nass-micro-station-measurem.../huddle-test-geophones/index.org

309 lines
9.2 KiB
Org Mode
Raw Normal View History

2019-04-17 17:58:41 +02:00
#+TITLE:SpeedGoat
:DRAWER:
#+STARTUP: overview
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="../css/htmlize.css"/>
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="../css/readtheorg.css"/>
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="../css/zenburn.css"/>
#+HTML_HEAD: <script type="text/javascript" src="../js/jquery.min.js"></script>
#+HTML_HEAD: <script type="text/javascript" src="../js/bootstrap.min.js"></script>
#+HTML_HEAD: <script type="text/javascript" src="../js/jquery.stickytableheaders.min.js"></script>
#+HTML_HEAD: <script type="text/javascript" src="../js/readtheorg.js"></script>
2019-04-17 17:58:41 +02:00
#+PROPERTY: header-args:matlab :session *MATLAB*
#+PROPERTY: header-args:matlab+ :comments org
#+PROPERTY: header-args:matlab+ :results output
2019-04-17 17:58:41 +02:00
#+PROPERTY: header-args:matlab+ :exports both
#+PROPERTY: header-args:matlab+ :eval no-export
#+PROPERTY: header-args:matlab+ :output-dir figs
:END:
* Setup
Two L22 geophones are used.
They are placed on the ID31 granite.
They are leveled.
The signals are amplified using voltage amplifier with a gain of 60dB.
The voltage amplifiers include a low pass filter with a cut-off frequency at 1kHz.
#+name: fig:figure_name
#+caption: Setup
#+attr_html: :width 500px
[[file:./figs/setup.jpg]]
#+name: fig:figure_name
#+caption: Geophones
#+attr_html: :width 500px
[[file:./figs/geophones.jpg]]
* Signal Processing
** Matlab Init :noexport:ignore:
2019-04-17 17:58:41 +02:00
#+begin_src matlab :exports none :results silent :noweb yes
<<matlab-init>>
#+end_src
** Load data
2019-04-17 17:58:41 +02:00
#+begin_src matlab :results none
load('mat/data_001.mat', 't', 'x1', 'x2');
dt = t(2) - t(1);
#+end_src
** Time Domain Data
2019-04-17 17:58:41 +02:00
#+begin_src matlab :results none
figure;
hold on;
plot(t, x1);
plot(t, x2);
hold off;
xlabel('Time [s]');
ylabel('Voltage [V]');
xlim([t(1), t(end)]);
#+end_src
#+NAME: fig:data_time_domain
#+HEADER: :tangle no :exports results :results value raw replace :noweb yes
#+begin_src matlab :var filepath="figs/data_time_domain.pdf" :var figsize="wide-normal" :post pdf2svg(file=*this*, ext="png")
<<plt-matlab>>
#+end_src
#+NAME: fig:data_time_domain
#+CAPTION: Time domain Data
#+RESULTS: fig:data_time_domain
[[file:figs/data_time_domain.png]]
#+begin_src matlab :results none
figure;
hold on;
plot(t, x1);
plot(t, x2);
hold off;
xlabel('Time [s]');
ylabel('Voltage [V]');
xlim([0 1]);
#+end_src
#+NAME: fig:data_time_domain_zoom
#+HEADER: :tangle no :exports results :results value raw replace :noweb yes
#+begin_src matlab :var filepath="figs/data_time_domain_zoom.pdf" :var figsize="wide-normal" :post pdf2svg(file=*this*, ext="png")
<<plt-matlab>>
#+end_src
#+NAME: fig:data_time_domain_zoom
#+CAPTION: Time domain Data - Zoom
#+RESULTS: fig:data_time_domain_zoom
[[file:figs/data_time_domain_zoom.png]]
** Compute PSD
2019-04-18 13:42:57 +02:00
We first define the parameters for the frequency domain analysis.
2019-04-17 17:58:41 +02:00
#+begin_src matlab :results none
2019-04-18 13:42:57 +02:00
win = hanning(ceil(length(x1)/100));
Fs = 1/dt;
#+end_src
#+begin_src matlab :results none
[pxx1, f] = pwelch(x1, win, [], [], Fs);
[pxx2, ~] = pwelch(x2, win, [], [], Fs);
2019-04-17 17:58:41 +02:00
#+end_src
** Take into account sensibility of Geophone
2019-04-17 17:58:41 +02:00
The Geophone used are L22.
#+begin_src matlab :results none
S0 = 88; % Sensitivity [V/(m/s)]
f0 = 2; % Cut-off frequnecy [Hz]
S = (s/2/pi/f0)/(1+s/2/pi/f0);
#+end_src
#+begin_src matlab :results none
figure;
bodeFig({S});
ylabel('Amplitude [V/(m/s)]')
#+end_src
#+NAME: fig:geophone_sensibility
#+HEADER: :tangle no :exports results :results value raw replace :noweb yes
#+begin_src matlab :var filepath="figs/geophone_sensibility.pdf" :var figsize="wide-normal" :post pdf2svg(file=*this*, ext="png")
<<plt-matlab>>
#+end_src
#+NAME: fig:geophone_sensibility
#+CAPTION: Sensibility of the Geophone
#+RESULTS: fig:geophone_sensibility
[[file:figs/geophone_sensibility.png]]
We take into account the gain of the electronics.
The cut-off frequency is set at 1kHz.
- [ ] Check what is the order of the filter
- [ ] Maybe I should not use this filter as there is no high frequencies anyway?
#+begin_src matlab :results none
G0 = 60; % [dB]
G = G0/(1+s/2/pi/1000);
#+end_src
#+begin_src matlab :results none
figure;
hold on;
2019-04-18 13:42:57 +02:00
plot(f, sqrt(pxx1)./squeeze(abs(freqresp(G, f, 'Hz')))./squeeze(abs(freqresp(S, f1, 'Hz'))));
plot(f, sqrt(pxx2)./squeeze(abs(freqresp(G, f, 'Hz')))./squeeze(abs(freqresp(S, f2, 'Hz'))));
2019-04-17 17:58:41 +02:00
hold off;
set(gca, 'xscale', 'log');
set(gca, 'yscale', 'log');
xlabel('Frequency [Hz]'); ylabel('PSD [m/s/sqrt(Hz)]')
xlim([2, 500]);
2019-04-17 17:58:41 +02:00
#+end_src
#+NAME: fig:psd_velocity
#+HEADER: :tangle no :exports results :results value raw replace :noweb yes
#+begin_src matlab :var filepath="figs/psd_velocity.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
<<plt-matlab>>
#+end_src
#+NAME: fig:psd_velocity
#+CAPTION: Spectral density of the velocity
#+RESULTS: fig:psd_velocity
[[file:figs/psd_velocity.png]]
2019-04-18 13:42:57 +02:00
** Transfer function between the two geophones
#+begin_src matlab :results none
2019-04-18 13:42:57 +02:00
[T12, ~] = tfestimate(x1, x2, win, [], [], Fs);
#+end_src
#+begin_src matlab :results none
figure;
ax1 = subplot(2, 1, 1);
2019-04-18 13:42:57 +02:00
plot(f, abs(T12));
set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log');
set(gca, 'XTickLabel',[]);
ylabel('Magnitude');
ax2 = subplot(2, 1, 2);
2019-04-18 13:42:57 +02:00
plot(f, mod(180+180/pi*phase(T12), 360)-180);
set(gca, 'xscale', 'log');
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
xlabel('Frequency [Hz]'); ylabel('Phase');
linkaxes([ax1,ax2],'x');
2019-04-18 09:37:33 +02:00
xlim([1, 500]);
#+end_src
#+NAME: fig:tf_geophones
#+HEADER: :tangle no :exports results :results value raw replace :noweb yes
#+begin_src matlab :var filepath="figs/tf_geophones.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
<<plt-matlab>>
#+end_src
#+NAME: fig:tf_geophones
#+CAPTION: Estimated transfer function between the two geophones
#+RESULTS: fig:tf_geophones
[[file:figs/tf_geophones.png]]
2019-04-18 13:42:57 +02:00
#+begin_src matlab :results none
[coh12, ~] = mscohere(x1, x2, win, [], [], Fs);
#+end_src
#+begin_src matlab :results none
figure;
plot(f, coh12);
set(gca, 'xscale', 'log');
xlabel('Frequency [Hz]'); ylabel('Coherence');
ylim([0,1]); xlim([1, 500]);
#+end_src
#+NAME: fig:coh_geophones
#+HEADER: :tangle no :exports results :results value raw replace :noweb yes
#+begin_src matlab :var filepath="figs/coh_geophones.pdf" :var figsize="wide-normal" :post pdf2svg(file=*this*, ext="png")
<<plt-matlab>>
#+end_src
#+NAME: fig:coh_geophones
#+CAPTION: Cohererence between the signals of the two geophones
#+RESULTS: fig:coh_geophones
[[file:figs/coh_geophones.png]]
** Huddle Test
#+NAME: fig:huddle_test
#+HEADER: :headers '("\\usepackage{tikz}" "\\usepackage{import}" "\\import{$HOME/MEGA/These/LaTeX/}{config.tex}")
#+HEADER: :imagemagick t :fit yes :iminoptions -scale 100% -density 150 :imoutoptions -quality 100
#+HEADER: :results raw replace :buffer no :eval no-export :exports both :mkdirp yes
#+HEADER: :output-dir figs
#+begin_src latex :file huddle-test.pdf :post pdf2svg(file=*this*, ext="png") :exports results
\begin{tikzpicture}
\coordinate[] (U) at (0, 0) {};
\node[block, above right=0.5 and 2 of U] (S1) {$S_1$};
\node[block, below right=0.5 and 2 of U] (S2) {$S_2$};
\node[addb={+}{}{}{}{}, right=0.5 of S1] (add1) {};
\node[addb={+}{}{}{}{}, right=0.5 of S2] (add2) {};
\draw[] (U) node[above right]{$U$} -- ++(1, 0) node[]{$\bullet$};
\draw[->] ($(U)+(1, 0)$) |- (S1.west);
\draw[->] ($(U)+(1, 0)$) |- (S2.west);
\draw[->] (S1.east) -- (add1.west);
\draw[->] (S2.east) -- (add2.west);
\draw[->] (add1.east) -- ++(1, 0) node[above]{$X_1$};
\draw[->] (add2.east) -- ++(1, 0) node[above]{$X_2$};
\draw[<-] (add1.north) -- ++(0, 0.8)node[right]{$N_1$};
\draw[<-] (add2.north) -- ++(0, 0.8)node[right]{$N_2$};
\end{tikzpicture}
#+end_src
#+NAME: fig:huddle_test
#+CAPTION: Huddle test block diagram
#+RESULTS: fig:huddle_test
[[file:figs/huddle-test.png]]
We are measuring $X_1$ and $X_2$.
The goal is to determine $N$.
\begin{align*}
X_1(\omega) &= S_1(\omega) U(\omega) + N_1(\omega)\\
X_2(\omega) &= S_2(\omega) U(\omega) + N_2(\omega)
\end{align*}
Then
\[ X_2(\omega) = \frac{S_2(\omega)}{S_1(\omega)} X_1(\omega) + N_2(\omega) - \frac{S_2(\omega)}{S_1(\omega)}N_1(\omega) \]
We suppose $N_1 = N_2 = N$
\[ N_2(\omega) - \frac{S_2(\omega)}{S_1(\omega)}N_1(\omega) = \left( 1 - \frac{S_2(\omega)}{S_1(\omega)}\right) N(\omega) \]
and
\[ N(\omega) = \frac{S_2(\omega)}{S_1(\omega)} X_2(\omega) - N_2(\omega) - \frac{S_2(\omega)}{S_1(\omega)}N_1(\omega) \]
#+begin_src matlab :results none
S = abs(T12.*pxx1);
N = pxx2 - (T12.^2).*pxx1;
N = abs(N)/2;
#+end_src
#+begin_src matlab :results none
figure;
hold on;
plot(f, pxx1, '-');
plot(f, pxx2, '-');
plot(f, N, 'k:', 'linewidth', 1);
hold off;
set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log');
xlim([1, 500]);
legend('$\Phi_{ss} (f)$','$\Phi_{nn} (f)$')
#+end_src
#+NAME: fig:huddle_test_results
#+HEADER: :tangle no :exports results :results value raw replace :noweb yes
#+begin_src matlab :var filepath="figs/huddle_test_results.pdf" :var figsize="wide-tall" :post pdf2svg(file=*this*, ext="png")
<<plt-matlab>>
#+end_src
#+NAME: fig:huddle_test_results
#+CAPTION: Results of the Huddle test
#+RESULTS: fig:huddle_test_results
[[file:figs/huddle_test_results.png]]