrated_psd(c,t_win,t_ovlp,nyqhp,dts);
[frz_cut,crsp,pwsp,coherz,nsp]=fqresp(c,shock_ch,t_win,t_ovlp,nyqhp,dts);
else
thresh=0.5; % threshold of max value
sep=2.5; % separation minimum of peaks in sec
pre_ev=2; % pre event delay in sec
pos_ev=2; % post event delay in sec
[ti,t_impact]=findpeaks(c(:,shock_ch),'minpeakheight',max(c(:,shock_ch))*thresh,'minpeakdistance',ceil(sep/dts));
% find times at which there are impacts (threshold of max and separated by sep sec)
psd_v=zeros((pre_ev+pos_ev)/dts/nyqhp,nbch);
psd_d=zeros((pre_ev+pos_ev)/dts/nyqhp,nbch);
frz_cut=zeros((pre_ev+pos_ev)/dts/nyqhp,nbch);
for k=1:length(t_impact)
ibeg=fix(t_impact(k)-(pre_ev/dts));
iend=fix(t_impact(k)+(pos_ev/dts));
freq_s=linspace(0,freq_max,t_win/2*freq_max);
if ibeg>1 && iend<length(c) % eliminate indexes outside data range
[psd,integ_v,psd_int,integ_d]=integrated_psd(c(ibeg:iend,:),t_win,t_ovlp,nyqhp,dts);
psd_v=psd+psd_v;
psd_d=psd_int+psd_d;
[frz,crsp,pwsp,coherz,nsp]=fqresp(c(ibeg:iend,:),shock_ch,t_win,t_ovlp,nyqhp,dts);
frz_cut=frz+frz_cut;
end
end
psd_v=psd_v/length(t_impact);
psd_d=psd_d/length(t_impact);
frz_cut=frz_cut/length(t_impact);
end
drms=max(integ_d); % compute rms level
dc=hpfint(c,f_cut,dts); % filter and integrate in time domain
dppc=hpdpp(dc,t_win,t_ovlp,1,dts); % compute peak to peak level
%% transfer function, cross spectrum, power spectr. and coherence w.r.t. ch1
eval(['c',num2str(i),'=c;'])
eval(['dc',num2str(i),'=dc;'])
eval(['dppc',num2str(i),'=dppc;'])
eval(['drms',num2str(i),'=drms;'])
eval(['psd_v',num2str(i),'=psd_v;']) % already integrated in OROS
eval(['psd_d',num2str(i),'=psd_d;'])
eval(['integ_v',num2str(i),'=integ_v;'])
eval(['integ_d',num2str(i),'=integ_d;'])
eval(['frz',num2str(i),'=frz_cut;'])
% eval(['frh',num2str(i),'=frh_cut;'])
% eval(['frx',num2str(i),'=frx;'])
eval(['coherz',num2str(i),'=coherz;'])
eval(['time',num2str(i),'=time;'])
clear data c dc psd psd_v psd_d time c_shut % clean up the mess
end