142 lines
3.0 KiB
Mathematica
142 lines
3.0 KiB
Mathematica
|
%% Clear Workspace and Close figures
|
||
|
clear; close all; clc;
|
||
|
|
||
|
%% Intialize Laplace variable
|
||
|
s = zpk('s');
|
||
|
|
||
|
% Load Plant
|
||
|
|
||
|
load('mat/plant.mat', 'Gi', 'Zc', 'Ga', 'Gc', 'Gn', 'Gd');
|
||
|
|
||
|
% Test
|
||
|
|
||
|
bodeFig({Ga*Zc*Gi}, struct('phase', true));
|
||
|
|
||
|
% TODO Huddle Test
|
||
|
% We load the data taken during the Huddle Test.
|
||
|
|
||
|
load('mat/data_huddle_test.mat', ...
|
||
|
't', 'Uch', 'Ucv', ...
|
||
|
'Unh', 'Unv', ...
|
||
|
'Vph', 'Vpv', ...
|
||
|
'Vch', 'Vcv', ...
|
||
|
'Vnh', 'Vnv', ...
|
||
|
'Va');
|
||
|
|
||
|
|
||
|
|
||
|
% We remove the first second of data where everything is settling down.
|
||
|
|
||
|
t0 = 1;
|
||
|
|
||
|
Uch(t<t0) = [];
|
||
|
Ucv(t<t0) = [];
|
||
|
Unh(t<t0) = [];
|
||
|
Unv(t<t0) = [];
|
||
|
Vph(t<t0) = [];
|
||
|
Vpv(t<t0) = [];
|
||
|
Vch(t<t0) = [];
|
||
|
Vcv(t<t0) = [];
|
||
|
Vnh(t<t0) = [];
|
||
|
Vnv(t<t0) = [];
|
||
|
Va(t<t0) = [];
|
||
|
t(t<t0) = [];
|
||
|
|
||
|
t = t - t(1); % We start at t=0
|
||
|
|
||
|
figure;
|
||
|
hold on;
|
||
|
plot(t, Vph, 'DisplayName', '$Vp_h$');
|
||
|
plot(t, Vpv, 'DisplayName', '$Vp_v$');
|
||
|
hold off;
|
||
|
xlabel('Time [s]');
|
||
|
ylabel('Amplitude [V]');
|
||
|
xlim([t(1), t(end)]);
|
||
|
legend();
|
||
|
|
||
|
|
||
|
|
||
|
% We compute the Power Spectral Density of the horizontal and vertical positions of the beam as measured by the 4 quadrant diode.
|
||
|
|
||
|
[psd_Vph, f] = pwelch(Vph, hanning(ceil(1*fs)), [], [], fs);
|
||
|
[psd_Vpv, ~] = pwelch(Vpv, hanning(ceil(1*fs)), [], [], fs);
|
||
|
|
||
|
figure;
|
||
|
hold on;
|
||
|
plot(f, sqrt(psd_Vph), 'DisplayName', '$\Gamma_{Vp_h}$');
|
||
|
plot(f, sqrt(psd_Vpv), 'DisplayName', '$\Gamma_{Vp_v}$');
|
||
|
hold off;
|
||
|
set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log');
|
||
|
xlabel('Frequency [Hz]'); ylabel('ASD $\left[\frac{V}{\sqrt{Hz}}\right]$')
|
||
|
legend('Location', 'southwest');
|
||
|
xlim([1, 1000]);
|
||
|
|
||
|
figure;
|
||
|
hold on;
|
||
|
plot(t, Vch, 'DisplayName', '$Vc_h$');
|
||
|
plot(t, Vcv, 'DisplayName', '$Vc_v$');
|
||
|
hold off;
|
||
|
xlabel('Time [s]');
|
||
|
ylabel('Amplitude [V]');
|
||
|
xlim([t(1), t(end)]);
|
||
|
legend();
|
||
|
|
||
|
|
||
|
|
||
|
% We compute the Power Spectral Density of the voltage across the inductance used for horizontal and vertical positioning of the Cercalo.
|
||
|
|
||
|
[psd_Vch, f] = pwelch(Vch, hanning(ceil(1*fs)), [], [], fs);
|
||
|
[psd_Vcv, ~] = pwelch(Vcv, hanning(ceil(1*fs)), [], [], fs);
|
||
|
|
||
|
figure;
|
||
|
hold on;
|
||
|
plot(f, sqrt(psd_Vch), 'DisplayName', '$\Gamma_{Vc_h}$');
|
||
|
plot(f, sqrt(psd_Vcv), 'DisplayName', '$\Gamma_{Vc_v}$');
|
||
|
hold off;
|
||
|
set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log');
|
||
|
xlabel('Frequency [Hz]'); ylabel('ASD $\left[\frac{V}{\sqrt{Hz}}\right]$')
|
||
|
legend('Location', 'southwest');
|
||
|
xlim([1, 1000]);
|
||
|
|
||
|
%% Clear Workspace and Close figures
|
||
|
clear; close all; clc;
|
||
|
|
||
|
%% Intialize Laplace variable
|
||
|
s = zpk('s');
|
||
|
|
||
|
% Load Plant
|
||
|
|
||
|
load('mat/plant.mat', 'G');
|
||
|
|
||
|
% RGA-Number
|
||
|
|
||
|
freqs = logspace(2, 4, 1000);
|
||
|
G_resp = freqresp(G, freqs, 'Hz');
|
||
|
A = zeros(size(G_resp));
|
||
|
RGAnum = zeros(1, length(freqs));
|
||
|
|
||
|
for i = 1:length(freqs)
|
||
|
A(:, :, i) = G_resp(:, :, i).*inv(G_resp(:, :, i))';
|
||
|
RGAnum(i) = sum(sum(abs(A(:, :, i)-eye(2))));
|
||
|
end
|
||
|
% RGA = G0.*inv(G0)';
|
||
|
|
||
|
figure;
|
||
|
plot(freqs, RGAnum);
|
||
|
set(gca, 'xscale', 'log');
|
||
|
|
||
|
U = zeros(2, 2, length(freqs));
|
||
|
S = zeros(2, 2, length(freqs))
|
||
|
V = zeros(2, 2, length(freqs));
|
||
|
|
||
|
for i = 1:length(freqs)
|
||
|
[Ui, Si, Vi] = svd(G_resp(:, :, i));
|
||
|
U(:, :, i) = Ui;
|
||
|
S(:, :, i) = Si;
|
||
|
V(:, :, i) = Vi;
|
||
|
end
|
||
|
|
||
|
% Rotation Matrix
|
||
|
|
||
|
G0 = freqresp(G, 0);
|