add all files

This commit is contained in:
2025-04-14 18:38:19 +02:00
parent 3cc2105324
commit 37cd117a8f
859 changed files with 5418446 additions and 0 deletions

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

View File

@@ -0,0 +1,40 @@
%% Clear Workspace and Close figures
clear; close all; clc;
%% Intialize Laplace variable
s = zpk('s');
%% Path for functions, data and scripts
addpath('./mat/'); % Path for data
%% Colors for the figures
colors = colororder;
%% Measured gap for the 16 flexible joints
meas_flex = [[223, 226, 224, 214];
[229, 231, 237, 224];
[234, 230, 239, 231];
[233, 227, 229, 232];
[225, 212, 228, 228];
[220, 221, 224, 220];
[206, 207, 228, 226];
[230, 224, 224, 223];
[223, 231, 228, 233];
[228, 230, 235, 231];
[197, 207, 211, 204];
[227, 226, 225, 226];
[215, 228, 231, 220];
[216, 224, 224, 221];
[209, 214, 220, 221];
[213, 210, 230, 229]];
%% Histogram of the measured gap
figure;
hold on;
histogram([(meas_flex(:,1)+meas_flex(:,2))/2,(meas_flex(:,3)+meas_flex(:,4))/2], 7)
hold off;
xlabel("Measured beam thickness [$\mu m$]");
xticks([200, 205, 210, 215, 220, 225, 230, 235])
%% Save beam sizes
save('./mat/flex_meas_dim.mat', 'meas_flex');

View File

@@ -0,0 +1,50 @@
%% Clear Workspace and Close figures
clear; close all; clc;
%% Intialize Laplace variable
s = zpk('s');
%% Path for functions, data and scripts
addpath('./mat/'); % Path for data
%% Colors for the figures
colors = colororder;
%% Parameters for study
kRx = 5; % Bending Stiffness [Nm/rad]
Rxmax = 25e-3; % Bending Stroke [rad]
h = 22.5e-3; % Height [m]
%% Estimation of the force to test the full stroke
Fxmax = kRx*Rxmax/h; % Force to induce maximum stroke [N]
%% Estimated maximum stroke [m]
dxmax = h*tan(Rxmax);
%% Stiffness
ka = 94e6; % Axial Stiffness [N/m]
ks = 13e6; % Shear Stiffness [N/m]
kb = 5; % Bending Stiffness [Nm/rad]
kt = 260; % Torsional Stiffness [Nm/rad]
%% Maximum force
Fa = 469; % Axial Force before yield [N]
Fs = 242; % Shear Force before yield [N]
Fb = 0.118; % Bending Force before yield [Nm]
Ft = 1.508; % Torsional Force before yield [Nm]
%% Compute the corresponding stroke
Xa = Fa/ka; % Axial Stroke before yield [m]
Xs = Fs/ks; % Shear Stroke before yield [m]
Xb = Fb/kb; % Bending Stroke before yield [rad]
Xt = Ft/kt; % Torsional Stroke before yield [rad]
%% Height between the joint's center and the force application point
h = 22.5e-3; % [m]
%% Estimated error due to shear
epsilon_s = 100*abs(1-1/(1 + kb/(ks*h^2))); % Error in %
%% Estimated error due to limited load cell stiffness
kF = 50/0.05e-3; % Estimated load cell stiffness [N/m]
epsilon_f = 100*abs(1-1/(1 + kb/(kF*h^2))); % Error in %

View File

@@ -0,0 +1,309 @@
%% Clear Workspace and Close figures
clear; close all; clc;
%% Intialize Laplace variable
s = zpk('s');
%% Path for functions, data and scripts
addpath('./mat/'); % Path for data
%% Colors for the figures
colors = colororder;
%% Force Sensor Calibration
% Load measurement data
load('calibration_force_sensor.mat', 't', 'F', 'Fc')
% Remove any offset such that they are both measuring no force when not in contact.
F = F - mean(F( t > 0.5 & t < 1.0)); % FC2231 [N]
Fc = Fc - mean(Fc(t > 0.5 & t < 1.0)); % XFL212R [N]
% Only get useful stroke
F = F( t > 2 & t < 2.2);
Fc = Fc(t > 2 & t < 2.2);
t = t( t > 2 & t < 2.2);
% Make a line fit
fit_F = polyfit(Fc, F, 1);
% Estimate the gain mismatch
F_gain_mismatch = 100*(1 - fit_F(1)); % in %
% Estimate non-linearity of the sensors
F_non_linearity = 100*(F - (Fc*fit_F(1) + fit_F(2)))./Fc; % in %
%% Measured two forces and linear fit
figure;
yyaxis left
hold on;
plot(Fc, F, '.', 'DisplayName', 'Raw Data');
plot([0, 6], [0,6]*fit_F(1) + fit_F(2), '-', 'color', [colors(3,:), 0.5], 'DisplayName', 'Line Fit');
hold off;
xlabel('XFL212R [N]'); ylabel('FC2231 [N]');
xlim([0,6]); ylim([0,6]);
xticks([0:6])
yticks([0:6])
yyaxis right
plot(Fc, movmean(F_non_linearity, 200), '-', 'DisplayName', 'Non linearity');
ylim([-0.15, 0.15]);
ylabel('Non Linearity [$\%$]')
leg = legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 1);
leg.ItemTokenSize(1) = 15;
%% Estimaetd load cell stiffness
% Load measurement data
load('force_sensor_stiffness_meas.mat', 't', 'F', 'd')
% Remove offset
F = F - mean(F(t > 0.5 & t < 1.0));
% Select important part of data
F = F( t > 4.55 & t < 7.24);
d = d( t > 4.55 & t < 7.24); d = d - d(1);
t = t( t > 4.55 & t < 7.24);
% Linear fit
fit_k = polyfit(F(F<10), d(F<10), 1);
%% Displacement as a function of the measured force
figure;
hold on;
plot(F, 1e6*d, 'k-', 'DisplayName', 'Raw Data');
plot(F([1,end]), 1e6*(F([1,end])*fit_k(1) + fit_k(2)), '--', 'DisplayName', sprintf('Fit, $k_F \\approx %.2f N/\\mu m$', 1e-6/fit_k(1)));
hold off;
xlabel('Force [$N$]'); ylabel('Displacement [$\mu m$]');
xlim([0,45]); ylim([0,60]);
legend('location', 'southeast', 'FontSize', 8);
%% Estimate the bending stiffness and stroke from the measurement - First Flexible joint
% Load Measured Data for first flexible joint
load('meas_stiff_flex_1_x.mat', 't', 'F', 'd');
% Start measurement at t = 0.2 s
d = d(t > 0.2);
F = F(t > 0.2);
t = t(t > 0.2); t = t - t(1);
% Zero the force
F = F - mean(F(t < 0.2));
% Find when the force sensor touches the flexible joint
i_l_start = find(F > 0.3, 1, 'first');
% Compute torque and angular displacement
h = 22.5e-3; % Height [m]
Tx = h * F; % Applied torque in [Nm]
thetax = atan2(d - d(i_l_start), h); % Measured angle in [rad]
% Find then the maximum torque is applied
[~, i_s_stop] = max(Tx);
% Linear region stops ~ when 90% of the stroke is reached
i_l_stop = find(thetax > 0.9*thetax(i_s_stop), 1, 'first');
% Mechanical "Stop" region start ~20Nmm before maximum torque is applied
i_s_start = find(Tx > max(Tx)-20e-3, 1, 'first');
% Linear fit in the "linear" region
fit_l = polyfit(Tx(i_l_start:i_l_stop), thetax(i_l_start:i_l_stop), 1);
% Linear fit in the "mechanical stop" region
fit_s = polyfit(Tx(i_s_start:i_s_stop), thetax(i_s_start:i_s_stop), 1);
% Reset displacement more precisely based on fit
thetax = thetax - fit_l(2);
fit_s(2) = fit_s(2) - fit_l(2);
fit_l(2) = 0;
%% Estimation of the bending stiffness
kRx_l = 1/fit_l(1); % Bending Stiffness [Nm/rad]
kRx_s = 1/fit_s(1); % Mechanical "Stop" Stiffness [Nm/rad]
%% Estimation of the bending stroke
% This is done by finding the intersection of the two linear fits
theta_max = fit_l(1)*fit_s(2)/(fit_l(1) - fit_s(1)); % Maximum angular stroke [rad]
Tx_at_theta_max = (fit_s(2) - fit_l(2))/(fit_l(1) - fit_s(1));
%% Measured force and displacement as a function of time
figure;
yyaxis left
hold on;
plot(t, F);
plot(0.8*cos(0:0.01:2*pi)+0.8, ...
2.8*sin(0:0.01:2*pi)-1, 'k--', 'HandleVisibility', 'off');
text(1.8, -1.2, sprintf('Not in\ncontact'), 'horizontalalignment', 'left');
plot(0.4*cos(0:0.01:2*pi)+3, ...
1.1*sin(0:0.01:2*pi)+4.8, 'k--');
text(3.5, 4.8, sprintf('Mechanical\nStop'), 'horizontalalignment', 'left');
hold off;
ylabel('Force $F_y$ [N]');
ylim([-4, 6])
ylimr = get(gca,'Ylim');
yyaxis right
plot(t, 1e3*d);
xlabel('Time [s]');
ylabel('Displacement $d_y$ [mm]');
xlim([0,5]);
% Make the force and displacement superimpose
ylim([0.364 - 4*(0.8315-0.364)/4.095, 0.364 + 6*(0.8315-0.364)/4.095])
% Regions where to plot the fitted data
Tx_l_fit = [0, Tx_at_theta_max];
Tx_s_fit = [Tx_at_theta_max, Tx(i_s_stop)];
figure;
hold on;
plot(Tx(1:i_s_stop), 1e3*thetax(1:i_s_stop), '-k', 'DisplayName', 'Raw data')
plot(Tx_l_fit, 1e3*(Tx_l_fit*fit_l(1) + fit_l(2)), '--', 'DisplayName', sprintf('$k_{R_x} = %.1f$ Nm/rad', kRx_l))
plot(Tx_s_fit, 1e3*(Tx_s_fit*fit_s(1) + fit_s(2)), '--', 'DisplayName', sprintf('$k_{R_x,stop} = %.0f$ Nm/rad', kRx_s))
plot([0, Tx_at_theta_max], [1e3*theta_max, 1e3*theta_max], 'k--', 'HandleVisibility', 'off')
plot([0, Tx_at_theta_max], [0, 0], 'k--', 'HandleVisibility', 'off')
anArrow = annotation('doublearrow', 'LineWidth', 0.5);
anArrow.Parent = gca;
anArrow.Position = [0.05, 0, 0, 1e3*fit_l(1)*fit_s(2)/(fit_l(1) - fit_s(1))];
text(0.052, 0.4*1e3*fit_l(1)*fit_s(2)/(fit_l(1) - fit_s(1)), sprintf('$\\theta_{x,\\max} = %.1f$ mrad', 1e3*theta_max), 'horizontalalignment', 'left');
hold off;
xlabel('Torque $T_x$ [Nm]');
ylabel('Angle $\theta_x$ [mrad]');
xlim([0, 0.15]);
ylim([-5,25]);
leg = legend('location', 'southeast', 'FontSize', 8);
leg.ItemTokenSize(1) = 15;
%% Measure the bending stiffness and Stroke for all the flexible joints
figure;
hold on;
%% Start with the X-bending
% Initialize variables
Rx = zeros(1,16); % Bending stiffnesses [Nm/rad]
kSx = zeros(1,16); % Bending stiffnesses at "stop" [Nm/rad]
Rmx = zeros(1,16); % Bending stroke [rad]
for i = 1:16
% Load the data
load(sprintf('meas_stiff_flex_%i_x.mat', i), 't', 'F', 'd');
% Start measurement at t = 0.2 s
d = d(t > 0.2);
F = F(t > 0.2);
t = t(t > 0.2); t = t - t(1);
% Zero the force
F = F - mean(F(t < 0.2));
% Find when the force sensor touches the flexible joint
i_l_start = find(F > 0.3, 1, 'first');
% Zero the displacement when it comes in contact
d = d - d(i_l_start);
% Compute torque and angular displacement
h = 22.5e-3; % Height [m]
Tx = h * F; % Applied torque in [Nm]
thetax = atan2(d, h); % Measured angle in [rad]
% Find then the maximum torque is applied
[~, i_s_stop] = max(Tx);
% Linear region stops ~ when 90% of the stroke is reached
i_l_stop = find(thetax > 0.9*thetax(i_s_stop), 1, 'first');
% Mechanical "Stop" region start ~20Nmm before maximum torque is applied
i_s_start = find(Tx > max(Tx)-20e-3, 1, 'first');
% Linear fit in the "linear" region
fit_l = polyfit(Tx(i_l_start:i_l_stop), thetax(i_l_start:i_l_stop), 1);
% Linear fit in the "mechanical stop" region
fit_s = polyfit(Tx(i_s_start:i_s_stop), thetax(i_s_start:i_s_stop), 1);
% Reset displacement more precisely based on fit
thetax = thetax - fit_l(2);
fit_s(2) = fit_s(2) - fit_l(2);
fit_l(2) = 0;
% Estimation of the bending stiffness and bending stroke
kRx(i) = 1/fit_l(1); % Bending Stiffness [Nm/rad]
kSx(i) = 1/fit_s(1); % Mechanical "Stop" Stiffness [Nm/rad]
Rmx(i) = fit_l(1)*fit_s(2)/(fit_l(1) - fit_s(1)); % Maximum angular stroke [rad]
if i == 1
plot(Tx(1:10:i_s_stop), 1e3*thetax(1:10:i_s_stop), '-', 'color', [colors(1,:), 0.4], ...
'DisplayName', '$k_{R_x}$')
else
plot(Tx(1:10:i_s_stop), 1e3*thetax(1:10:i_s_stop), '-', 'color', [colors(1,:), 0.4], ...
'HandleVisibility', 'off')
end
end
%% Continue with the Y-bending
% Initialize variables
kRy = zeros(1,16); % Bending stiffnesses [Nm/rad]
kSy = zeros(1,16); % Bending stiffnesses at "stop" [Nm/rad]
Rmy = zeros(1,16); % Bending stroke [rad]
for i = 1:16
% Load the data
load(sprintf('meas_stiff_flex_%i_y.mat', i), 't', 'F', 'd');
% Start measurement at t = 0.2 s
d = d(t > 0.2);
F = F(t > 0.2);
t = t(t > 0.2); t = t - t(1);
% Zero the force
F = F - mean(F(t < 0.2));
% Find when the force sensor touches the flexible joint
i_l_start = find(F > 0.3, 1, 'first');
% Zero the displacement when it comes in contact
d = d - d(i_l_start);
% Compute torque and angular displacement
h = 22.5e-3; % Height [m]
Ty = h * F; % Applied torque in [Nm]
thetay = atan2(d, h); % Measured angle in [rad]
% Find then the maximum torque is applied
[~, i_s_stop] = max(Ty);
% Linear region stops ~ when 90% of the stroke is reached
i_l_stop = find(thetay > 0.9*thetay(i_s_stop), 1, 'first');
% Mechanical "Stop" region start ~20Nmm before maximum torque is applied
i_s_start = find(Ty > max(Ty)-20e-3, 1, 'first');
% Linear fit in the "linear" region
fit_l = polyfit(Ty(i_l_start:i_l_stop), thetay(i_l_start:i_l_stop), 1);
% Linear fit in the "mechanical stop" region
fit_s = polyfit(Ty(i_s_start:i_s_stop), thetay(i_s_start:i_s_stop), 1);
% Reset displacement more precisely based on fit
thetay = thetay - fit_l(2);
fit_s(2) = fit_s(2) - fit_l(2);
fit_l(2) = 0;
% Estimation of the bending stiffness and bending stroke
kRy(i) = 1/fit_l(1); % Bending Stiffness [Nm/rad]
kSy(i) = 1/fit_s(1); % Mechanical "Stop" Stiffness [Nm/rad]
Rmy(i) = fit_l(1)*fit_s(2)/(fit_l(1) - fit_s(1)); % Maximum angular stroke [rad]
if i == 1
plot(Ty(1:10:i_s_stop), 1e3*thetay(1:10:i_s_stop), '-', 'color', [colors(2,:), 0.4], ...
'DisplayName', '$k_{R_y}$')
else
plot(Ty(1:10:i_s_stop), 1e3*thetay(1:10:i_s_stop), '-', 'color', [colors(2,:), 0.4], ...
'HandleVisibility', 'off')
end
end
xlabel('Torque $T$ [Nm]');
ylabel('Angle $\theta$ [mrad]');
xlim([0, 0.15]);
ylim([-5,25]);
legend('location', 'southeast', 'FontSize', 8);
figure;
histogram([kRx, kRy], [4:0.2:5])
xlabel('Bending stiffness [Nm/rad]')
xticks([4:0.2:5])