add all files
This commit is contained in:
49610
A4-simscape-micro-station/STEPS/Spindle_Rotor.STEP
Normal file
49610
A4-simscape-micro-station/STEPS/Spindle_Rotor.STEP
Normal file
File diff suppressed because it is too large
Load Diff
251845
A4-simscape-micro-station/STEPS/Spindle_Slip_Ring.STEP
Normal file
251845
A4-simscape-micro-station/STEPS/Spindle_Slip_Ring.STEP
Normal file
File diff suppressed because it is too large
Load Diff
199006
A4-simscape-micro-station/STEPS/Spindle_Stator.STEP
Normal file
199006
A4-simscape-micro-station/STEPS/Spindle_Stator.STEP
Normal file
File diff suppressed because one or more lines are too long
12306
A4-simscape-micro-station/STEPS/Tilt_Guide.STEP
Normal file
12306
A4-simscape-micro-station/STEPS/Tilt_Guide.STEP
Normal file
File diff suppressed because it is too large
Load Diff
39764
A4-simscape-micro-station/STEPS/Tilt_Motor.STEP
Normal file
39764
A4-simscape-micro-station/STEPS/Tilt_Motor.STEP
Normal file
File diff suppressed because it is too large
Load Diff
16167
A4-simscape-micro-station/STEPS/Tilt_Motor_Axis.STEP
Normal file
16167
A4-simscape-micro-station/STEPS/Tilt_Motor_Axis.STEP
Normal file
File diff suppressed because it is too large
Load Diff
79980
A4-simscape-micro-station/STEPS/Tilt_Stage.STEP
Normal file
79980
A4-simscape-micro-station/STEPS/Tilt_Stage.STEP
Normal file
File diff suppressed because it is too large
Load Diff
11982
A4-simscape-micro-station/STEPS/Ty_Granite_Frame.STEP
Normal file
11982
A4-simscape-micro-station/STEPS/Ty_Granite_Frame.STEP
Normal file
File diff suppressed because it is too large
Load Diff
36208
A4-simscape-micro-station/STEPS/Ty_Guide.STEP
Normal file
36208
A4-simscape-micro-station/STEPS/Ty_Guide.STEP
Normal file
File diff suppressed because it is too large
Load Diff
10326
A4-simscape-micro-station/STEPS/Ty_Guide_11.STEP
Normal file
10326
A4-simscape-micro-station/STEPS/Ty_Guide_11.STEP
Normal file
File diff suppressed because it is too large
Load Diff
17057
A4-simscape-micro-station/STEPS/Ty_Guide_12.STEP
Normal file
17057
A4-simscape-micro-station/STEPS/Ty_Guide_12.STEP
Normal file
File diff suppressed because it is too large
Load Diff
10326
A4-simscape-micro-station/STEPS/Ty_Guide_21.STEP
Normal file
10326
A4-simscape-micro-station/STEPS/Ty_Guide_21.STEP
Normal file
File diff suppressed because it is too large
Load Diff
17057
A4-simscape-micro-station/STEPS/Ty_Guide_22.STEP
Normal file
17057
A4-simscape-micro-station/STEPS/Ty_Guide_22.STEP
Normal file
File diff suppressed because it is too large
Load Diff
30385
A4-simscape-micro-station/STEPS/Ty_Motor_Rotor.STEP
Normal file
30385
A4-simscape-micro-station/STEPS/Ty_Motor_Rotor.STEP
Normal file
File diff suppressed because it is too large
Load Diff
31879
A4-simscape-micro-station/STEPS/Ty_Motor_Stator.STEP
Normal file
31879
A4-simscape-micro-station/STEPS/Ty_Motor_Stator.STEP
Normal file
File diff suppressed because it is too large
Load Diff
77974
A4-simscape-micro-station/STEPS/Ty_Stage.STEP
Normal file
77974
A4-simscape-micro-station/STEPS/Ty_Stage.STEP
Normal file
File diff suppressed because it is too large
Load Diff
23602
A4-simscape-micro-station/STEPS/granite.STEP
Normal file
23602
A4-simscape-micro-station/STEPS/granite.STEP
Normal file
File diff suppressed because it is too large
Load Diff
BIN
A4-simscape-micro-station/mat/nass_model_conf_log.mat
(Stored with Git LFS)
Normal file
BIN
A4-simscape-micro-station/mat/nass_model_conf_log.mat
(Stored with Git LFS)
Normal file
Binary file not shown.
BIN
A4-simscape-micro-station/mat/nass_model_conf_simscape.mat
(Stored with Git LFS)
Normal file
BIN
A4-simscape-micro-station/mat/nass_model_conf_simscape.mat
(Stored with Git LFS)
Normal file
Binary file not shown.
BIN
A4-simscape-micro-station/mat/nass_model_conf_simulink.mat
(Stored with Git LFS)
Normal file
BIN
A4-simscape-micro-station/mat/nass_model_conf_simulink.mat
(Stored with Git LFS)
Normal file
Binary file not shown.
BIN
A4-simscape-micro-station/mat/nass_model_disturbances.mat
(Stored with Git LFS)
Normal file
BIN
A4-simscape-micro-station/mat/nass_model_disturbances.mat
(Stored with Git LFS)
Normal file
Binary file not shown.
BIN
A4-simscape-micro-station/mat/nass_model_references.mat
(Stored with Git LFS)
Normal file
BIN
A4-simscape-micro-station/mat/nass_model_references.mat
(Stored with Git LFS)
Normal file
Binary file not shown.
BIN
A4-simscape-micro-station/mat/nass_model_stages.mat
(Stored with Git LFS)
Normal file
BIN
A4-simscape-micro-station/mat/nass_model_stages.mat
(Stored with Git LFS)
Normal file
Binary file not shown.
BIN
A4-simscape-micro-station/mat/ustation_compliance_hammer_1.mat
(Stored with Git LFS)
Normal file
BIN
A4-simscape-micro-station/mat/ustation_compliance_hammer_1.mat
(Stored with Git LFS)
Normal file
Binary file not shown.
BIN
A4-simscape-micro-station/mat/ustation_compliance_hammer_10.mat
(Stored with Git LFS)
Normal file
BIN
A4-simscape-micro-station/mat/ustation_compliance_hammer_10.mat
(Stored with Git LFS)
Normal file
Binary file not shown.
BIN
A4-simscape-micro-station/mat/ustation_compliance_hammer_2.mat
(Stored with Git LFS)
Normal file
BIN
A4-simscape-micro-station/mat/ustation_compliance_hammer_2.mat
(Stored with Git LFS)
Normal file
Binary file not shown.
BIN
A4-simscape-micro-station/mat/ustation_compliance_hammer_3.mat
(Stored with Git LFS)
Normal file
BIN
A4-simscape-micro-station/mat/ustation_compliance_hammer_3.mat
(Stored with Git LFS)
Normal file
Binary file not shown.
BIN
A4-simscape-micro-station/mat/ustation_compliance_hammer_4.mat
(Stored with Git LFS)
Normal file
BIN
A4-simscape-micro-station/mat/ustation_compliance_hammer_4.mat
(Stored with Git LFS)
Normal file
Binary file not shown.
BIN
A4-simscape-micro-station/mat/ustation_compliance_hammer_5.mat
(Stored with Git LFS)
Normal file
BIN
A4-simscape-micro-station/mat/ustation_compliance_hammer_5.mat
(Stored with Git LFS)
Normal file
Binary file not shown.
BIN
A4-simscape-micro-station/mat/ustation_compliance_hammer_6.mat
(Stored with Git LFS)
Normal file
BIN
A4-simscape-micro-station/mat/ustation_compliance_hammer_6.mat
(Stored with Git LFS)
Normal file
Binary file not shown.
BIN
A4-simscape-micro-station/mat/ustation_compliance_hammer_7.mat
(Stored with Git LFS)
Normal file
BIN
A4-simscape-micro-station/mat/ustation_compliance_hammer_7.mat
(Stored with Git LFS)
Normal file
Binary file not shown.
BIN
A4-simscape-micro-station/mat/ustation_compliance_hammer_8.mat
(Stored with Git LFS)
Normal file
BIN
A4-simscape-micro-station/mat/ustation_compliance_hammer_8.mat
(Stored with Git LFS)
Normal file
Binary file not shown.
BIN
A4-simscape-micro-station/mat/ustation_compliance_hammer_9.mat
(Stored with Git LFS)
Normal file
BIN
A4-simscape-micro-station/mat/ustation_compliance_hammer_9.mat
(Stored with Git LFS)
Normal file
Binary file not shown.
BIN
A4-simscape-micro-station/mat/ustation_disturbance_psd.mat
(Stored with Git LFS)
Normal file
BIN
A4-simscape-micro-station/mat/ustation_disturbance_psd.mat
(Stored with Git LFS)
Normal file
Binary file not shown.
BIN
A4-simscape-micro-station/mat/ustation_disturbance_sensitivity.mat
(Stored with Git LFS)
Normal file
BIN
A4-simscape-micro-station/mat/ustation_disturbance_sensitivity.mat
(Stored with Git LFS)
Normal file
Binary file not shown.
BIN
A4-simscape-micro-station/mat/ustation_errors_spindle.mat
(Stored with Git LFS)
Normal file
BIN
A4-simscape-micro-station/mat/ustation_errors_spindle.mat
(Stored with Git LFS)
Normal file
Binary file not shown.
BIN
A4-simscape-micro-station/mat/ustation_errors_ty.mat
(Stored with Git LFS)
Normal file
BIN
A4-simscape-micro-station/mat/ustation_errors_ty.mat
(Stored with Git LFS)
Normal file
Binary file not shown.
BIN
A4-simscape-micro-station/mat/ustation_frf_com.mat
(Stored with Git LFS)
Normal file
BIN
A4-simscape-micro-station/mat/ustation_frf_com.mat
(Stored with Git LFS)
Normal file
Binary file not shown.
BIN
A4-simscape-micro-station/mat/ustation_frf_matrix.mat
(Stored with Git LFS)
Normal file
BIN
A4-simscape-micro-station/mat/ustation_frf_matrix.mat
(Stored with Git LFS)
Normal file
Binary file not shown.
BIN
A4-simscape-micro-station/mat/ustation_ground_motion.mat
(Stored with Git LFS)
Normal file
BIN
A4-simscape-micro-station/mat/ustation_ground_motion.mat
(Stored with Git LFS)
Normal file
Binary file not shown.
21
A4-simscape-micro-station/src/circlefit.m
Normal file
21
A4-simscape-micro-station/src/circlefit.m
Normal file
@@ -0,0 +1,21 @@
|
||||
function [xc,yc,R,a] = circlefit(x,y)
|
||||
%
|
||||
% [xc yx R] = circfit(x,y)
|
||||
%
|
||||
% fits a circle in x,y plane in a more accurate
|
||||
% (less prone to ill condition )
|
||||
% procedure than circfit2 but using more memory
|
||||
% x,y are column vector where (x(i),y(i)) is a measured point
|
||||
%
|
||||
% result is center point (yc,xc) and radius R
|
||||
% an optional output is the vector of coeficient a
|
||||
% describing the circle's equation
|
||||
%
|
||||
% x^2+y^2+a(1)*x+a(2)*y+a(3)=0
|
||||
%
|
||||
% By: Izhak bucher 25/oct /1991,
|
||||
x=x(:); y=y(:);
|
||||
a=[x y ones(size(x))]\[-(x.^2+y.^2)];
|
||||
xc = -.5*a(1);
|
||||
yc = -.5*a(2);
|
||||
R = sqrt((a(1)^2+a(2)^2)/4-a(3));
|
35
A4-simscape-micro-station/src/computeJacobian.m
Normal file
35
A4-simscape-micro-station/src/computeJacobian.m
Normal file
@@ -0,0 +1,35 @@
|
||||
function [stewart] = computeJacobian(stewart)
|
||||
% computeJacobian -
|
||||
%
|
||||
% Syntax: [stewart] = computeJacobian(stewart)
|
||||
%
|
||||
% Inputs:
|
||||
% - stewart - With at least the following fields:
|
||||
% - geometry.As [3x6] - The 6 unit vectors for each strut expressed in {A}
|
||||
% - geometry.Ab [3x6] - The 6 position of the joints bi expressed in {A}
|
||||
% - actuators.K [6x1] - Total stiffness of the actuators
|
||||
%
|
||||
% Outputs:
|
||||
% - stewart - With the 3 added field:
|
||||
% - kinematics.J [6x6] - The Jacobian Matrix
|
||||
% - kinematics.K [6x6] - The Stiffness Matrix
|
||||
% - kinematics.C [6x6] - The Compliance Matrix
|
||||
|
||||
assert(isfield(stewart.geometry, 'As'), 'stewart.geometry should have attribute As')
|
||||
As = stewart.geometry.As;
|
||||
|
||||
assert(isfield(stewart.geometry, 'Ab'), 'stewart.geometry should have attribute Ab')
|
||||
Ab = stewart.geometry.Ab;
|
||||
|
||||
assert(isfield(stewart.actuators, 'K'), 'stewart.actuators should have attribute K')
|
||||
Ki = stewart.actuators.K;
|
||||
|
||||
J = [As' , cross(Ab, As)'];
|
||||
|
||||
K = J'*diag(Ki)*J;
|
||||
|
||||
C = inv(K);
|
||||
|
||||
stewart.kinematics.J = J;
|
||||
stewart.kinematics.K = K;
|
||||
stewart.kinematics.C = C;
|
78
A4-simscape-micro-station/src/computeJointsPose.m
Normal file
78
A4-simscape-micro-station/src/computeJointsPose.m
Normal file
@@ -0,0 +1,78 @@
|
||||
function [stewart] = computeJointsPose(stewart)
|
||||
% computeJointsPose -
|
||||
%
|
||||
% Syntax: [stewart] = computeJointsPose(stewart)
|
||||
%
|
||||
% Inputs:
|
||||
% - stewart - A structure with the following fields
|
||||
% - platform_F.Fa [3x6] - Its i'th column is the position vector of joint ai with respect to {F}
|
||||
% - platform_M.Mb [3x6] - Its i'th column is the position vector of joint bi with respect to {M}
|
||||
% - platform_F.FO_A [3x1] - Position of {A} with respect to {F}
|
||||
% - platform_M.MO_B [3x1] - Position of {B} with respect to {M}
|
||||
% - geometry.FO_M [3x1] - Position of {M} with respect to {F}
|
||||
%
|
||||
% Outputs:
|
||||
% - stewart - A structure with the following added fields
|
||||
% - geometry.Aa [3x6] - The i'th column is the position of ai with respect to {A}
|
||||
% - geometry.Ab [3x6] - The i'th column is the position of bi with respect to {A}
|
||||
% - geometry.Ba [3x6] - The i'th column is the position of ai with respect to {B}
|
||||
% - geometry.Bb [3x6] - The i'th column is the position of bi with respect to {B}
|
||||
% - geometry.l [6x1] - The i'th element is the initial length of strut i
|
||||
% - geometry.As [3x6] - The i'th column is the unit vector of strut i expressed in {A}
|
||||
% - geometry.Bs [3x6] - The i'th column is the unit vector of strut i expressed in {B}
|
||||
% - struts_F.l [6x1] - Length of the Fixed part of the i'th strut
|
||||
% - struts_M.l [6x1] - Length of the Mobile part of the i'th strut
|
||||
% - platform_F.FRa [3x3x6] - The i'th 3x3 array is the rotation matrix to orientate the bottom of the i'th strut from {F}
|
||||
% - platform_M.MRb [3x3x6] - The i'th 3x3 array is the rotation matrix to orientate the top of the i'th strut from {M}
|
||||
|
||||
assert(isfield(stewart.platform_F, 'Fa'), 'stewart.platform_F should have attribute Fa')
|
||||
Fa = stewart.platform_F.Fa;
|
||||
|
||||
assert(isfield(stewart.platform_M, 'Mb'), 'stewart.platform_M should have attribute Mb')
|
||||
Mb = stewart.platform_M.Mb;
|
||||
|
||||
assert(isfield(stewart.platform_F, 'FO_A'), 'stewart.platform_F should have attribute FO_A')
|
||||
FO_A = stewart.platform_F.FO_A;
|
||||
|
||||
assert(isfield(stewart.platform_M, 'MO_B'), 'stewart.platform_M should have attribute MO_B')
|
||||
MO_B = stewart.platform_M.MO_B;
|
||||
|
||||
assert(isfield(stewart.geometry, 'FO_M'), 'stewart.geometry should have attribute FO_M')
|
||||
FO_M = stewart.geometry.FO_M;
|
||||
|
||||
Aa = Fa - repmat(FO_A, [1, 6]);
|
||||
Bb = Mb - repmat(MO_B, [1, 6]);
|
||||
|
||||
Ab = Bb - repmat(-MO_B-FO_M+FO_A, [1, 6]);
|
||||
Ba = Aa - repmat( MO_B+FO_M-FO_A, [1, 6]);
|
||||
|
||||
As = (Ab - Aa)./vecnorm(Ab - Aa); % As_i is the i'th vector of As
|
||||
|
||||
l = vecnorm(Ab - Aa)';
|
||||
|
||||
Bs = (Bb - Ba)./vecnorm(Bb - Ba);
|
||||
|
||||
FRa = zeros(3,3,6);
|
||||
MRb = zeros(3,3,6);
|
||||
|
||||
for i = 1:6
|
||||
FRa(:,:,i) = [cross([0;1;0], As(:,i)) , cross(As(:,i), cross([0;1;0], As(:,i))) , As(:,i)];
|
||||
FRa(:,:,i) = FRa(:,:,i)./vecnorm(FRa(:,:,i));
|
||||
|
||||
MRb(:,:,i) = [cross([0;1;0], Bs(:,i)) , cross(Bs(:,i), cross([0;1;0], Bs(:,i))) , Bs(:,i)];
|
||||
MRb(:,:,i) = MRb(:,:,i)./vecnorm(MRb(:,:,i));
|
||||
end
|
||||
|
||||
stewart.geometry.Aa = Aa;
|
||||
stewart.geometry.Ab = Ab;
|
||||
stewart.geometry.Ba = Ba;
|
||||
stewart.geometry.Bb = Bb;
|
||||
stewart.geometry.As = As;
|
||||
stewart.geometry.Bs = Bs;
|
||||
stewart.geometry.l = l;
|
||||
|
||||
stewart.struts_F.l = l/2;
|
||||
stewart.struts_M.l = l/2;
|
||||
|
||||
stewart.platform_F.FRa = FRa;
|
||||
stewart.platform_M.MRb = MRb;
|
77
A4-simscape-micro-station/src/computeReferencePose.m
Normal file
77
A4-simscape-micro-station/src/computeReferencePose.m
Normal file
@@ -0,0 +1,77 @@
|
||||
function [WTr] = computeReferencePose(Dy, Ry, Rz, Dh, Dn)
|
||||
% computeReferencePose - Compute the homogeneous transformation matrix corresponding to the wanted pose of the sample
|
||||
%
|
||||
% Syntax: [WTr] = computeReferencePose(Dy, Ry, Rz, Dh, Dn)
|
||||
%
|
||||
% Inputs:
|
||||
% - Dy - Reference of the Translation Stage [m]
|
||||
% - Ry - Reference of the Tilt Stage [rad]
|
||||
% - Rz - Reference of the Spindle [rad]
|
||||
% - Dh - Reference of the Micro Hexapod (Pitch, Roll, Yaw angles) [m, m, m, rad, rad, rad]
|
||||
% - Dn - Reference of the Nano Hexapod [m, m, m, rad, rad, rad]
|
||||
%
|
||||
% Outputs:
|
||||
% - WTr -
|
||||
|
||||
%% Translation Stage
|
||||
Rty = [1 0 0 0;
|
||||
0 1 0 Dy;
|
||||
0 0 1 0;
|
||||
0 0 0 1];
|
||||
|
||||
%% Tilt Stage - Pure rotating aligned with Ob
|
||||
Rry = [ cos(Ry) 0 sin(Ry) 0;
|
||||
0 1 0 0;
|
||||
-sin(Ry) 0 cos(Ry) 0;
|
||||
0 0 0 1];
|
||||
|
||||
%% Spindle - Rotation along the Z axis
|
||||
Rrz = [cos(Rz) -sin(Rz) 0 0 ;
|
||||
sin(Rz) cos(Rz) 0 0 ;
|
||||
0 0 1 0 ;
|
||||
0 0 0 1 ];
|
||||
|
||||
|
||||
%% Micro-Hexapod
|
||||
Rhx = [1 0 0;
|
||||
0 cos(Dh(4)) -sin(Dh(4));
|
||||
0 sin(Dh(4)) cos(Dh(4))];
|
||||
|
||||
Rhy = [ cos(Dh(5)) 0 sin(Dh(5));
|
||||
0 1 0;
|
||||
-sin(Dh(5)) 0 cos(Dh(5))];
|
||||
|
||||
Rhz = [cos(Dh(6)) -sin(Dh(6)) 0;
|
||||
sin(Dh(6)) cos(Dh(6)) 0;
|
||||
0 0 1];
|
||||
|
||||
Rh = [1 0 0 Dh(1) ;
|
||||
0 1 0 Dh(2) ;
|
||||
0 0 1 Dh(3) ;
|
||||
0 0 0 1 ];
|
||||
|
||||
Rh(1:3, 1:3) = Rhz*Rhy*Rhx;
|
||||
|
||||
%% Nano-Hexapod
|
||||
Rnx = [1 0 0;
|
||||
0 cos(Dn(4)) -sin(Dn(4));
|
||||
0 sin(Dn(4)) cos(Dn(4))];
|
||||
|
||||
Rny = [ cos(Dn(5)) 0 sin(Dn(5));
|
||||
0 1 0;
|
||||
-sin(Dn(5)) 0 cos(Dn(5))];
|
||||
|
||||
Rnz = [cos(Dn(6)) -sin(Dn(6)) 0;
|
||||
sin(Dn(6)) cos(Dn(6)) 0;
|
||||
0 0 1];
|
||||
|
||||
Rn = [1 0 0 Dn(1) ;
|
||||
0 1 0 Dn(2) ;
|
||||
0 0 1 Dn(3) ;
|
||||
0 0 0 1 ];
|
||||
|
||||
Rn(1:3, 1:3) = Rnz*Rny*Rnx;
|
||||
|
||||
%% Total Homogeneous transformation
|
||||
WTr = Rty*Rry*Rrz*Rh*Rn;
|
||||
end
|
141
A4-simscape-micro-station/src/describeMicroStationSetup.m
Normal file
141
A4-simscape-micro-station/src/describeMicroStationSetup.m
Normal file
@@ -0,0 +1,141 @@
|
||||
function [] = describeMicroStationSetup()
|
||||
% describeMicroStationSetup -
|
||||
%
|
||||
% Syntax: [] = describeMicroStationSetup()
|
||||
%
|
||||
% Inputs:
|
||||
% - -
|
||||
%
|
||||
% Outputs:
|
||||
% - -
|
||||
|
||||
load('./mat/nass_model_conf_simscape.mat', 'conf_simscape');
|
||||
|
||||
fprintf('Simscape Configuration:\n');
|
||||
|
||||
if conf_simscape.type == 1
|
||||
fprintf('- Gravity is included\n');
|
||||
else
|
||||
fprintf('- Gravity is not included\n');
|
||||
end
|
||||
|
||||
fprintf('\n');
|
||||
|
||||
load('./mat/nass_model_disturbances.mat', 'args');
|
||||
|
||||
fprintf('Disturbances:\n');
|
||||
if ~args.enable
|
||||
fprintf('- No disturbance is included\n');
|
||||
else
|
||||
if args.Dwx && args.Dwy && args.Dwz
|
||||
fprintf('- Ground motion\n');
|
||||
end
|
||||
if args.Fdy_x && args.Fdy_z
|
||||
fprintf('- Vibrations of the Translation Stage\n');
|
||||
end
|
||||
if args.Frz_z
|
||||
fprintf('- Vibrations of the Spindle\n');
|
||||
end
|
||||
end
|
||||
fprintf('\n');
|
||||
|
||||
load('./mat/nass_model_references.mat', 'args');
|
||||
|
||||
fprintf('Reference Tracking:\n');
|
||||
fprintf('- Translation Stage:\n');
|
||||
switch args.Dy_type
|
||||
case 'constant'
|
||||
fprintf(' - Constant Position\n');
|
||||
fprintf(' - Dy = %.0f [mm]\n', args.Dy_amplitude*1e3);
|
||||
case 'triangular'
|
||||
fprintf(' - Triangular Path\n');
|
||||
fprintf(' - Amplitude = %.0f [mm]\n', args.Dy_amplitude*1e3);
|
||||
fprintf(' - Period = %.0f [s]\n', args.Dy_period);
|
||||
case 'sinusoidal'
|
||||
fprintf(' - Sinusoidal Path\n');
|
||||
fprintf(' - Amplitude = %.0f [mm]\n', args.Dy_amplitude*1e3);
|
||||
fprintf(' - Period = %.0f [s]\n', args.Dy_period);
|
||||
end
|
||||
|
||||
fprintf('- Tilt Stage:\n');
|
||||
switch args.Ry_type
|
||||
case 'constant'
|
||||
fprintf(' - Constant Position\n');
|
||||
fprintf(' - Ry = %.0f [mm]\n', args.Ry_amplitude*1e3);
|
||||
case 'triangular'
|
||||
fprintf(' - Triangular Path\n');
|
||||
fprintf(' - Amplitude = %.0f [mm]\n', args.Ry_amplitude*1e3);
|
||||
fprintf(' - Period = %.0f [s]\n', args.Ry_period);
|
||||
case 'sinusoidal'
|
||||
fprintf(' - Sinusoidal Path\n');
|
||||
fprintf(' - Amplitude = %.0f [mm]\n', args.Ry_amplitude*1e3);
|
||||
fprintf(' - Period = %.0f [s]\n', args.Ry_period);
|
||||
end
|
||||
|
||||
fprintf('- Spindle:\n');
|
||||
switch args.Rz_type
|
||||
case 'constant'
|
||||
fprintf(' - Constant Position\n');
|
||||
fprintf(' - Rz = %.0f [deg]\n', 180/pi*args.Rz_amplitude);
|
||||
case { 'rotating', 'rotating-not-filtered' }
|
||||
fprintf(' - Rotating\n');
|
||||
fprintf(' - Speed = %.0f [rpm]\n', 60/args.Rz_period);
|
||||
end
|
||||
|
||||
|
||||
fprintf('- Micro Hexapod:\n');
|
||||
switch args.Dh_type
|
||||
case 'constant'
|
||||
fprintf(' - Constant Position\n');
|
||||
fprintf(' - Dh = %.0f, %.0f, %.0f [mm]\n', args.Dh_pos(1), args.Dh_pos(2), args.Dh_pos(3));
|
||||
fprintf(' - Rh = %.0f, %.0f, %.0f [deg]\n', args.Dh_pos(4), args.Dh_pos(5), args.Dh_pos(6));
|
||||
end
|
||||
|
||||
fprintf('\n');
|
||||
|
||||
load('./mat/nass_model_stages.mat', 'ground', 'granite', 'ty', 'ry', 'rz', 'micro_hexapod', 'axisc');
|
||||
|
||||
fprintf('Micro Station:\n');
|
||||
|
||||
if granite.type == 1 && ...
|
||||
ty.type == 1 && ...
|
||||
ry.type == 1 && ...
|
||||
rz.type == 1 && ...
|
||||
micro_hexapod.type == 1;
|
||||
fprintf('- All stages are rigid\n');
|
||||
elseif granite.type == 2 && ...
|
||||
ty.type == 2 && ...
|
||||
ry.type == 2 && ...
|
||||
rz.type == 2 && ...
|
||||
micro_hexapod.type == 2;
|
||||
fprintf('- All stages are flexible\n');
|
||||
else
|
||||
if granite.type == 1 || granite.type == 4
|
||||
fprintf('- Granite is rigid\n');
|
||||
else
|
||||
fprintf('- Granite is flexible\n');
|
||||
end
|
||||
if ty.type == 1 || ty.type == 4
|
||||
fprintf('- Translation Stage is rigid\n');
|
||||
else
|
||||
fprintf('- Translation Stage is flexible\n');
|
||||
end
|
||||
if ry.type == 1 || ry.type == 4
|
||||
fprintf('- Tilt Stage is rigid\n');
|
||||
else
|
||||
fprintf('- Tilt Stage is flexible\n');
|
||||
end
|
||||
if rz.type == 1 || rz.type == 4
|
||||
fprintf('- Spindle is rigid\n');
|
||||
else
|
||||
fprintf('- Spindle is flexible\n');
|
||||
end
|
||||
if micro_hexapod.type == 1 || micro_hexapod.type == 4
|
||||
fprintf('- Micro Hexapod is rigid\n');
|
||||
else
|
||||
fprintf('- Micro Hexapod is flexible\n');
|
||||
end
|
||||
|
||||
end
|
||||
|
||||
fprintf('\n');
|
39
A4-simscape-micro-station/src/generateGeneralConfiguration.m
Normal file
39
A4-simscape-micro-station/src/generateGeneralConfiguration.m
Normal file
@@ -0,0 +1,39 @@
|
||||
function [stewart] = generateGeneralConfiguration(stewart, args)
|
||||
% generateGeneralConfiguration - Generate a Very General Configuration
|
||||
%
|
||||
% Syntax: [stewart] = generateGeneralConfiguration(stewart, args)
|
||||
%
|
||||
% Inputs:
|
||||
% - args - Can have the following fields:
|
||||
% - FH [1x1] - Height of the position of the fixed joints with respect to the frame {F} [m]
|
||||
% - FR [1x1] - Radius of the position of the fixed joints in the X-Y [m]
|
||||
% - FTh [6x1] - Angles of the fixed joints in the X-Y plane with respect to the X axis [rad]
|
||||
% - MH [1x1] - Height of the position of the mobile joints with respect to the frame {M} [m]
|
||||
% - FR [1x1] - Radius of the position of the mobile joints in the X-Y [m]
|
||||
% - MTh [6x1] - Angles of the mobile joints in the X-Y plane with respect to the X axis [rad]
|
||||
%
|
||||
% Outputs:
|
||||
% - stewart - updated Stewart structure with the added fields:
|
||||
% - platform_F.Fa [3x6] - Its i'th column is the position vector of joint ai with respect to {F}
|
||||
% - platform_M.Mb [3x6] - Its i'th column is the position vector of joint bi with respect to {M}
|
||||
|
||||
arguments
|
||||
stewart
|
||||
args.FH (1,1) double {mustBeNumeric, mustBePositive} = 15e-3
|
||||
args.FR (1,1) double {mustBeNumeric, mustBePositive} = 115e-3;
|
||||
args.FTh (6,1) double {mustBeNumeric} = [-10, 10, 120-10, 120+10, 240-10, 240+10]*(pi/180);
|
||||
args.MH (1,1) double {mustBeNumeric, mustBePositive} = 15e-3
|
||||
args.MR (1,1) double {mustBeNumeric, mustBePositive} = 90e-3;
|
||||
args.MTh (6,1) double {mustBeNumeric} = [-60+10, 60-10, 60+10, 180-10, 180+10, -60-10]*(pi/180);
|
||||
end
|
||||
|
||||
Fa = zeros(3,6);
|
||||
Mb = zeros(3,6);
|
||||
|
||||
for i = 1:6
|
||||
Fa(:,i) = [args.FR*cos(args.FTh(i)); args.FR*sin(args.FTh(i)); args.FH];
|
||||
Mb(:,i) = [args.MR*cos(args.MTh(i)); args.MR*sin(args.MTh(i)); -args.MH];
|
||||
end
|
||||
|
||||
stewart.platform_F.Fa = Fa;
|
||||
stewart.platform_M.Mb = Mb;
|
@@ -0,0 +1,59 @@
|
||||
function [stewart] = initializeCylindricalPlatforms(stewart, args)
|
||||
% initializeCylindricalPlatforms - Initialize the geometry of the Fixed and Mobile Platforms
|
||||
%
|
||||
% Syntax: [stewart] = initializeCylindricalPlatforms(args)
|
||||
%
|
||||
% Inputs:
|
||||
% - args - Structure with the following fields:
|
||||
% - Fpm [1x1] - Fixed Platform Mass [kg]
|
||||
% - Fph [1x1] - Fixed Platform Height [m]
|
||||
% - Fpr [1x1] - Fixed Platform Radius [m]
|
||||
% - Mpm [1x1] - Mobile Platform Mass [kg]
|
||||
% - Mph [1x1] - Mobile Platform Height [m]
|
||||
% - Mpr [1x1] - Mobile Platform Radius [m]
|
||||
%
|
||||
% Outputs:
|
||||
% - stewart - updated Stewart structure with the added fields:
|
||||
% - platform_F [struct] - structure with the following fields:
|
||||
% - type = 1
|
||||
% - M [1x1] - Fixed Platform Mass [kg]
|
||||
% - I [3x3] - Fixed Platform Inertia matrix [kg*m^2]
|
||||
% - H [1x1] - Fixed Platform Height [m]
|
||||
% - R [1x1] - Fixed Platform Radius [m]
|
||||
% - platform_M [struct] - structure with the following fields:
|
||||
% - M [1x1] - Mobile Platform Mass [kg]
|
||||
% - I [3x3] - Mobile Platform Inertia matrix [kg*m^2]
|
||||
% - H [1x1] - Mobile Platform Height [m]
|
||||
% - R [1x1] - Mobile Platform Radius [m]
|
||||
|
||||
arguments
|
||||
stewart
|
||||
args.Fpm (1,1) double {mustBeNumeric, mustBePositive} = 1
|
||||
args.Fph (1,1) double {mustBeNumeric, mustBePositive} = 10e-3
|
||||
args.Fpr (1,1) double {mustBeNumeric, mustBePositive} = 125e-3
|
||||
args.Mpm (1,1) double {mustBeNumeric, mustBePositive} = 1
|
||||
args.Mph (1,1) double {mustBeNumeric, mustBePositive} = 10e-3
|
||||
args.Mpr (1,1) double {mustBeNumeric, mustBePositive} = 100e-3
|
||||
end
|
||||
|
||||
I_F = diag([1/12*args.Fpm * (3*args.Fpr^2 + args.Fph^2), ...
|
||||
1/12*args.Fpm * (3*args.Fpr^2 + args.Fph^2), ...
|
||||
1/2 *args.Fpm * args.Fpr^2]);
|
||||
|
||||
I_M = diag([1/12*args.Mpm * (3*args.Mpr^2 + args.Mph^2), ...
|
||||
1/12*args.Mpm * (3*args.Mpr^2 + args.Mph^2), ...
|
||||
1/2 *args.Mpm * args.Mpr^2]);
|
||||
|
||||
stewart.platform_F.type = 1;
|
||||
|
||||
stewart.platform_F.I = I_F;
|
||||
stewart.platform_F.M = args.Fpm;
|
||||
stewart.platform_F.R = args.Fpr;
|
||||
stewart.platform_F.H = args.Fph;
|
||||
|
||||
stewart.platform_M.type = 1;
|
||||
|
||||
stewart.platform_M.I = I_M;
|
||||
stewart.platform_M.M = args.Mpm;
|
||||
stewart.platform_M.R = args.Mpr;
|
||||
stewart.platform_M.H = args.Mph;
|
71
A4-simscape-micro-station/src/initializeCylindricalStruts.m
Normal file
71
A4-simscape-micro-station/src/initializeCylindricalStruts.m
Normal file
@@ -0,0 +1,71 @@
|
||||
function [stewart] = initializeCylindricalStruts(stewart, args)
|
||||
% initializeCylindricalStruts - Define the mass and moment of inertia of cylindrical struts
|
||||
%
|
||||
% Syntax: [stewart] = initializeCylindricalStruts(args)
|
||||
%
|
||||
% Inputs:
|
||||
% - args - Structure with the following fields:
|
||||
% - Fsm [1x1] - Mass of the Fixed part of the struts [kg]
|
||||
% - Fsh [1x1] - Height of cylinder for the Fixed part of the struts [m]
|
||||
% - Fsr [1x1] - Radius of cylinder for the Fixed part of the struts [m]
|
||||
% - Msm [1x1] - Mass of the Mobile part of the struts [kg]
|
||||
% - Msh [1x1] - Height of cylinder for the Mobile part of the struts [m]
|
||||
% - Msr [1x1] - Radius of cylinder for the Mobile part of the struts [m]
|
||||
%
|
||||
% Outputs:
|
||||
% - stewart - updated Stewart structure with the added fields:
|
||||
% - struts_F [struct] - structure with the following fields:
|
||||
% - M [6x1] - Mass of the Fixed part of the struts [kg]
|
||||
% - I [3x3x6] - Moment of Inertia for the Fixed part of the struts [kg*m^2]
|
||||
% - H [6x1] - Height of cylinder for the Fixed part of the struts [m]
|
||||
% - R [6x1] - Radius of cylinder for the Fixed part of the struts [m]
|
||||
% - struts_M [struct] - structure with the following fields:
|
||||
% - M [6x1] - Mass of the Mobile part of the struts [kg]
|
||||
% - I [3x3x6] - Moment of Inertia for the Mobile part of the struts [kg*m^2]
|
||||
% - H [6x1] - Height of cylinder for the Mobile part of the struts [m]
|
||||
% - R [6x1] - Radius of cylinder for the Mobile part of the struts [m]
|
||||
|
||||
arguments
|
||||
stewart
|
||||
args.Fsm (1,1) double {mustBeNumeric, mustBePositive} = 0.1
|
||||
args.Fsh (1,1) double {mustBeNumeric, mustBePositive} = 50e-3
|
||||
args.Fsr (1,1) double {mustBeNumeric, mustBePositive} = 5e-3
|
||||
args.Msm (1,1) double {mustBeNumeric, mustBePositive} = 0.1
|
||||
args.Msh (1,1) double {mustBeNumeric, mustBePositive} = 50e-3
|
||||
args.Msr (1,1) double {mustBeNumeric, mustBePositive} = 5e-3
|
||||
end
|
||||
|
||||
Fsm = ones(6,1).*args.Fsm;
|
||||
Fsh = ones(6,1).*args.Fsh;
|
||||
Fsr = ones(6,1).*args.Fsr;
|
||||
|
||||
Msm = ones(6,1).*args.Msm;
|
||||
Msh = ones(6,1).*args.Msh;
|
||||
Msr = ones(6,1).*args.Msr;
|
||||
|
||||
I_F = zeros(3, 3, 6); % Inertia of the "fixed" part of the strut
|
||||
I_M = zeros(3, 3, 6); % Inertia of the "mobile" part of the strut
|
||||
|
||||
for i = 1:6
|
||||
I_F(:,:,i) = diag([1/12 * Fsm(i) * (3*Fsr(i)^2 + Fsh(i)^2), ...
|
||||
1/12 * Fsm(i) * (3*Fsr(i)^2 + Fsh(i)^2), ...
|
||||
1/2 * Fsm(i) * Fsr(i)^2]);
|
||||
|
||||
I_M(:,:,i) = diag([1/12 * Msm(i) * (3*Msr(i)^2 + Msh(i)^2), ...
|
||||
1/12 * Msm(i) * (3*Msr(i)^2 + Msh(i)^2), ...
|
||||
1/2 * Msm(i) * Msr(i)^2]);
|
||||
end
|
||||
|
||||
stewart.struts_M.type = 1;
|
||||
|
||||
stewart.struts_M.I = I_M;
|
||||
stewart.struts_M.M = Msm;
|
||||
stewart.struts_M.R = Msr;
|
||||
stewart.struts_M.H = Msh;
|
||||
|
||||
stewart.struts_F.type = 1;
|
||||
|
||||
stewart.struts_F.I = I_F;
|
||||
stewart.struts_F.M = Fsm;
|
||||
stewart.struts_F.R = Fsr;
|
||||
stewart.struts_F.H = Fsh;
|
211
A4-simscape-micro-station/src/initializeDisturbances.m
Normal file
211
A4-simscape-micro-station/src/initializeDisturbances.m
Normal file
@@ -0,0 +1,211 @@
|
||||
function [] = initializeDisturbances(args)
|
||||
% initializeDisturbances - Initialize the disturbances
|
||||
%
|
||||
% Syntax: [] = initializeDisturbances(args)
|
||||
%
|
||||
% Inputs:
|
||||
% - args -
|
||||
|
||||
arguments
|
||||
% Global parameter to enable or disable the disturbances
|
||||
args.enable logical {mustBeNumericOrLogical} = true
|
||||
% Ground Motion - X direction
|
||||
args.Dw_x logical {mustBeNumericOrLogical} = true
|
||||
% Ground Motion - Y direction
|
||||
args.Dw_y logical {mustBeNumericOrLogical} = true
|
||||
% Ground Motion - Z direction
|
||||
args.Dw_z logical {mustBeNumericOrLogical} = true
|
||||
% Translation Stage - X direction
|
||||
args.Fdy_x logical {mustBeNumericOrLogical} = true
|
||||
% Translation Stage - Z direction
|
||||
args.Fdy_z logical {mustBeNumericOrLogical} = true
|
||||
% Spindle - X direction
|
||||
args.Frz_x logical {mustBeNumericOrLogical} = true
|
||||
% Spindle - Y direction
|
||||
args.Frz_y logical {mustBeNumericOrLogical} = true
|
||||
% Spindle - Z direction
|
||||
args.Frz_z logical {mustBeNumericOrLogical} = true
|
||||
end
|
||||
|
||||
% Initialization of random numbers
|
||||
rng("shuffle");
|
||||
|
||||
%% Ground Motion
|
||||
if args.enable
|
||||
% Load the PSD of disturbance
|
||||
load('ustation_disturbance_psd.mat', 'gm_dist')
|
||||
|
||||
% Frequency Data
|
||||
Dw.f = gm_dist.f;
|
||||
Dw.psd_x = gm_dist.pxx_x;
|
||||
Dw.psd_y = gm_dist.pxx_y;
|
||||
Dw.psd_z = gm_dist.pxx_z;
|
||||
|
||||
% Time data
|
||||
Fs = 2*Dw.f(end); % Sampling Frequency of data is twice the maximum frequency of the PSD vector [Hz]
|
||||
N = 2*length(Dw.f); % Number of Samples match the one of the wanted PSD
|
||||
T0 = N/Fs; % Signal Duration [s]
|
||||
Dw.t = linspace(0, T0, N+1)'; % Time Vector [s]
|
||||
|
||||
% ASD representation of the ground motion
|
||||
C = zeros(N/2,1);
|
||||
for i = 1:N/2
|
||||
C(i) = sqrt(Dw.psd_x(i)/T0);
|
||||
end
|
||||
|
||||
if args.Dw_x
|
||||
theta = 2*pi*rand(N/2,1); % Generate random phase [rad]
|
||||
Cx = [0 ; C.*complex(cos(theta),sin(theta))];
|
||||
Cx = [Cx; flipud(conj(Cx(2:end)))];;
|
||||
Dw.x = N/sqrt(2)*ifft(Cx); % Ground Motion - x direction [m]
|
||||
else
|
||||
Dw.x = zeros(length(Dw.t), 1);
|
||||
end
|
||||
|
||||
if args.Dw_y
|
||||
theta = 2*pi*rand(N/2,1); % Generate random phase [rad]
|
||||
Cx = [0 ; C.*complex(cos(theta),sin(theta))];
|
||||
Cx = [Cx; flipud(conj(Cx(2:end)))];;
|
||||
Dw.y = N/sqrt(2)*ifft(Cx); % Ground Motion - y direction [m]
|
||||
else
|
||||
Dw.y = zeros(length(Dw.t), 1);
|
||||
end
|
||||
|
||||
if args.Dw_y
|
||||
theta = 2*pi*rand(N/2,1); % Generate random phase [rad]
|
||||
Cx = [0 ; C.*complex(cos(theta),sin(theta))];
|
||||
Cx = [Cx; flipud(conj(Cx(2:end)))];;
|
||||
Dw.z = N/sqrt(2)*ifft(Cx); % Ground Motion - z direction [m]
|
||||
else
|
||||
Dw.z = zeros(length(Dw.t), 1);
|
||||
end
|
||||
|
||||
else
|
||||
Dw.t = [0,1]; % Time Vector [s]
|
||||
Dw.x = [0,0]; % Ground Motion - X [m]
|
||||
Dw.y = [0,0]; % Ground Motion - Y [m]
|
||||
Dw.z = [0,0]; % Ground Motion - Z [m]
|
||||
end
|
||||
|
||||
%% Translation stage
|
||||
if args.enable
|
||||
% Load the PSD of disturbance
|
||||
load('ustation_disturbance_psd.mat', 'dy_dist')
|
||||
|
||||
% Frequency Data
|
||||
Dy.f = dy_dist.f;
|
||||
Dy.psd_x = dy_dist.pxx_fx;
|
||||
Dy.psd_z = dy_dist.pxx_fz;
|
||||
|
||||
% Time data
|
||||
Fs = 2*Dy.f(end); % Sampling Frequency of data is twice the maximum frequency of the PSD vector [Hz]
|
||||
N = 2*length(Dy.f); % Number of Samples match the one of the wanted PSD
|
||||
T0 = N/Fs; % Signal Duration [s]
|
||||
Dy.t = linspace(0, T0, N+1)'; % Time Vector [s]
|
||||
|
||||
% ASD representation of the disturbance voice
|
||||
C = zeros(N/2,1);
|
||||
for i = 1:N/2
|
||||
C(i) = sqrt(Dy.psd_x(i)/T0);
|
||||
end
|
||||
|
||||
if args.Fdy_x
|
||||
theta = 2*pi*rand(N/2,1); % Generate random phase [rad]
|
||||
Cx = [0 ; C.*complex(cos(theta),sin(theta))];
|
||||
Cx = [Cx; flipud(conj(Cx(2:end)))];;
|
||||
Dy.x = N/sqrt(2)*ifft(Cx); % Translation stage disturbances - X direction [N]
|
||||
else
|
||||
Dy.x = zeros(length(Dy.t), 1);
|
||||
end
|
||||
|
||||
if args.Fdy_z
|
||||
theta = 2*pi*rand(N/2,1); % Generate random phase [rad]
|
||||
Cx = [0 ; C.*complex(cos(theta),sin(theta))];
|
||||
Cx = [Cx; flipud(conj(Cx(2:end)))];;
|
||||
Dy.z = N/sqrt(2)*ifft(Cx); % Translation stage disturbances - Z direction [N]
|
||||
else
|
||||
Dy.z = zeros(length(Dy.t), 1);
|
||||
end
|
||||
|
||||
else
|
||||
Dy.t = [0,1]; % Time Vector [s]
|
||||
Dy.x = [0,0]; % Translation Stage disturbances - X [N]
|
||||
Dy.z = [0,0]; % Translation Stage disturbances - Z [N]
|
||||
end
|
||||
|
||||
%% Spindle
|
||||
if args.enable
|
||||
% Load the PSD of disturbance
|
||||
load('ustation_disturbance_psd.mat', 'rz_dist')
|
||||
|
||||
% Frequency Data
|
||||
Rz.f = rz_dist.f;
|
||||
Rz.psd_x = rz_dist.pxx_fx;
|
||||
Rz.psd_y = rz_dist.pxx_fy;
|
||||
Rz.psd_z = rz_dist.pxx_fz;
|
||||
|
||||
% Time data
|
||||
Fs = 2*Rz.f(end); % Sampling Frequency of data is twice the maximum frequency of the PSD vector [Hz]
|
||||
N = 2*length(Rz.f); % Number of Samples match the one of the wanted PSD
|
||||
T0 = N/Fs; % Signal Duration [s]
|
||||
Rz.t = linspace(0, T0, N+1)'; % Time Vector [s]
|
||||
|
||||
% ASD representation of the disturbance voice
|
||||
C = zeros(N/2,1);
|
||||
for i = 1:N/2
|
||||
C(i) = sqrt(Rz.psd_x(i)/T0);
|
||||
end
|
||||
|
||||
if args.Frz_x
|
||||
theta = 2*pi*rand(N/2,1); % Generate random phase [rad]
|
||||
Cx = [0 ; C.*complex(cos(theta),sin(theta))];
|
||||
Cx = [Cx; flipud(conj(Cx(2:end)))];;
|
||||
Rz.x = N/sqrt(2)*ifft(Cx); % spindle disturbances - X direction [N]
|
||||
else
|
||||
Rz.x = zeros(length(Rz.t), 1);
|
||||
end
|
||||
|
||||
if args.Frz_y
|
||||
theta = 2*pi*rand(N/2,1); % Generate random phase [rad]
|
||||
Cx = [0 ; C.*complex(cos(theta),sin(theta))];
|
||||
Cx = [Cx; flipud(conj(Cx(2:end)))];;
|
||||
Rz.y = N/sqrt(2)*ifft(Cx); % spindle disturbances - Y direction [N]
|
||||
else
|
||||
Rz.y = zeros(length(Rz.t), 1);
|
||||
end
|
||||
|
||||
if args.Frz_z
|
||||
theta = 2*pi*rand(N/2,1); % Generate random phase [rad]
|
||||
Cx = [0 ; C.*complex(cos(theta),sin(theta))];
|
||||
Cx = [Cx; flipud(conj(Cx(2:end)))];;
|
||||
Rz.z = N/sqrt(2)*ifft(Cx); % spindle disturbances - Z direction [N]
|
||||
else
|
||||
Rz.z = zeros(length(Rz.t), 1);
|
||||
end
|
||||
|
||||
else
|
||||
Rz.t = [0,1]; % Time Vector [s]
|
||||
Rz.x = [0,0]; % Spindle disturbances - X [N]
|
||||
Rz.y = [0,0]; % Spindle disturbances - X [N]
|
||||
Rz.z = [0,0]; % Spindle disturbances - Z [N]
|
||||
end
|
||||
|
||||
u = zeros(100, 6);
|
||||
Fd = u;
|
||||
|
||||
Dw.x = Dw.x - Dw.x(1);
|
||||
Dw.y = Dw.y - Dw.y(1);
|
||||
Dw.z = Dw.z - Dw.z(1);
|
||||
|
||||
Dy.x = Dy.x - Dy.x(1);
|
||||
Dy.z = Dy.z - Dy.z(1);
|
||||
|
||||
Rz.x = Rz.x - Rz.x(1);
|
||||
Rz.y = Rz.y - Rz.y(1);
|
||||
Rz.z = Rz.z - Rz.z(1);
|
||||
|
||||
if exist('./mat', 'dir')
|
||||
save('mat/nass_model_disturbances.mat', 'Dw', 'Dy', 'Rz', 'Fd', 'args');
|
||||
elseif exist('./matlab', 'dir')
|
||||
save('matlab/mat/nass_model_disturbances.mat', 'Dw', 'Dy', 'Rz', 'Fd', 'args');
|
||||
end
|
35
A4-simscape-micro-station/src/initializeFramesPositions.m
Normal file
35
A4-simscape-micro-station/src/initializeFramesPositions.m
Normal file
@@ -0,0 +1,35 @@
|
||||
function [stewart] = initializeFramesPositions(stewart, args)
|
||||
% initializeFramesPositions - Initialize the positions of frames {A}, {B}, {F} and {M}
|
||||
%
|
||||
% Syntax: [stewart] = initializeFramesPositions(stewart, args)
|
||||
%
|
||||
% Inputs:
|
||||
% - args - Can have the following fields:
|
||||
% - H [1x1] - Total Height of the Stewart Platform (height from {F} to {M}) [m]
|
||||
% - MO_B [1x1] - Height of the frame {B} with respect to {M} [m]
|
||||
%
|
||||
% Outputs:
|
||||
% - stewart - A structure with the following fields:
|
||||
% - geometry.H [1x1] - Total Height of the Stewart Platform [m]
|
||||
% - geometry.FO_M [3x1] - Position of {M} with respect to {F} [m]
|
||||
% - platform_M.MO_B [3x1] - Position of {B} with respect to {M} [m]
|
||||
% - platform_F.FO_A [3x1] - Position of {A} with respect to {F} [m]
|
||||
|
||||
arguments
|
||||
stewart
|
||||
args.H (1,1) double {mustBeNumeric, mustBePositive} = 90e-3
|
||||
args.MO_B (1,1) double {mustBeNumeric} = 50e-3
|
||||
end
|
||||
|
||||
H = args.H; % Total Height of the Stewart Platform [m]
|
||||
|
||||
FO_M = [0; 0; H]; % Position of {M} with respect to {F} [m]
|
||||
|
||||
MO_B = [0; 0; args.MO_B]; % Position of {B} with respect to {M} [m]
|
||||
|
||||
FO_A = MO_B + FO_M; % Position of {A} with respect to {F} [m]
|
||||
|
||||
stewart.geometry.H = H;
|
||||
stewart.geometry.FO_M = FO_M;
|
||||
stewart.platform_M.MO_B = MO_B;
|
||||
stewart.platform_F.FO_A = FO_A;
|
48
A4-simscape-micro-station/src/initializeGranite.m
Normal file
48
A4-simscape-micro-station/src/initializeGranite.m
Normal file
@@ -0,0 +1,48 @@
|
||||
function [granite] = initializeGranite(args)
|
||||
|
||||
arguments
|
||||
args.type char {mustBeMember(args.type,{'rigid', 'flexible', 'none'})} = 'flexible'
|
||||
args.density (1,1) double {mustBeNumeric, mustBeNonnegative} = 2800 % Density [kg/m3]
|
||||
args.K (6,1) double {mustBeNumeric, mustBeNonnegative} = [5e9; 5e9; 5e9; 2.5e7; 2.5e7; 1e7] % [N/m]
|
||||
args.C (6,1) double {mustBeNumeric, mustBeNonnegative} = [4.0e5; 1.1e5; 9.0e5; 2e4; 2e4; 1e4] % [N/(m/s)]
|
||||
args.x0 (1,1) double {mustBeNumeric} = 0 % Rest position of the Joint in the X direction [m]
|
||||
args.y0 (1,1) double {mustBeNumeric} = 0 % Rest position of the Joint in the Y direction [m]
|
||||
args.z0 (1,1) double {mustBeNumeric} = 0 % Rest position of the Joint in the Z direction [m]
|
||||
args.sample_pos (1,1) double {mustBeNumeric} = 0.775 % Height of the measurment point [m]
|
||||
end
|
||||
|
||||
granite = struct();
|
||||
|
||||
switch args.type
|
||||
case 'none'
|
||||
granite.type = 0;
|
||||
case 'rigid'
|
||||
granite.type = 1;
|
||||
case 'flexible'
|
||||
granite.type = 2;
|
||||
end
|
||||
|
||||
granite.density = args.density; % [kg/m3]
|
||||
granite.STEP = 'granite.STEP';
|
||||
|
||||
% Z-offset for the initial position of the sample with respect to the granite top surface.
|
||||
granite.sample_pos = args.sample_pos; % [m]
|
||||
|
||||
granite.K = args.K; % [N/m]
|
||||
granite.C = args.C; % [N/(m/s)]
|
||||
|
||||
if exist('./mat', 'dir')
|
||||
if exist('./mat/nass_model_stages.mat', 'file')
|
||||
save('mat/nass_model_stages.mat', 'granite', '-append');
|
||||
else
|
||||
save('mat/nass_model_stages.mat', 'granite');
|
||||
end
|
||||
elseif exist('./matlab', 'dir')
|
||||
if exist('./matlab/mat/nass_model_stages.mat', 'file')
|
||||
save('matlab/mat/nass_model_stages.mat', 'granite', '-append');
|
||||
else
|
||||
save('matlab/mat/nass_model_stages.mat', 'granite');
|
||||
end
|
||||
end
|
||||
|
||||
end
|
35
A4-simscape-micro-station/src/initializeGround.m
Normal file
35
A4-simscape-micro-station/src/initializeGround.m
Normal file
@@ -0,0 +1,35 @@
|
||||
function [ground] = initializeGround(args)
|
||||
|
||||
arguments
|
||||
args.type char {mustBeMember(args.type,{'none', 'rigid'})} = 'rigid'
|
||||
args.rot_point (3,1) double {mustBeNumeric} = zeros(3,1) % Rotation point for the ground motion [m]
|
||||
end
|
||||
|
||||
ground = struct();
|
||||
|
||||
switch args.type
|
||||
case 'none'
|
||||
ground.type = 0;
|
||||
case 'rigid'
|
||||
ground.type = 1;
|
||||
end
|
||||
|
||||
ground.shape = [2, 2, 0.5]; % [m]
|
||||
ground.density = 2800; % [kg/m3]
|
||||
|
||||
ground.rot_point = args.rot_point;
|
||||
|
||||
if exist('./mat', 'dir')
|
||||
if exist('./mat/nass_model_stages.mat', 'file')
|
||||
save('mat/nass_model_stages.mat', 'ground', '-append');
|
||||
else
|
||||
save('mat/nass_model_stages.mat', 'ground');
|
||||
end
|
||||
elseif exist('./matlab', 'dir')
|
||||
if exist('./matlab/mat/nass_model_stages.mat', 'file')
|
||||
save('matlab/mat/nass_model_stages.mat', 'ground', '-append');
|
||||
else
|
||||
save('matlab/mat/nass_model_stages.mat', 'ground');
|
||||
end
|
||||
end
|
||||
end
|
48
A4-simscape-micro-station/src/initializeInertialSensor.m
Normal file
48
A4-simscape-micro-station/src/initializeInertialSensor.m
Normal file
@@ -0,0 +1,48 @@
|
||||
function [stewart] = initializeInertialSensor(stewart, args)
|
||||
% initializeInertialSensor - Initialize the inertial sensor in each strut
|
||||
%
|
||||
% Syntax: [stewart] = initializeInertialSensor(args)
|
||||
%
|
||||
% Inputs:
|
||||
% - args - Structure with the following fields:
|
||||
% - type - 'geophone', 'accelerometer', 'none'
|
||||
% - mass [1x1] - Weight of the inertial mass [kg]
|
||||
% - freq [1x1] - Cutoff frequency [Hz]
|
||||
%
|
||||
% Outputs:
|
||||
% - stewart - updated Stewart structure with the added fields:
|
||||
% - stewart.sensors.inertial
|
||||
% - type - 1 (geophone), 2 (accelerometer), 3 (none)
|
||||
% - K [1x1] - Stiffness [N/m]
|
||||
% - C [1x1] - Damping [N/(m/s)]
|
||||
% - M [1x1] - Inertial Mass [kg]
|
||||
% - G [1x1] - Gain
|
||||
|
||||
arguments
|
||||
stewart
|
||||
args.type char {mustBeMember(args.type,{'geophone', 'accelerometer', 'none'})} = 'none'
|
||||
args.mass (1,1) double {mustBeNumeric, mustBeNonnegative} = 1e-2
|
||||
args.freq (1,1) double {mustBeNumeric, mustBeNonnegative} = 1e3
|
||||
end
|
||||
|
||||
sensor = struct();
|
||||
|
||||
switch args.type
|
||||
case 'geophone'
|
||||
sensor.type = 1;
|
||||
|
||||
sensor.M = args.mass;
|
||||
sensor.K = sensor.M * (2*pi*args.freq)^2;
|
||||
sensor.C = 2*sqrt(sensor.M * sensor.K);
|
||||
case 'accelerometer'
|
||||
sensor.type = 2;
|
||||
|
||||
sensor.M = args.mass;
|
||||
sensor.K = sensor.M * (2*pi*args.freq)^2;
|
||||
sensor.C = 2*sqrt(sensor.M * sensor.K);
|
||||
sensor.G = -sensor.K/sensor.M;
|
||||
case 'none'
|
||||
sensor.type = 3;
|
||||
end
|
||||
|
||||
stewart.sensors.inertial = sensor;
|
131
A4-simscape-micro-station/src/initializeJointDynamics.m
Normal file
131
A4-simscape-micro-station/src/initializeJointDynamics.m
Normal file
@@ -0,0 +1,131 @@
|
||||
function [stewart] = initializeJointDynamics(stewart, args)
|
||||
% initializeJointDynamics - Add Stiffness and Damping properties for the spherical joints
|
||||
%
|
||||
% Syntax: [stewart] = initializeJointDynamics(args)
|
||||
%
|
||||
% Inputs:
|
||||
% - args - Structure with the following fields:
|
||||
% - type_F - 'universal', 'spherical', 'universal_p', 'spherical_p'
|
||||
% - type_M - 'universal', 'spherical', 'universal_p', 'spherical_p'
|
||||
% - Kf_M [6x1] - Bending (Rx, Ry) Stiffness for each top joints [(N.m)/rad]
|
||||
% - Kt_M [6x1] - Torsion (Rz) Stiffness for each top joints [(N.m)/rad]
|
||||
% - Cf_M [6x1] - Bending (Rx, Ry) Damping of each top joint [(N.m)/(rad/s)]
|
||||
% - Ct_M [6x1] - Torsion (Rz) Damping of each top joint [(N.m)/(rad/s)]
|
||||
% - Kf_F [6x1] - Bending (Rx, Ry) Stiffness for each bottom joints [(N.m)/rad]
|
||||
% - Kt_F [6x1] - Torsion (Rz) Stiffness for each bottom joints [(N.m)/rad]
|
||||
% - Cf_F [6x1] - Bending (Rx, Ry) Damping of each bottom joint [(N.m)/(rad/s)]
|
||||
% - Cf_F [6x1] - Torsion (Rz) Damping of each bottom joint [(N.m)/(rad/s)]
|
||||
%
|
||||
% Outputs:
|
||||
% - stewart - updated Stewart structure with the added fields:
|
||||
% - stewart.joints_F and stewart.joints_M:
|
||||
% - type - 1 (universal), 2 (spherical), 3 (universal perfect), 4 (spherical perfect)
|
||||
% - Kx, Ky, Kz [6x1] - Translation (Tx, Ty, Tz) Stiffness [N/m]
|
||||
% - Kf [6x1] - Flexion (Rx, Ry) Stiffness [(N.m)/rad]
|
||||
% - Kt [6x1] - Torsion (Rz) Stiffness [(N.m)/rad]
|
||||
% - Cx, Cy, Cz [6x1] - Translation (Rx, Ry) Damping [N/(m/s)]
|
||||
% - Cf [6x1] - Flexion (Rx, Ry) Damping [(N.m)/(rad/s)]
|
||||
% - Cb [6x1] - Torsion (Rz) Damping [(N.m)/(rad/s)]
|
||||
|
||||
arguments
|
||||
stewart
|
||||
args.type_F char {mustBeMember(args.type_F,{'universal', 'spherical', 'universal_p', 'spherical_p', 'universal_3dof', 'spherical_3dof', 'flexible'})} = 'universal'
|
||||
args.type_M char {mustBeMember(args.type_M,{'universal', 'spherical', 'universal_p', 'spherical_p', 'universal_3dof', 'spherical_3dof', 'flexible'})} = 'spherical'
|
||||
args.Kf_M (6,1) double {mustBeNumeric, mustBeNonnegative} = 33*ones(6,1)
|
||||
args.Cf_M (6,1) double {mustBeNumeric, mustBeNonnegative} = 1e-4*ones(6,1)
|
||||
args.Kt_M (6,1) double {mustBeNumeric, mustBeNonnegative} = 236*ones(6,1)
|
||||
args.Ct_M (6,1) double {mustBeNumeric, mustBeNonnegative} = 1e-3*ones(6,1)
|
||||
args.Kf_F (6,1) double {mustBeNumeric, mustBeNonnegative} = 33*ones(6,1)
|
||||
args.Cf_F (6,1) double {mustBeNumeric, mustBeNonnegative} = 1e-4*ones(6,1)
|
||||
args.Kt_F (6,1) double {mustBeNumeric, mustBeNonnegative} = 236*ones(6,1)
|
||||
args.Ct_F (6,1) double {mustBeNumeric, mustBeNonnegative} = 1e-3*ones(6,1)
|
||||
args.Ka_F (6,1) double {mustBeNumeric, mustBeNonnegative} = 1.2e8*ones(6,1)
|
||||
args.Ca_F (6,1) double {mustBeNumeric, mustBeNonnegative} = 1e1*ones(6,1)
|
||||
args.Kr_F (6,1) double {mustBeNumeric, mustBeNonnegative} = 1.1e7*ones(6,1)
|
||||
args.Cr_F (6,1) double {mustBeNumeric, mustBeNonnegative} = 1e1*ones(6,1)
|
||||
args.Ka_M (6,1) double {mustBeNumeric, mustBeNonnegative} = 1.2e8*ones(6,1)
|
||||
args.Ca_M (6,1) double {mustBeNumeric, mustBeNonnegative} = 1e1*ones(6,1)
|
||||
args.Kr_M (6,1) double {mustBeNumeric, mustBeNonnegative} = 1.1e7*ones(6,1)
|
||||
args.Cr_M (6,1) double {mustBeNumeric, mustBeNonnegative} = 1e1*ones(6,1)
|
||||
args.K_M double {mustBeNumeric} = zeros(6,6)
|
||||
args.M_M double {mustBeNumeric} = zeros(6,6)
|
||||
args.n_xyz_M double {mustBeNumeric} = zeros(2,3)
|
||||
args.xi_M double {mustBeNumeric} = 0.1
|
||||
args.step_file_M char {} = ''
|
||||
args.K_F double {mustBeNumeric} = zeros(6,6)
|
||||
args.M_F double {mustBeNumeric} = zeros(6,6)
|
||||
args.n_xyz_F double {mustBeNumeric} = zeros(2,3)
|
||||
args.xi_F double {mustBeNumeric} = 0.1
|
||||
args.step_file_F char {} = ''
|
||||
end
|
||||
|
||||
switch args.type_F
|
||||
case 'universal'
|
||||
stewart.joints_F.type = 1;
|
||||
case 'spherical'
|
||||
stewart.joints_F.type = 2;
|
||||
case 'universal_p'
|
||||
stewart.joints_F.type = 3;
|
||||
case 'spherical_p'
|
||||
stewart.joints_F.type = 4;
|
||||
case 'flexible'
|
||||
stewart.joints_F.type = 5;
|
||||
case 'universal_3dof'
|
||||
stewart.joints_F.type = 6;
|
||||
case 'spherical_3dof'
|
||||
stewart.joints_F.type = 7;
|
||||
end
|
||||
|
||||
switch args.type_M
|
||||
case 'universal'
|
||||
stewart.joints_M.type = 1;
|
||||
case 'spherical'
|
||||
stewart.joints_M.type = 2;
|
||||
case 'universal_p'
|
||||
stewart.joints_M.type = 3;
|
||||
case 'spherical_p'
|
||||
stewart.joints_M.type = 4;
|
||||
case 'flexible'
|
||||
stewart.joints_M.type = 5;
|
||||
case 'universal_3dof'
|
||||
stewart.joints_M.type = 6;
|
||||
case 'spherical_3dof'
|
||||
stewart.joints_M.type = 7;
|
||||
end
|
||||
|
||||
stewart.joints_M.Ka = args.Ka_M;
|
||||
stewart.joints_M.Kr = args.Kr_M;
|
||||
|
||||
stewart.joints_F.Ka = args.Ka_F;
|
||||
stewart.joints_F.Kr = args.Kr_F;
|
||||
|
||||
stewart.joints_M.Ca = args.Ca_M;
|
||||
stewart.joints_M.Cr = args.Cr_M;
|
||||
|
||||
stewart.joints_F.Ca = args.Ca_F;
|
||||
stewart.joints_F.Cr = args.Cr_F;
|
||||
|
||||
stewart.joints_M.Kf = args.Kf_M;
|
||||
stewart.joints_M.Kt = args.Kt_M;
|
||||
|
||||
stewart.joints_F.Kf = args.Kf_F;
|
||||
stewart.joints_F.Kt = args.Kt_F;
|
||||
|
||||
stewart.joints_M.Cf = args.Cf_M;
|
||||
stewart.joints_M.Ct = args.Ct_M;
|
||||
|
||||
stewart.joints_F.Cf = args.Cf_F;
|
||||
stewart.joints_F.Ct = args.Ct_F;
|
||||
|
||||
stewart.joints_F.M = args.M_F;
|
||||
stewart.joints_F.K = args.K_F;
|
||||
stewart.joints_F.n_xyz = args.n_xyz_F;
|
||||
stewart.joints_F.xi = args.xi_F;
|
||||
stewart.joints_F.xi = args.xi_F;
|
||||
stewart.joints_F.step_file = args.step_file_F;
|
||||
|
||||
stewart.joints_M.M = args.M_M;
|
||||
stewart.joints_M.K = args.K_M;
|
||||
stewart.joints_M.n_xyz = args.n_xyz_M;
|
||||
stewart.joints_M.xi = args.xi_M;
|
||||
stewart.joints_M.step_file = args.step_file_M;
|
@@ -0,0 +1,33 @@
|
||||
function [] = initializeLoggingConfiguration(args)
|
||||
|
||||
arguments
|
||||
args.log char {mustBeMember(args.log,{'none', 'all', 'forces'})} = 'none'
|
||||
args.Ts (1,1) double {mustBeNumeric, mustBePositive} = 1e-3
|
||||
end
|
||||
|
||||
conf_log = struct();
|
||||
|
||||
switch args.log
|
||||
case 'none'
|
||||
conf_log.type = 0;
|
||||
case 'all'
|
||||
conf_log.type = 1;
|
||||
case 'forces'
|
||||
conf_log.type = 2;
|
||||
end
|
||||
|
||||
conf_log.Ts = args.Ts;
|
||||
|
||||
if exist('./mat', 'dir')
|
||||
if exist('./mat/nass_model_conf_log.mat', 'file')
|
||||
save('mat/nass_model_conf_log.mat', 'conf_log', '-append');
|
||||
else
|
||||
save('mat/nass_model_conf_log.mat', 'conf_log');
|
||||
end
|
||||
elseif exist('./matlab', 'dir')
|
||||
if exist('./matlab/mat/nass_model_conf_log.mat', 'file')
|
||||
save('matlab/mat/nass_model_conf_log.mat', 'conf_log', '-append');
|
||||
else
|
||||
save('matlab/mat/nass_model_conf_log.mat', 'conf_log');
|
||||
end
|
||||
end
|
108
A4-simscape-micro-station/src/initializeMicroHexapod.m
Normal file
108
A4-simscape-micro-station/src/initializeMicroHexapod.m
Normal file
@@ -0,0 +1,108 @@
|
||||
function [micro_hexapod] = initializeMicroHexapod(args)
|
||||
|
||||
arguments
|
||||
args.type char {mustBeMember(args.type,{'none', 'rigid', 'flexible'})} = 'flexible'
|
||||
% initializeFramesPositions
|
||||
args.H (1,1) double {mustBeNumeric, mustBePositive} = 350e-3
|
||||
args.MO_B (1,1) double {mustBeNumeric} = 270e-3
|
||||
% generateGeneralConfiguration
|
||||
args.FH (1,1) double {mustBeNumeric, mustBePositive} = 50e-3
|
||||
args.FR (1,1) double {mustBeNumeric, mustBePositive} = 175.5e-3
|
||||
args.FTh (6,1) double {mustBeNumeric} = [-10, 10, 120-10, 120+10, 240-10, 240+10]*(pi/180)
|
||||
args.MH (1,1) double {mustBeNumeric, mustBePositive} = 45e-3
|
||||
args.MR (1,1) double {mustBeNumeric, mustBePositive} = 118e-3
|
||||
args.MTh (6,1) double {mustBeNumeric} = [-60+10, 60-10, 60+10, 180-10, 180+10, -60-10]*(pi/180)
|
||||
% initializeStrutDynamics
|
||||
args.Ki (6,1) double {mustBeNumeric, mustBeNonnegative} = 2e7*ones(6,1)
|
||||
args.Ci (6,1) double {mustBeNumeric, mustBeNonnegative} = 1.4e3*ones(6,1)
|
||||
% initializeCylindricalPlatforms
|
||||
args.Fpm (1,1) double {mustBeNumeric, mustBePositive} = 10
|
||||
args.Fph (1,1) double {mustBeNumeric, mustBePositive} = 26e-3
|
||||
args.Fpr (1,1) double {mustBeNumeric, mustBePositive} = 207.5e-3
|
||||
args.Mpm (1,1) double {mustBeNumeric, mustBePositive} = 10
|
||||
args.Mph (1,1) double {mustBeNumeric, mustBePositive} = 26e-3
|
||||
args.Mpr (1,1) double {mustBeNumeric, mustBePositive} = 150e-3
|
||||
% initializeCylindricalStruts
|
||||
args.Fsm (1,1) double {mustBeNumeric, mustBePositive} = 1
|
||||
args.Fsh (1,1) double {mustBeNumeric, mustBePositive} = 100e-3
|
||||
args.Fsr (1,1) double {mustBeNumeric, mustBePositive} = 25e-3
|
||||
args.Msm (1,1) double {mustBeNumeric, mustBePositive} = 1
|
||||
args.Msh (1,1) double {mustBeNumeric, mustBePositive} = 100e-3
|
||||
args.Msr (1,1) double {mustBeNumeric, mustBePositive} = 25e-3
|
||||
% inverseKinematics
|
||||
args.AP (3,1) double {mustBeNumeric} = zeros(3,1)
|
||||
args.ARB (3,3) double {mustBeNumeric} = eye(3)
|
||||
end
|
||||
|
||||
stewart = initializeStewartPlatform();
|
||||
|
||||
stewart = initializeFramesPositions(stewart, ...
|
||||
'H', args.H, ...
|
||||
'MO_B', args.MO_B);
|
||||
|
||||
stewart = generateGeneralConfiguration(stewart, ...
|
||||
'FH', args.FH, ...
|
||||
'FR', args.FR, ...
|
||||
'FTh', args.FTh, ...
|
||||
'MH', args.MH, ...
|
||||
'MR', args.MR, ...
|
||||
'MTh', args.MTh);
|
||||
|
||||
stewart = computeJointsPose(stewart);
|
||||
|
||||
stewart = initializeStrutDynamics(stewart, ...
|
||||
'K', args.Ki, ...
|
||||
'C', args.Ci);
|
||||
|
||||
stewart = initializeJointDynamics(stewart, ...
|
||||
'type_F', 'universal_p', ...
|
||||
'type_M', 'spherical_p');
|
||||
|
||||
stewart = initializeCylindricalPlatforms(stewart, ...
|
||||
'Fpm', args.Fpm, ...
|
||||
'Fph', args.Fph, ...
|
||||
'Fpr', args.Fpr, ...
|
||||
'Mpm', args.Mpm, ...
|
||||
'Mph', args.Mph, ...
|
||||
'Mpr', args.Mpr);
|
||||
|
||||
stewart = initializeCylindricalStruts(stewart, ...
|
||||
'Fsm', args.Fsm, ...
|
||||
'Fsh', args.Fsh, ...
|
||||
'Fsr', args.Fsr, ...
|
||||
'Msm', args.Msm, ...
|
||||
'Msh', args.Msh, ...
|
||||
'Msr', args.Msr);
|
||||
|
||||
stewart = computeJacobian(stewart);
|
||||
|
||||
stewart = initializeStewartPose(stewart, ...
|
||||
'AP', args.AP, ...
|
||||
'ARB', args.ARB);
|
||||
|
||||
stewart = initializeInertialSensor(stewart, 'type', 'none');
|
||||
|
||||
switch args.type
|
||||
case 'none'
|
||||
stewart.type = 0;
|
||||
case 'rigid'
|
||||
stewart.type = 1;
|
||||
case 'flexible'
|
||||
stewart.type = 2;
|
||||
end
|
||||
|
||||
micro_hexapod = stewart;
|
||||
if exist('./mat', 'dir')
|
||||
if exist('./mat/nass_model_stages.mat', 'file')
|
||||
save('mat/nass_model_stages.mat', 'micro_hexapod', '-append');
|
||||
else
|
||||
save('mat/nass_model_stages.mat', 'micro_hexapod');
|
||||
end
|
||||
elseif exist('./matlab', 'dir')
|
||||
if exist('./matlab/mat/nass_model_stages.mat', 'file')
|
||||
save('matlab/mat/nass_model_stages.mat', 'micro_hexapod', '-append');
|
||||
else
|
||||
save('matlab/mat/nass_model_stages.mat', 'micro_hexapod');
|
||||
end
|
||||
end
|
||||
end
|
199
A4-simscape-micro-station/src/initializeReferences.m
Normal file
199
A4-simscape-micro-station/src/initializeReferences.m
Normal file
@@ -0,0 +1,199 @@
|
||||
function [ref] = initializeReferences(args)
|
||||
|
||||
arguments
|
||||
% Sampling Frequency [s]
|
||||
args.Ts (1,1) double {mustBeNumeric, mustBePositive} = 1e-3
|
||||
% Maximum simulation time [s]
|
||||
args.Tmax (1,1) double {mustBeNumeric, mustBePositive} = 100
|
||||
% Either "constant" / "triangular" / "sinusoidal"
|
||||
args.Dy_type char {mustBeMember(args.Dy_type,{'constant', 'triangular', 'sinusoidal'})} = 'constant'
|
||||
% Amplitude of the displacement [m]
|
||||
args.Dy_amplitude (1,1) double {mustBeNumeric} = 0
|
||||
% Period of the displacement [s]
|
||||
args.Dy_period (1,1) double {mustBeNumeric, mustBePositive} = 1
|
||||
% Either "constant" / "triangular" / "sinusoidal"
|
||||
args.Ry_type char {mustBeMember(args.Ry_type,{'constant', 'triangular', 'sinusoidal'})} = 'constant'
|
||||
% Amplitude [rad]
|
||||
args.Ry_amplitude (1,1) double {mustBeNumeric} = 0
|
||||
% Period of the displacement [s]
|
||||
args.Ry_period (1,1) double {mustBeNumeric, mustBePositive} = 1
|
||||
% Either "constant" / "rotating"
|
||||
args.Rz_type char {mustBeMember(args.Rz_type,{'constant', 'rotating', 'rotating-not-filtered'})} = 'constant'
|
||||
% Initial angle [rad]
|
||||
args.Rz_amplitude (1,1) double {mustBeNumeric} = 0
|
||||
% Period of the rotating [s]
|
||||
args.Rz_period (1,1) double {mustBeNumeric, mustBePositive} = 1
|
||||
% For now, only constant is implemented
|
||||
args.Dh_type char {mustBeMember(args.Dh_type,{'constant'})} = 'constant'
|
||||
% Initial position [m,m,m,rad,rad,rad] of the top platform (Pitch-Roll-Yaw Euler angles)
|
||||
args.Dh_pos (6,1) double {mustBeNumeric} = zeros(6, 1), ...
|
||||
% For now, only constant is implemented
|
||||
args.Rm_type char {mustBeMember(args.Rm_type,{'constant'})} = 'constant'
|
||||
% Initial position of the two masses
|
||||
args.Rm_pos (2,1) double {mustBeNumeric} = [0; pi]
|
||||
% For now, only constant is implemented
|
||||
args.Dn_type char {mustBeMember(args.Dn_type,{'constant'})} = 'constant'
|
||||
% Initial position [m,m,m,rad,rad,rad] of the top platform
|
||||
args.Dn_pos (6,1) double {mustBeNumeric} = zeros(6,1)
|
||||
end
|
||||
|
||||
%% Set Sampling Time
|
||||
Ts = args.Ts;
|
||||
Tmax = args.Tmax;
|
||||
|
||||
%% Low Pass Filter to filter out the references
|
||||
s = zpk('s');
|
||||
w0 = 2*pi*10;
|
||||
xi = 1;
|
||||
H_lpf = 1/(1 + 2*xi/w0*s + s^2/w0^2);
|
||||
|
||||
%% Translation stage - Dy
|
||||
t = 0:Ts:Tmax; % Time Vector [s]
|
||||
Dy = zeros(length(t), 1);
|
||||
Dyd = zeros(length(t), 1);
|
||||
Dydd = zeros(length(t), 1);
|
||||
switch args.Dy_type
|
||||
case 'constant'
|
||||
Dy(:) = args.Dy_amplitude;
|
||||
Dyd(:) = 0;
|
||||
Dydd(:) = 0;
|
||||
case 'triangular'
|
||||
% This is done to unsure that we start with no displacement
|
||||
Dy_raw = args.Dy_amplitude*sawtooth(2*pi*t/args.Dy_period,1/2);
|
||||
i0 = find(t>=args.Dy_period/4,1);
|
||||
Dy(1:end-i0+1) = Dy_raw(i0:end);
|
||||
Dy(end-i0+2:end) = Dy_raw(end); % we fix the last value
|
||||
|
||||
% The signal is filtered out
|
||||
Dy = lsim(H_lpf, Dy, t);
|
||||
Dyd = lsim(H_lpf*s, Dy, t);
|
||||
Dydd = lsim(H_lpf*s^2, Dy, t);
|
||||
case 'sinusoidal'
|
||||
Dy(:) = args.Dy_amplitude*sin(2*pi/args.Dy_period*t);
|
||||
Dyd = args.Dy_amplitude*2*pi/args.Dy_period*cos(2*pi/args.Dy_period*t);
|
||||
Dydd = -args.Dy_amplitude*(2*pi/args.Dy_period)^2*sin(2*pi/args.Dy_period*t);
|
||||
otherwise
|
||||
warning('Dy_type is not set correctly');
|
||||
end
|
||||
|
||||
Dy = struct('time', t, 'signals', struct('values', Dy), 'deriv', Dyd, 'dderiv', Dydd);
|
||||
|
||||
%% Tilt Stage - Ry
|
||||
t = 0:Ts:Tmax; % Time Vector [s]
|
||||
Ry = zeros(length(t), 1);
|
||||
Ryd = zeros(length(t), 1);
|
||||
Rydd = zeros(length(t), 1);
|
||||
|
||||
switch args.Ry_type
|
||||
case 'constant'
|
||||
Ry(:) = args.Ry_amplitude;
|
||||
Ryd(:) = 0;
|
||||
Rydd(:) = 0;
|
||||
case 'triangular'
|
||||
Ry_raw = args.Ry_amplitude*sawtooth(2*pi*t/args.Ry_period,1/2);
|
||||
i0 = find(t>=args.Ry_period/4,1);
|
||||
Ry(1:end-i0+1) = Ry_raw(i0:end);
|
||||
Ry(end-i0+2:end) = Ry_raw(end); % we fix the last value
|
||||
|
||||
% The signal is filtered out
|
||||
Ry = lsim(H_lpf, Ry, t);
|
||||
Ryd = lsim(H_lpf*s, Ry, t);
|
||||
Rydd = lsim(H_lpf*s^2, Ry, t);
|
||||
case 'sinusoidal'
|
||||
Ry(:) = args.Ry_amplitude*sin(2*pi/args.Ry_period*t);
|
||||
|
||||
Ryd = args.Ry_amplitude*2*pi/args.Ry_period*cos(2*pi/args.Ry_period*t);
|
||||
Rydd = -args.Ry_amplitude*(2*pi/args.Ry_period)^2*sin(2*pi/args.Ry_period*t);
|
||||
otherwise
|
||||
warning('Ry_type is not set correctly');
|
||||
end
|
||||
|
||||
Ry = struct('time', t, 'signals', struct('values', Ry), 'deriv', Ryd, 'dderiv', Rydd);
|
||||
|
||||
%% Spindle - Rz
|
||||
t = 0:Ts:Tmax; % Time Vector [s]
|
||||
Rz = zeros(length(t), 1);
|
||||
Rzd = zeros(length(t), 1);
|
||||
Rzdd = zeros(length(t), 1);
|
||||
|
||||
switch args.Rz_type
|
||||
case 'constant'
|
||||
Rz(:) = args.Rz_amplitude;
|
||||
Rzd(:) = 0;
|
||||
Rzdd(:) = 0;
|
||||
case 'rotating-not-filtered'
|
||||
Rz(:) = 2*pi/args.Rz_period*t;
|
||||
|
||||
% The signal is filtered out
|
||||
Rz(:) = 2*pi/args.Rz_period*t;
|
||||
Rzd(:) = 2*pi/args.Rz_period;
|
||||
Rzdd(:) = 0;
|
||||
|
||||
% We add the angle offset
|
||||
Rz = Rz + args.Rz_amplitude;
|
||||
|
||||
case 'rotating'
|
||||
Rz(:) = 2*pi/args.Rz_period*t;
|
||||
|
||||
% The signal is filtered out
|
||||
Rz = lsim(H_lpf, Rz, t);
|
||||
Rzd = lsim(H_lpf*s, Rz, t);
|
||||
Rzdd = lsim(H_lpf*s^2, Rz, t);
|
||||
|
||||
% We add the angle offset
|
||||
Rz = Rz + args.Rz_amplitude;
|
||||
otherwise
|
||||
warning('Rz_type is not set correctly');
|
||||
end
|
||||
|
||||
Rz = struct('time', t, 'signals', struct('values', Rz), 'deriv', Rzd, 'dderiv', Rzdd);
|
||||
|
||||
%% Micro-Hexapod
|
||||
t = [0, Ts];
|
||||
Dh = zeros(length(t), 6);
|
||||
Dhl = zeros(length(t), 6);
|
||||
|
||||
switch args.Dh_type
|
||||
case 'constant'
|
||||
Dh = [args.Dh_pos, args.Dh_pos];
|
||||
|
||||
load('nass_model_stages.mat', 'micro_hexapod');
|
||||
|
||||
AP = [args.Dh_pos(1) ; args.Dh_pos(2) ; args.Dh_pos(3)];
|
||||
|
||||
tx = args.Dh_pos(4);
|
||||
ty = args.Dh_pos(5);
|
||||
tz = args.Dh_pos(6);
|
||||
|
||||
ARB = [cos(tz) -sin(tz) 0;
|
||||
sin(tz) cos(tz) 0;
|
||||
0 0 1]*...
|
||||
[ cos(ty) 0 sin(ty);
|
||||
0 1 0;
|
||||
-sin(ty) 0 cos(ty)]*...
|
||||
[1 0 0;
|
||||
0 cos(tx) -sin(tx);
|
||||
0 sin(tx) cos(tx)];
|
||||
|
||||
[~, Dhl] = inverseKinematics(micro_hexapod, 'AP', AP, 'ARB', ARB);
|
||||
Dhl = [Dhl, Dhl];
|
||||
otherwise
|
||||
warning('Dh_type is not set correctly');
|
||||
end
|
||||
|
||||
Dh = struct('time', t, 'signals', struct('values', Dh));
|
||||
Dhl = struct('time', t, 'signals', struct('values', Dhl));
|
||||
|
||||
if exist('./mat', 'dir')
|
||||
if exist('./mat/nass_model_references.mat', 'file')
|
||||
save('mat/nass_model_references.mat', 'Dy', 'Ry', 'Rz', 'Dh', 'Dhl', 'args', 'Ts', '-append');
|
||||
else
|
||||
save('mat/nass_model_references.mat', 'Dy', 'Ry', 'Rz', 'Dh', 'Dhl', 'args', 'Ts');
|
||||
end
|
||||
elseif exist('./matlab', 'dir')
|
||||
if exist('./matlab/mat/nass_model_references.mat', 'file')
|
||||
save('matlab/mat/nass_model_references.mat', 'Dy', 'Ry', 'Rz', 'Dh', 'Dhl', 'args', 'Ts', '-append');
|
||||
else
|
||||
save('matlab/mat/nass_model_references.mat', 'Dy', 'Ry', 'Rz', 'Dh', 'Dhl', 'args', 'Ts');
|
||||
end
|
||||
end
|
57
A4-simscape-micro-station/src/initializeRy.m
Normal file
57
A4-simscape-micro-station/src/initializeRy.m
Normal file
@@ -0,0 +1,57 @@
|
||||
function [ry] = initializeRy(args)
|
||||
|
||||
arguments
|
||||
args.type char {mustBeMember(args.type,{'none', 'rigid', 'flexible'})} = 'flexible'
|
||||
args.Ry_init (1,1) double {mustBeNumeric} = 0
|
||||
end
|
||||
|
||||
ry = struct();
|
||||
|
||||
switch args.type
|
||||
case 'none'
|
||||
ry.type = 0;
|
||||
case 'rigid'
|
||||
ry.type = 1;
|
||||
case 'flexible'
|
||||
ry.type = 2;
|
||||
end
|
||||
|
||||
% Ry - Guide for the tilt stage
|
||||
ry.guide.density = 7800; % [kg/m3]
|
||||
ry.guide.STEP = 'Tilt_Guide.STEP';
|
||||
|
||||
% Ry - Rotor of the motor
|
||||
ry.rotor.density = 2400; % [kg/m3]
|
||||
ry.rotor.STEP = 'Tilt_Motor_Axis.STEP';
|
||||
|
||||
% Ry - Motor
|
||||
ry.motor.density = 3200; % [kg/m3]
|
||||
ry.motor.STEP = 'Tilt_Motor.STEP';
|
||||
|
||||
% Ry - Plateau Tilt
|
||||
ry.stage.density = 7800; % [kg/m3]
|
||||
ry.stage.STEP = 'Tilt_Stage.STEP';
|
||||
|
||||
% Z-Offset so that the center of rotation matches the sample center;
|
||||
ry.z_offset = 0.58178; % [m]
|
||||
|
||||
ry.Ry_init = args.Ry_init; % [rad]
|
||||
|
||||
ry.K = [3.8e8; 4e8; 3.8e8; 1.2e8; 6e4; 1.2e8];
|
||||
ry.C = [1e5; 1e5; 1e5; 3e4; 1e3; 3e4];
|
||||
|
||||
if exist('./mat', 'dir')
|
||||
if exist('./mat/nass_model_stages.mat', 'file')
|
||||
save('mat/nass_model_stages.mat', 'ry', '-append');
|
||||
else
|
||||
save('mat/nass_model_stages.mat', 'ry');
|
||||
end
|
||||
elseif exist('./matlab', 'dir')
|
||||
if exist('./matlab/mat/nass_model_stages.mat', 'file')
|
||||
save('matlab/mat/nass_model_stages.mat', 'ry', '-append');
|
||||
else
|
||||
save('matlab/mat/nass_model_stages.mat', 'ry');
|
||||
end
|
||||
end
|
||||
|
||||
end
|
47
A4-simscape-micro-station/src/initializeRz.m
Normal file
47
A4-simscape-micro-station/src/initializeRz.m
Normal file
@@ -0,0 +1,47 @@
|
||||
function [rz] = initializeRz(args)
|
||||
|
||||
arguments
|
||||
args.type char {mustBeMember(args.type,{'none', 'rigid', 'flexible'})} = 'flexible'
|
||||
end
|
||||
|
||||
rz = struct();
|
||||
|
||||
switch args.type
|
||||
case 'none'
|
||||
rz.type = 0;
|
||||
case 'rigid'
|
||||
rz.type = 1;
|
||||
case 'flexible'
|
||||
rz.type = 2;
|
||||
end
|
||||
|
||||
% Spindle - Slip Ring
|
||||
rz.slipring.density = 7800; % [kg/m3]
|
||||
rz.slipring.STEP = 'Spindle_Slip_Ring.STEP';
|
||||
|
||||
% Spindle - Rotor
|
||||
rz.rotor.density = 7800; % [kg/m3]
|
||||
rz.rotor.STEP = 'Spindle_Rotor.STEP';
|
||||
|
||||
% Spindle - Stator
|
||||
rz.stator.density = 7800; % [kg/m3]
|
||||
rz.stator.STEP = 'Spindle_Stator.STEP';
|
||||
|
||||
rz.K = [7e8; 7e8; 2e9; 1e7; 1e7; 1e7];
|
||||
rz.C = [4e4; 4e4; 7e4; 1e4; 1e4; 1e4];
|
||||
|
||||
if exist('./mat', 'dir')
|
||||
if exist('./mat/nass_model_stages.mat', 'file')
|
||||
save('mat/nass_model_stages.mat', 'rz', '-append');
|
||||
else
|
||||
save('mat/nass_model_stages.mat', 'rz');
|
||||
end
|
||||
elseif exist('./matlab', 'dir')
|
||||
if exist('./matlab/mat/nass_model_stages.mat', 'file')
|
||||
save('matlab/mat/nass_model_stages.mat', 'rz', '-append');
|
||||
else
|
||||
save('matlab/mat/nass_model_stages.mat', 'rz');
|
||||
end
|
||||
end
|
||||
|
||||
end
|
@@ -0,0 +1,27 @@
|
||||
function [] = initializeSimscapeConfiguration(args)
|
||||
|
||||
arguments
|
||||
args.gravity logical {mustBeNumericOrLogical} = true
|
||||
end
|
||||
|
||||
conf_simscape = struct();
|
||||
|
||||
if args.gravity
|
||||
conf_simscape.type = 1;
|
||||
else
|
||||
conf_simscape.type = 2;
|
||||
end
|
||||
|
||||
if exist('./mat', 'dir')
|
||||
if exist('./mat/nass_model_conf_simscape.mat', 'file')
|
||||
save('mat/nass_model_conf_simscape.mat', 'conf_simscape', '-append');
|
||||
else
|
||||
save('mat/nass_model_conf_simscape.mat', 'conf_simscape');
|
||||
end
|
||||
elseif exist('./matlab', 'dir')
|
||||
if exist('./matlab/mat/nass_model_conf_simscape.mat', 'file')
|
||||
save('matlab/mat/nass_model_conf_simscape.mat', 'conf_simscape', '-append');
|
||||
else
|
||||
save('matlab/mat/nass_model_conf_simscape.mat', 'conf_simscape');
|
||||
end
|
||||
end
|
31
A4-simscape-micro-station/src/initializeStewartPlatform.m
Normal file
31
A4-simscape-micro-station/src/initializeStewartPlatform.m
Normal file
@@ -0,0 +1,31 @@
|
||||
function [stewart] = initializeStewartPlatform()
|
||||
% initializeStewartPlatform - Initialize the stewart structure
|
||||
%
|
||||
% Syntax: [stewart] = initializeStewartPlatform(args)
|
||||
%
|
||||
% Outputs:
|
||||
% - stewart - A structure with the following sub-structures:
|
||||
% - platform_F -
|
||||
% - platform_M -
|
||||
% - joints_F -
|
||||
% - joints_M -
|
||||
% - struts_F -
|
||||
% - struts_M -
|
||||
% - actuators -
|
||||
% - geometry -
|
||||
% - properties -
|
||||
|
||||
stewart = struct();
|
||||
stewart.platform_F = struct();
|
||||
stewart.platform_M = struct();
|
||||
stewart.joints_F = struct();
|
||||
stewart.joints_M = struct();
|
||||
stewart.struts_F = struct();
|
||||
stewart.struts_M = struct();
|
||||
stewart.actuators = struct();
|
||||
stewart.sensors = struct();
|
||||
stewart.sensors.inertial = struct();
|
||||
stewart.sensors.force = struct();
|
||||
stewart.sensors.relative = struct();
|
||||
stewart.geometry = struct();
|
||||
stewart.kinematics = struct();
|
27
A4-simscape-micro-station/src/initializeStewartPose.m
Normal file
27
A4-simscape-micro-station/src/initializeStewartPose.m
Normal file
@@ -0,0 +1,27 @@
|
||||
function [stewart] = initializeStewartPose(stewart, args)
|
||||
% initializeStewartPose - Determine the initial stroke in each leg to have the wanted pose
|
||||
% It uses the inverse kinematic
|
||||
%
|
||||
% Syntax: [stewart] = initializeStewartPose(stewart, args)
|
||||
%
|
||||
% Inputs:
|
||||
% - stewart - A structure with the following fields
|
||||
% - Aa [3x6] - The positions ai expressed in {A}
|
||||
% - Bb [3x6] - The positions bi expressed in {B}
|
||||
% - args - Can have the following fields:
|
||||
% - AP [3x1] - The wanted position of {B} with respect to {A}
|
||||
% - ARB [3x3] - The rotation matrix that gives the wanted orientation of {B} with respect to {A}
|
||||
%
|
||||
% Outputs:
|
||||
% - stewart - updated Stewart structure with the added fields:
|
||||
% - actuators.Leq [6x1] - The 6 needed displacement of the struts from the initial position in [m] to have the wanted pose of {B} w.r.t. {A}
|
||||
|
||||
arguments
|
||||
stewart
|
||||
args.AP (3,1) double {mustBeNumeric} = zeros(3,1)
|
||||
args.ARB (3,3) double {mustBeNumeric} = eye(3)
|
||||
end
|
||||
|
||||
[Li, dLi] = inverseKinematics(stewart, 'AP', args.AP, 'ARB', args.ARB);
|
||||
|
||||
stewart.actuators.Leq = dLi;
|
49
A4-simscape-micro-station/src/initializeStrutDynamics.m
Normal file
49
A4-simscape-micro-station/src/initializeStrutDynamics.m
Normal file
@@ -0,0 +1,49 @@
|
||||
function [stewart] = initializeStrutDynamics(stewart, args)
|
||||
% initializeStrutDynamics - Add Stiffness and Damping properties of each strut
|
||||
%
|
||||
% Syntax: [stewart] = initializeStrutDynamics(args)
|
||||
%
|
||||
% Inputs:
|
||||
% - args - Structure with the following fields:
|
||||
% - K [6x1] - Stiffness of each strut [N/m]
|
||||
% - C [6x1] - Damping of each strut [N/(m/s)]
|
||||
%
|
||||
% Outputs:
|
||||
% - stewart - updated Stewart structure with the added fields:
|
||||
% - actuators.type = 1
|
||||
% - actuators.K [6x1] - Stiffness of each strut [N/m]
|
||||
% - actuators.C [6x1] - Damping of each strut [N/(m/s)]
|
||||
|
||||
arguments
|
||||
stewart
|
||||
args.type char {mustBeMember(args.type,{'classical', 'amplified'})} = 'classical'
|
||||
args.K (6,1) double {mustBeNumeric, mustBeNonnegative} = 20e6*ones(6,1)
|
||||
args.C (6,1) double {mustBeNumeric, mustBeNonnegative} = 2e1*ones(6,1)
|
||||
args.k1 (6,1) double {mustBeNumeric} = 1e6*ones(6,1)
|
||||
args.ke (6,1) double {mustBeNumeric} = 5e6*ones(6,1)
|
||||
args.ka (6,1) double {mustBeNumeric} = 60e6*ones(6,1)
|
||||
args.c1 (6,1) double {mustBeNumeric} = 10*ones(6,1)
|
||||
args.F_gain (6,1) double {mustBeNumeric} = 1*ones(6,1)
|
||||
args.me (6,1) double {mustBeNumeric} = 0.01*ones(6,1)
|
||||
args.ma (6,1) double {mustBeNumeric} = 0.01*ones(6,1)
|
||||
end
|
||||
|
||||
if strcmp(args.type, 'classical')
|
||||
stewart.actuators.type = 1;
|
||||
elseif strcmp(args.type, 'amplified')
|
||||
stewart.actuators.type = 2;
|
||||
end
|
||||
|
||||
stewart.actuators.K = args.K;
|
||||
stewart.actuators.C = args.C;
|
||||
|
||||
stewart.actuators.k1 = args.k1;
|
||||
stewart.actuators.c1 = args.c1;
|
||||
|
||||
stewart.actuators.ka = args.ka;
|
||||
stewart.actuators.ke = args.ke;
|
||||
|
||||
stewart.actuators.F_gain = args.F_gain;
|
||||
|
||||
stewart.actuators.ma = args.ma;
|
||||
stewart.actuators.me = args.me;
|
71
A4-simscape-micro-station/src/initializeTy.m
Normal file
71
A4-simscape-micro-station/src/initializeTy.m
Normal file
@@ -0,0 +1,71 @@
|
||||
function [ty] = initializeTy(args)
|
||||
|
||||
arguments
|
||||
args.type char {mustBeMember(args.type,{'none', 'rigid', 'flexible'})} = 'flexible'
|
||||
end
|
||||
|
||||
ty = struct();
|
||||
|
||||
switch args.type
|
||||
case 'none'
|
||||
ty.type = 0;
|
||||
case 'rigid'
|
||||
ty.type = 1;
|
||||
case 'flexible'
|
||||
ty.type = 2;
|
||||
end
|
||||
|
||||
% Ty Granite frame
|
||||
ty.granite_frame.density = 7800; % [kg/m3] => 43kg
|
||||
ty.granite_frame.STEP = 'Ty_Granite_Frame.STEP';
|
||||
|
||||
% Guide Translation Ty
|
||||
ty.guide.density = 7800; % [kg/m3] => 76kg
|
||||
ty.guide.STEP = 'Ty_Guide.STEP';
|
||||
|
||||
% Ty - Guide_Translation12
|
||||
ty.guide12.density = 7800; % [kg/m3]
|
||||
ty.guide12.STEP = 'Ty_Guide_12.STEP';
|
||||
|
||||
% Ty - Guide_Translation11
|
||||
ty.guide11.density = 7800; % [kg/m3]
|
||||
ty.guide11.STEP = 'Ty_Guide_11.STEP';
|
||||
|
||||
% Ty - Guide_Translation22
|
||||
ty.guide22.density = 7800; % [kg/m3]
|
||||
ty.guide22.STEP = 'Ty_Guide_22.STEP';
|
||||
|
||||
% Ty - Guide_Translation21
|
||||
ty.guide21.density = 7800; % [kg/m3]
|
||||
ty.guide21.STEP = 'Ty_Guide_21.STEP';
|
||||
|
||||
% Ty - Plateau translation
|
||||
ty.frame.density = 7800; % [kg/m3]
|
||||
ty.frame.STEP = 'Ty_Stage.STEP';
|
||||
|
||||
% Ty Stator Part
|
||||
ty.stator.density = 5400; % [kg/m3]
|
||||
ty.stator.STEP = 'Ty_Motor_Stator.STEP';
|
||||
|
||||
% Ty Rotor Part
|
||||
ty.rotor.density = 5400; % [kg/m3]
|
||||
ty.rotor.STEP = 'Ty_Motor_Rotor.STEP';
|
||||
|
||||
ty.K = [2e8; 1e8; 2e8; 6e7; 9e7; 6e7]; % [N/m, N*m/rad]
|
||||
ty.C = [8e4; 5e4; 8e4; 2e4; 3e4; 1e4]; % [N/(m/s), N*m/(rad/s)]
|
||||
|
||||
if exist('./mat', 'dir')
|
||||
if exist('./mat/nass_model_stages.mat', 'file')
|
||||
save('mat/nass_model_stages.mat', 'ty', '-append');
|
||||
else
|
||||
save('mat/nass_model_stages.mat', 'ty');
|
||||
end
|
||||
elseif exist('./matlab', 'dir')
|
||||
if exist('./matlab/mat/nass_model_stages.mat', 'file')
|
||||
save('matlab/mat/nass_model_stages.mat', 'ty', '-append');
|
||||
else
|
||||
save('matlab/mat/nass_model_stages.mat', 'ty');
|
||||
end
|
||||
end
|
||||
|
||||
end
|
31
A4-simscape-micro-station/src/initializeZAxisAccelerometer.m
Normal file
31
A4-simscape-micro-station/src/initializeZAxisAccelerometer.m
Normal file
@@ -0,0 +1,31 @@
|
||||
function [accelerometer] = initializeZAxisAccelerometer(args)
|
||||
arguments
|
||||
args.mass (1,1) double {mustBeNumeric, mustBePositive} = 1e-3 % [kg]
|
||||
args.freq (1,1) double {mustBeNumeric, mustBePositive} = 5e3 % [Hz]
|
||||
end
|
||||
|
||||
%%
|
||||
accelerometer.m = args.mass;
|
||||
|
||||
%% The Stiffness is set to have the damping resonance frequency
|
||||
accelerometer.k = accelerometer.m * (2*pi*args.freq)^2;
|
||||
|
||||
%% We set the damping value to have critical damping
|
||||
accelerometer.c = 2*sqrt(accelerometer.m * accelerometer.k);
|
||||
|
||||
%% Gain correction of the accelerometer to have a unity gain until the resonance
|
||||
accelerometer.gain = -accelerometer.k/accelerometer.m;
|
||||
|
||||
if exist('./mat', 'dir')
|
||||
if exist('./mat/accelerometer_z_axis.mat', 'file')
|
||||
save('mat/accelerometer_z_axis.mat', 'accelerometer', '-append');
|
||||
else
|
||||
save('mat/accelerometer_z_axis.mat', 'accelerometer');
|
||||
end
|
||||
elseif exist('./matlab', 'dir')
|
||||
if exist('./matlab/mat/accelerometer_z_axis.mat', 'file')
|
||||
save('matlab/mat/accelerometer_z_axis.mat', 'accelerometer', '-append');
|
||||
else
|
||||
save('matlab/mat/accelerometer_z_axis.mat', 'accelerometer');
|
||||
end
|
||||
end
|
28
A4-simscape-micro-station/src/initializeZAxisGeophone.m
Normal file
28
A4-simscape-micro-station/src/initializeZAxisGeophone.m
Normal file
@@ -0,0 +1,28 @@
|
||||
function [geophone] = initializeZAxisGeophone(args)
|
||||
arguments
|
||||
args.mass (1,1) double {mustBeNumeric, mustBePositive} = 1e-3 % [kg]
|
||||
args.freq (1,1) double {mustBeNumeric, mustBePositive} = 1 % [Hz]
|
||||
end
|
||||
|
||||
%%
|
||||
geophone.m = args.mass;
|
||||
|
||||
%% The Stiffness is set to have the damping resonance frequency
|
||||
geophone.k = geophone.m * (2*pi*args.freq)^2;
|
||||
|
||||
%% We set the damping value to have critical damping
|
||||
geophone.c = 2*sqrt(geophone.m * geophone.k);
|
||||
|
||||
if exist('./mat', 'dir')
|
||||
if exist('./mat/geophone_z_axis.mat', 'file')
|
||||
save('mat/geophone_z_axis.mat', 'geophone', '-append');
|
||||
else
|
||||
save('mat/geophone_z_axis.mat', 'geophone');
|
||||
end
|
||||
elseif exist('./matlab', 'dir')
|
||||
if exist('./matlab/mat/geophone_z_axis.mat', 'file')
|
||||
save('matlab/mat/geophone_z_axis.mat', 'geophone', '-append');
|
||||
else
|
||||
save('matlab/mat/geophone_z_axis.mat', 'geophone');
|
||||
end
|
||||
end
|
36
A4-simscape-micro-station/src/inverseKinematics.m
Normal file
36
A4-simscape-micro-station/src/inverseKinematics.m
Normal file
@@ -0,0 +1,36 @@
|
||||
function [Li, dLi] = inverseKinematics(stewart, args)
|
||||
% inverseKinematics - Compute the needed length of each strut to have the wanted position and orientation of {B} with respect to {A}
|
||||
%
|
||||
% Syntax: [stewart] = inverseKinematics(stewart)
|
||||
%
|
||||
% Inputs:
|
||||
% - stewart - A structure with the following fields
|
||||
% - geometry.Aa [3x6] - The positions ai expressed in {A}
|
||||
% - geometry.Bb [3x6] - The positions bi expressed in {B}
|
||||
% - geometry.l [6x1] - Length of each strut
|
||||
% - args - Can have the following fields:
|
||||
% - AP [3x1] - The wanted position of {B} with respect to {A}
|
||||
% - ARB [3x3] - The rotation matrix that gives the wanted orientation of {B} with respect to {A}
|
||||
%
|
||||
% Outputs:
|
||||
% - Li [6x1] - The 6 needed length of the struts in [m] to have the wanted pose of {B} w.r.t. {A}
|
||||
% - dLi [6x1] - The 6 needed displacement of the struts from the initial position in [m] to have the wanted pose of {B} w.r.t. {A}
|
||||
|
||||
arguments
|
||||
stewart
|
||||
args.AP (3,1) double {mustBeNumeric} = zeros(3,1)
|
||||
args.ARB (3,3) double {mustBeNumeric} = eye(3)
|
||||
end
|
||||
|
||||
assert(isfield(stewart.geometry, 'Aa'), 'stewart.geometry should have attribute Aa')
|
||||
Aa = stewart.geometry.Aa;
|
||||
|
||||
assert(isfield(stewart.geometry, 'Bb'), 'stewart.geometry should have attribute Bb')
|
||||
Bb = stewart.geometry.Bb;
|
||||
|
||||
assert(isfield(stewart.geometry, 'l'), 'stewart.geometry should have attribute l')
|
||||
l = stewart.geometry.l;
|
||||
|
||||
Li = sqrt(args.AP'*args.AP + diag(Bb'*Bb) + diag(Aa'*Aa) - (2*args.AP'*Aa)' + (2*args.AP'*(args.ARB*Bb))' - diag(2*(args.ARB*Bb)'*Aa));
|
||||
|
||||
dLi = Li-l;
|
BIN
A4-simscape-micro-station/subsystems/metrology_6dof.slx
Normal file
BIN
A4-simscape-micro-station/subsystems/metrology_6dof.slx
Normal file
Binary file not shown.
BIN
A4-simscape-micro-station/subsystems/micro_hexapod_bot_plate.slx
Normal file
BIN
A4-simscape-micro-station/subsystems/micro_hexapod_bot_plate.slx
Normal file
Binary file not shown.
BIN
A4-simscape-micro-station/subsystems/micro_hexapod_leg.slx
Normal file
BIN
A4-simscape-micro-station/subsystems/micro_hexapod_leg.slx
Normal file
Binary file not shown.
BIN
A4-simscape-micro-station/subsystems/micro_hexapod_strut.slx
Normal file
BIN
A4-simscape-micro-station/subsystems/micro_hexapod_strut.slx
Normal file
Binary file not shown.
Binary file not shown.
BIN
A4-simscape-micro-station/subsystems/micro_hexapod_top_plate.slx
Normal file
BIN
A4-simscape-micro-station/subsystems/micro_hexapod_top_plate.slx
Normal file
Binary file not shown.
90
A4-simscape-micro-station/ustation_1_kinematics.m
Normal file
90
A4-simscape-micro-station/ustation_1_kinematics.m
Normal file
@@ -0,0 +1,90 @@
|
||||
%% ustation_1_kinematics.m
|
||||
|
||||
%% Clear Workspace and Close figures
|
||||
clear; close all; clc;
|
||||
|
||||
%% Intialize Laplace variable
|
||||
s = zpk('s');
|
||||
|
||||
%% Path for functions, data and scripts
|
||||
addpath('./mat/'); % Path for Data
|
||||
addpath('./src/'); % Path for functions
|
||||
addpath('./STEPS/'); % Path for STEPS
|
||||
addpath('./subsystems/'); % Path for Subsystems Simulink files
|
||||
|
||||
% Simulink Model name
|
||||
mdl = 'ustation_simscape';
|
||||
|
||||
load('nass_model_conf_simulink.mat');
|
||||
|
||||
%% Colors for the figures
|
||||
colors = colororder;
|
||||
|
||||
%% Frequency Vector
|
||||
freqs = logspace(log10(10), log10(2e3), 1000);
|
||||
|
||||
%% Stage setpoints
|
||||
Dy = 1e-3; % Translation Stage [m]
|
||||
Ry = 3*pi/180; % Tilt Stage [rad]
|
||||
Rz = 180*pi/180; % Spindle [rad]
|
||||
|
||||
%% Stage individual Homogeneous transformations
|
||||
% Translation Stage
|
||||
Rty = [1 0 0 0;
|
||||
0 1 0 Dy;
|
||||
0 0 1 0;
|
||||
0 0 0 1];
|
||||
|
||||
% Tilt Stage - Pure rotating aligned with Ob
|
||||
Rry = [ cos(Ry) 0 sin(Ry) 0;
|
||||
0 1 0 0;
|
||||
-sin(Ry) 0 cos(Ry) 0;
|
||||
0 0 0 1];
|
||||
|
||||
% Spindle - Rotation along the Z axis
|
||||
Rrz = [cos(Rz) -sin(Rz) 0 0 ;
|
||||
sin(Rz) cos(Rz) 0 0 ;
|
||||
0 0 1 0 ;
|
||||
0 0 0 1 ];
|
||||
|
||||
% Micro-Station homogeneous transformation
|
||||
Ttot = Rty*Rry*Rrz;
|
||||
|
||||
%% Compute translations and rotations (Euler angles) induced by the micro-station
|
||||
ustation_dx = Ttot(1,4);
|
||||
ustation_dy = Ttot(2,4);
|
||||
ustation_dz = Ttot(3,4);
|
||||
ustation_ry = atan2( Ttot(1, 3), sqrt(Ttot(1, 1)^2 + Ttot(1, 2)^2));
|
||||
ustation_rx = atan2(-Ttot(2, 3)/cos(ustation_ry), Ttot(3, 3)/cos(ustation_ry));
|
||||
ustation_rz = atan2(-Ttot(1, 2)/cos(ustation_ry), Ttot(1, 1)/cos(ustation_ry));
|
||||
|
||||
%% Verification using the Simscape model
|
||||
% All stages are initialized as rigid bodies to avoid any guiding error
|
||||
initializeGround( 'type', 'rigid');
|
||||
initializeGranite( 'type', 'rigid');
|
||||
initializeTy( 'type', 'rigid');
|
||||
initializeRy( 'type', 'rigid');
|
||||
initializeRz( 'type', 'rigid');
|
||||
initializeMicroHexapod('type', 'rigid');
|
||||
|
||||
initializeLoggingConfiguration('log', 'all');
|
||||
|
||||
initializeReferences('Dy_amplitude', Dy, ...
|
||||
'Ry_amplitude', Ry, ...
|
||||
'Rz_amplitude', Rz);
|
||||
|
||||
initializeDisturbances('enable', false);
|
||||
|
||||
set_param(conf_simulink, 'StopTime', '0.5');
|
||||
|
||||
% Simulation is performed
|
||||
sim(mdl);
|
||||
|
||||
% Sample's motion is computed from "external metrology"
|
||||
T_sim = [simout.y.R.Data(:,:,end), [simout.y.x.Data(end); simout.y.y.Data(end); simout.y.z.Data(end)]; [0,0,0,1]];
|
||||
sim_dx = T_sim(1,4);
|
||||
sim_dy = T_sim(2,4);
|
||||
sim_dz = T_sim(3,4);
|
||||
sim_ry = atan2( T_sim(1, 3), sqrt(T_sim(1, 1)^2 + T_sim(1, 2)^2));
|
||||
sim_rx = atan2(-T_sim(2, 3)/cos(sim_ry), T_sim(3, 3)/cos(sim_ry));
|
||||
sim_rz = atan2(-T_sim(1, 2)/cos(sim_ry), T_sim(1, 1)/cos(sim_ry));
|
321
A4-simscape-micro-station/ustation_2_modeling.m
Normal file
321
A4-simscape-micro-station/ustation_2_modeling.m
Normal file
@@ -0,0 +1,321 @@
|
||||
%% ustation_2_modeling.m
|
||||
|
||||
%% Clear Workspace and Close figures
|
||||
clear; close all; clc;
|
||||
|
||||
%% Intialize Laplace variable
|
||||
s = zpk('s');
|
||||
|
||||
%% Path for functions, data and scripts
|
||||
addpath('./mat/'); % Path for Data
|
||||
addpath('./src/'); % Path for functions
|
||||
addpath('./STEPS/'); % Path for STEPS
|
||||
addpath('./subsystems/'); % Path for Subsystems Simulink files
|
||||
|
||||
% Simulink Model name
|
||||
mdl = 'ustation_simscape';
|
||||
|
||||
load('nass_model_conf_simulink.mat');
|
||||
|
||||
%% Colors for the figures
|
||||
colors = colororder;
|
||||
|
||||
%% Frequency Vector
|
||||
freqs = logspace(log10(10), log10(2e3), 1000);
|
||||
|
||||
%% Indentify the model dynamics from the 3 hammer imapcts
|
||||
% To the motion of each solid body at their CoM
|
||||
|
||||
% All stages are initialized
|
||||
initializeGround( 'type', 'rigid');
|
||||
initializeGranite( 'type', 'flexible');
|
||||
initializeTy( 'type', 'flexible');
|
||||
initializeRy( 'type', 'flexible');
|
||||
initializeRz( 'type', 'flexible');
|
||||
initializeMicroHexapod('type', 'flexible');
|
||||
|
||||
initializeLoggingConfiguration('log', 'none');
|
||||
|
||||
initializeReferences();
|
||||
initializeDisturbances('enable', false);
|
||||
|
||||
% Input/Output definition
|
||||
clear io; io_i = 1;
|
||||
io(io_i) = linio([mdl, '/Micro-Station/Translation Stage/Flexible/F_hammer'], 1, 'openinput'); io_i = io_i + 1;
|
||||
io(io_i) = linio([mdl, '/Micro-Station/Granite/Flexible/accelerometer'], 1, 'openoutput'); io_i = io_i + 1;
|
||||
io(io_i) = linio([mdl, '/Micro-Station/Translation Stage/Flexible/accelerometer'], 1, 'openoutput'); io_i = io_i + 1;
|
||||
io(io_i) = linio([mdl, '/Micro-Station/Tilt Stage/Flexible/accelerometer'], 1, 'openoutput'); io_i = io_i + 1;
|
||||
io(io_i) = linio([mdl, '/Micro-Station/Spindle/Flexible/accelerometer'], 1, 'openoutput'); io_i = io_i + 1;
|
||||
io(io_i) = linio([mdl, '/Micro-Station/Micro Hexapod/Flexible/accelerometer'], 1, 'openoutput'); io_i = io_i + 1;
|
||||
|
||||
% Run the linearization
|
||||
G_ms = linearize(mdl, io, 0);
|
||||
G_ms.InputName = {'Fx', 'Fy', 'Fz'};
|
||||
G_ms.OutputName = {'gtop_x', 'gtop_y', 'gtop_z', 'gtop_rx', 'gtop_ry', 'gtop_rz', ...
|
||||
'ty_x', 'ty_y', 'ty_z', 'ty_rx', 'ty_ry', 'ty_rz', ...
|
||||
'ry_x', 'ry_y', 'ry_z', 'ry_rx', 'ry_ry', 'ry_rz', ...
|
||||
'rz_x', 'rz_y', 'rz_z', 'rz_rx', 'rz_ry', 'rz_rz', ...
|
||||
'hexa_x', 'hexa_y', 'hexa_z', 'hexa_rx', 'hexa_ry', 'hexa_rz'};
|
||||
|
||||
% Load estimated FRF at CoM
|
||||
load('ustation_frf_matrix.mat', 'freqs');
|
||||
load('ustation_frf_com.mat', 'frfs_CoM');
|
||||
|
||||
% Initialization of some variables to the figures
|
||||
dirs = {'x', 'y', 'z', 'rx', 'ry', 'rz'};
|
||||
stages = {'gbot', 'gtop', 'ty', 'ry', 'rz', 'hexa'};
|
||||
f = logspace(log10(10), log10(500), 1000);
|
||||
|
||||
%% Spindle - X response
|
||||
n_stg = 5; % Measured Stage
|
||||
n_dir = 1; % Measured DoF: x, y, z, Rx, Ry, Rz
|
||||
n_exc = 1; % Hammer impact: x, y, z
|
||||
|
||||
figure;
|
||||
hold on;
|
||||
plot(freqs, abs(squeeze(frfs_CoM(6*(n_stg-1) + n_dir, n_exc, :))), 'DisplayName', 'Measurement');
|
||||
plot(f, abs(squeeze(freqresp(G_ms([stages{n_stg}, '_', dirs{n_dir}], ['F', dirs{n_exc}]), f, 'Hz'))), 'DisplayName', 'Model');
|
||||
text(50, 2e-2,{'$D_x/F_x$ - Spindle'},'VerticalAlignment','bottom','HorizontalAlignment','center')
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
xlabel('Frequency [Hz]'); ylabel('Magnitude [$m/s^2/N$]');
|
||||
leg = legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 1);
|
||||
leg.ItemTokenSize(1) = 15;
|
||||
xlim([10, 200]);
|
||||
ylim([1e-6, 1e-1])
|
||||
|
||||
%% Hexapod - Y response
|
||||
n_stg = 6; % Measured Stage
|
||||
n_dir = 2; % Measured DoF: x, y, z, Rx, Ry, Rz
|
||||
n_exc = 2; % Hammer impact: x, y, z
|
||||
|
||||
figure;
|
||||
hold on;
|
||||
plot(freqs, abs(squeeze(frfs_CoM(6*(n_stg-1) + n_dir, n_exc, :))), 'DisplayName', 'Measurement');
|
||||
plot(f, abs(squeeze(freqresp(G_ms([stages{n_stg}, '_', dirs{n_dir}], ['F', dirs{n_exc}]), f, 'Hz'))), 'DisplayName', 'Model');
|
||||
text(50, 2e-2,{'$D_y/F_y$ - Hexapod'},'VerticalAlignment','bottom','HorizontalAlignment','center')
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
xlabel('Frequency [Hz]'); ylabel('Magnitude [$m/s^2/N$]');
|
||||
leg = legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 1);
|
||||
leg.ItemTokenSize(1) = 15;
|
||||
xlim([10, 200]);
|
||||
ylim([1e-6, 1e-1])
|
||||
|
||||
%% Tilt stage - Z response
|
||||
n_stg = 4; % Measured Stage
|
||||
n_dir = 3; % Measured DoF: x, y, z, Rx, Ry, Rz
|
||||
n_exc = 3; % Hammer impact: x, y, z
|
||||
|
||||
figure;
|
||||
hold on;
|
||||
plot(freqs, abs(squeeze(frfs_CoM(6*(n_stg-1) + n_dir, n_exc, :))), 'DisplayName', 'Measurement');
|
||||
plot(f, abs(squeeze(freqresp(G_ms([stages{n_stg}, '_', dirs{n_dir}], ['F', dirs{n_exc}]), f, 'Hz'))), 'DisplayName', 'Model');
|
||||
text(50, 2e-2,{'$D_z/F_z$ - Tilt'},'VerticalAlignment','bottom','HorizontalAlignment','center')
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
xlabel('Frequency [Hz]'); ylabel('Magnitude [$m/s^2/N$]');
|
||||
leg = legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 1);
|
||||
leg.ItemTokenSize(1) = 15;
|
||||
xlim([10, 200]);
|
||||
ylim([1e-6, 1e-1])
|
||||
|
||||
% Positions and orientation of accelerometers
|
||||
% | *Num* | *Position* | *Orientation* | *Sensibility* | *Channels* |
|
||||
% |-------+------------+---------------+---------------+------------|
|
||||
% | 1 | [0, +A, 0] | [x, y, z] | 1V/g | 1-3 |
|
||||
% | 2 | [-B, 0, 0] | [x, y, z] | 1V/g | 4-6 |
|
||||
% | 3 | [0, -A, 0] | [x, y, z] | 0.1V/g | 7-9 |
|
||||
% | 4 | [+B, 0, 0] | [x, y, z] | 1V/g | 10-12 |
|
||||
%
|
||||
|
||||
% Measuerment channels
|
||||
%
|
||||
% | Acc Number | Dir | Channel Number |
|
||||
% |------------+-----+----------------|
|
||||
% | 1 | x | 1 |
|
||||
% | 1 | y | 2 |
|
||||
% | 1 | z | 3 |
|
||||
% | 2 | x | 4 |
|
||||
% | 2 | y | 5 |
|
||||
% | 2 | z | 6 |
|
||||
% | 3 | x | 7 |
|
||||
% | 3 | y | 8 |
|
||||
% | 3 | z | 9 |
|
||||
% | 4 | x | 10 |
|
||||
% | 4 | y | 11 |
|
||||
% | 4 | z | 12 |
|
||||
% | Hammer | | 13 |
|
||||
|
||||
% 10 measurements corresponding to 10 different Hammer impact locations
|
||||
% | *Num* | *Direction* | *Position* | Accelerometer position | Jacobian number |
|
||||
% |-------+-------------+------------+------------------------+-----------------|
|
||||
% | 1 | -Y | [0, +A, 0] | 1 | -2 |
|
||||
% | 2 | -Z | [0, +A, 0] | 1 | -3 |
|
||||
% | 3 | X | [-B, 0, 0] | 2 | 4 |
|
||||
% | 4 | -Z | [-B, 0, 0] | 2 | -6 |
|
||||
% | 5 | Y | [0, -A, 0] | 3 | 8 |
|
||||
% | 6 | -Z | [0, -A, 0] | 3 | -9 |
|
||||
% | 7 | -X | [+B, 0, 0] | 4 | -10 |
|
||||
% | 8 | -Z | [+B, 0, 0] | 4 | -12 |
|
||||
% | 9 | -X | [0, -A, 0] | 3 | -7 |
|
||||
% | 10 | -X | [0, +A, 0] | 1 | -1 |
|
||||
|
||||
|
||||
%% Jacobian for accelerometers
|
||||
% aX = Ja . aL
|
||||
d = 0.14; % [m]
|
||||
Ja = [1 0 0 0 0 -d;
|
||||
0 1 0 0 0 0;
|
||||
0 0 1 d 0 0;
|
||||
1 0 0 0 0 0;
|
||||
0 1 0 0 0 -d;
|
||||
0 0 1 0 d 0;
|
||||
1 0 0 0 0 d;
|
||||
0 1 0 0 0 0;
|
||||
0 0 1 -d 0 0;
|
||||
1 0 0 0 0 0;
|
||||
0 1 0 0 0 d;
|
||||
0 0 1 0 -d 0];
|
||||
|
||||
Ja_inv = pinv(Ja);
|
||||
|
||||
%% Jacobian for hammer impacts
|
||||
% F = Jf' tau
|
||||
Jf = [0 -1 0 0 0 0;
|
||||
0 0 -1 -d 0 0;
|
||||
1 0 0 0 0 0;
|
||||
0 0 -1 0 -d 0;
|
||||
0 1 0 0 0 0;
|
||||
0 0 -1 d 0 0;
|
||||
-1 0 0 0 0 0;
|
||||
0 0 -1 0 d 0;
|
||||
-1 0 0 0 0 -d;
|
||||
-1 0 0 0 0 d]';
|
||||
Jf_inv = pinv(Jf);
|
||||
|
||||
%% Load raw measurement data
|
||||
% "Track1" to "Track12" are the 12 accelerometers
|
||||
% "Track13" is the instrumented hammer force sensor
|
||||
data = [
|
||||
load('ustation_compliance_hammer_1.mat'), ...
|
||||
load('ustation_compliance_hammer_2.mat'), ...
|
||||
load('ustation_compliance_hammer_3.mat'), ...
|
||||
load('ustation_compliance_hammer_4.mat'), ...
|
||||
load('ustation_compliance_hammer_5.mat'), ...
|
||||
load('ustation_compliance_hammer_6.mat'), ...
|
||||
load('ustation_compliance_hammer_7.mat'), ...
|
||||
load('ustation_compliance_hammer_8.mat'), ...
|
||||
load('ustation_compliance_hammer_9.mat'), ...
|
||||
load('ustation_compliance_hammer_10.mat')];
|
||||
|
||||
%% Prepare the FRF computation
|
||||
Ts = 1e-3; % Sampling Time [s]
|
||||
Nfft = floor(1/Ts); % Number of points for the FFT computation
|
||||
win = ones(Nfft, 1); % Rectangular window
|
||||
[~, f] = tfestimate(data(1).Track13, data(1).Track1, win, [], Nfft, 1/Ts);
|
||||
|
||||
% Samples taken before and after the hammer "impact"
|
||||
pre_n = floor(0.1/Ts);
|
||||
post_n = Nfft - pre_n - 1;
|
||||
|
||||
%% Compute the FRFs for the 10 hammer impact locations.
|
||||
% The FRF from hammer force the 12 accelerometers are computed
|
||||
% for each of the 10 hammer impacts and averaged
|
||||
G_raw = zeros(12,10,length(f));
|
||||
|
||||
for i = 1:10 % For each impact location
|
||||
% Find the 10 impacts
|
||||
[~, impacts_i] = find(diff(data(i).Track13 > 50)==1);
|
||||
% Only keep the first 10 impacts if there are more than 10 impacts
|
||||
if length(impacts_i)>10
|
||||
impacts_i(11:end) = [];
|
||||
end
|
||||
|
||||
% Average the FRF for the 10 impacts
|
||||
for impact_i = impacts_i
|
||||
i_start = impact_i - pre_n;
|
||||
i_end = impact_i + post_n;
|
||||
data_in = data(i).Track13(i_start:i_end); % [N]
|
||||
% Remove hammer DC offset
|
||||
data_in = data_in - mean(data_in(end-pre_n:end));
|
||||
% Combine all outputs [m/s^2]
|
||||
data_out = [data(i).Track1( i_start:i_end); ...
|
||||
data(i).Track2( i_start:i_end); ...
|
||||
data(i).Track3( i_start:i_end); ...
|
||||
data(i).Track4( i_start:i_end); ...
|
||||
data(i).Track5( i_start:i_end); ...
|
||||
data(i).Track6( i_start:i_end); ...
|
||||
data(i).Track7( i_start:i_end); ...
|
||||
data(i).Track8( i_start:i_end); ...
|
||||
data(i).Track9( i_start:i_end); ...
|
||||
data(i).Track10(i_start:i_end); ...
|
||||
data(i).Track11(i_start:i_end); ...
|
||||
data(i).Track12(i_start:i_end)];
|
||||
|
||||
[frf, ~] = tfestimate(data_in, data_out', win, [], Nfft, 1/Ts);
|
||||
G_raw(:,i,:) = squeeze(G_raw(:,i,:)) + 0.1*frf'./(-(2*pi*f').^2);
|
||||
end
|
||||
end
|
||||
|
||||
%% Compute transfer function in cartesian frame using Jacobian matrices
|
||||
% FRF_cartesian = inv(Ja) * FRF * inv(Jf)
|
||||
FRF_cartesian = pagemtimes(Ja_inv, pagemtimes(G_raw, Jf_inv));
|
||||
|
||||
%% Identification of the compliance of the micro-station
|
||||
|
||||
% Initialize simulation with default parameters (flexible elements)
|
||||
initializeGround();
|
||||
initializeGranite();
|
||||
initializeTy();
|
||||
initializeRy();
|
||||
initializeRz();
|
||||
initializeMicroHexapod();
|
||||
|
||||
initializeReferences();
|
||||
initializeSimscapeConfiguration();
|
||||
initializeLoggingConfiguration();
|
||||
|
||||
% Input/Output definition
|
||||
clear io; io_i = 1;
|
||||
io(io_i) = linio([mdl, '/Micro-Station/Micro Hexapod/Flexible/Fm'], 1, 'openinput'); io_i = io_i + 1; % Direct Forces/Torques applied on the micro-hexapod top platform
|
||||
io(io_i) = linio([mdl, '/Micro-Station/Micro Hexapod/Flexible/Dm'], 1, 'output'); io_i = io_i + 1; % Absolute displacement of the top platform
|
||||
|
||||
% Run the linearization
|
||||
Gm = linearize(mdl, io, 0);
|
||||
Gm.InputName = {'Fmx', 'Fmy', 'Fmz', 'Mmx', 'Mmy', 'Mmz'};
|
||||
Gm.OutputName = {'Dx', 'Dy', 'Dz', 'Drx', 'Dry', 'Drz'};
|
||||
|
||||
%% Extracted FRF of the compliance of the micro-station in the Cartesian frame from the Simscape model
|
||||
figure;
|
||||
hold on;
|
||||
plot(f, abs(squeeze(FRF_cartesian(1,1,:))), '-', 'color', [colors(1,:), 0.5], 'linewidth', 2.5, 'DisplayName', '$D_x/F_x$ - Measured')
|
||||
plot(f, abs(squeeze(FRF_cartesian(2,2,:))), '-', 'color', [colors(2,:), 0.5], 'linewidth', 2.5, 'DisplayName', '$D_y/F_y$ - Measured')
|
||||
plot(f, abs(squeeze(FRF_cartesian(3,3,:))), '-', 'color', [colors(3,:), 0.5], 'linewidth', 2.5, 'DisplayName', '$D_z/F_z$ - Measured')
|
||||
plot(f, abs(squeeze(freqresp(Gm(1,1), f, 'Hz'))), '-', 'color', colors(1,:), 'DisplayName', '$D_x/F_x$ - Model')
|
||||
plot(f, abs(squeeze(freqresp(Gm(2,2), f, 'Hz'))), '-', 'color', colors(2,:), 'DisplayName', '$D_y/F_y$ - Model')
|
||||
plot(f, abs(squeeze(freqresp(Gm(3,3), f, 'Hz'))), '-', 'color', colors(3,:), 'DisplayName', '$D_z/F_z$ - Model')
|
||||
hold off;
|
||||
leg = legend('location', 'southwest', 'FontSize', 8, 'NumColumns', 2);
|
||||
leg.ItemTokenSize(1) = 15;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
xlabel('Frequency [Hz]'); ylabel('Magnitude [m/N]');
|
||||
xlim([20, 500]); ylim([2e-10, 1e-6]);
|
||||
xticks([20, 50, 100, 200, 500])
|
||||
|
||||
%% Extracted FRF of the compliance of the micro-station in the Cartesian frame from the Simscape model
|
||||
figure;
|
||||
hold on;
|
||||
plot(f, abs(squeeze(FRF_cartesian(4,4,:))), '-', 'color', [colors(1,:), 0.5], 'linewidth', 2.5, 'DisplayName', '$R_x/M_x$ - Measured')
|
||||
plot(f, abs(squeeze(FRF_cartesian(5,5,:))), '-', 'color', [colors(2,:), 0.5], 'linewidth', 2.5, 'DisplayName', '$R_y/M_y$ - Measured')
|
||||
plot(f, abs(squeeze(FRF_cartesian(6,6,:))), '-', 'color', [colors(3,:), 0.5], 'linewidth', 2.5, 'DisplayName', '$R_z/M_z$ - Measured')
|
||||
plot(f, abs(squeeze(freqresp(Gm(4,4), f, 'Hz'))), '-', 'color', colors(1,:), 'DisplayName', '$R_x/M_x$ - Model')
|
||||
plot(f, abs(squeeze(freqresp(Gm(5,5), f, 'Hz'))), '-', 'color', colors(2,:), 'DisplayName', '$R_y/M_y$ - Model')
|
||||
plot(f, abs(squeeze(freqresp(Gm(6,6), f, 'Hz'))), '-', 'color', colors(3,:), 'DisplayName', '$R_z/M_z$ - Model')
|
||||
hold off;
|
||||
leg = legend('location', 'southwest', 'FontSize', 8, 'NumColumns', 2);
|
||||
leg.ItemTokenSize(1) = 15;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
xlabel('Frequency [Hz]'); ylabel('Magnitude [rad/Nm]');
|
||||
xlim([20, 500]); ylim([2e-7, 1e-4]);
|
||||
xticks([20, 50, 100, 200, 500])
|
345
A4-simscape-micro-station/ustation_3_disturbances.m
Normal file
345
A4-simscape-micro-station/ustation_3_disturbances.m
Normal file
@@ -0,0 +1,345 @@
|
||||
%% ustation_3_disturbances.m
|
||||
|
||||
%% Clear Workspace and Close figures
|
||||
clear; close all; clc;
|
||||
|
||||
%% Intialize Laplace variable
|
||||
s = zpk('s');
|
||||
|
||||
%% Path for functions, data and scripts
|
||||
addpath('./mat/'); % Path for Data
|
||||
addpath('./src/'); % Path for functions
|
||||
addpath('./STEPS/'); % Path for STEPS
|
||||
addpath('./subsystems/'); % Path for Subsystems Simulink files
|
||||
|
||||
% Simulink Model name
|
||||
mdl = 'ustation_simscape';
|
||||
|
||||
load('nass_model_conf_simulink.mat');
|
||||
|
||||
%% Colors for the figures
|
||||
colors = colororder;
|
||||
|
||||
%% Frequency Vector
|
||||
freqs = logspace(log10(10), log10(2e3), 1000);
|
||||
|
||||
%% Compute Floor Motion Spectral Density
|
||||
% Load floor motion data
|
||||
% velocity in [m/s] is measured in X, Y and Z directions
|
||||
load('ustation_ground_motion.mat', 'Ts', 'Fs', 'vel_x', 'vel_y', 'vel_z', 't');
|
||||
|
||||
% Estimate ground displacement from measured velocity
|
||||
% This is done by integrating the motion
|
||||
gm_x = lsim(1/(s+0.1*2*pi), vel_x, t);
|
||||
gm_y = lsim(1/(s+0.1*2*pi), vel_y, t);
|
||||
gm_z = lsim(1/(s+0.1*2*pi), vel_z, t);
|
||||
|
||||
Nfft = floor(2/Ts);
|
||||
win = hanning(Nfft);
|
||||
Noverlap = floor(Nfft/2);
|
||||
|
||||
[pxx_gm_vx, f_gm] = pwelch(vel_x, win, Noverlap, Nfft, 1/Ts);
|
||||
[pxx_gm_vy, ~] = pwelch(vel_y, win, Noverlap, Nfft, 1/Ts);
|
||||
[pxx_gm_vz, ~] = pwelch(vel_z, win, Noverlap, Nfft, 1/Ts);
|
||||
|
||||
% Convert PSD in velocity to PSD in displacement
|
||||
pxx_gm_x = pxx_gm_vx./((2*pi*f_gm).^2);
|
||||
pxx_gm_y = pxx_gm_vy./((2*pi*f_gm).^2);
|
||||
pxx_gm_z = pxx_gm_vz./((2*pi*f_gm).^2);
|
||||
|
||||
%% Measured ground motion
|
||||
figure;
|
||||
hold on;
|
||||
plot(t, 1e6*gm_x, 'DisplayName', '$D_{xf}$')
|
||||
plot(t, 1e6*gm_y, 'DisplayName', '$D_{yf}$')
|
||||
plot(t, 1e6*gm_z, 'DisplayName', '$D_{zf}$')
|
||||
hold off;
|
||||
xlabel('Time [s]');
|
||||
ylabel('Ground motion [$\mu$m]')
|
||||
xlim([0, 5]); ylim([-2, 2])
|
||||
leg = legend('location', 'northeast', 'FontSize', 8, 'NumColumns', 1);
|
||||
leg.ItemTokenSize(1) = 15;
|
||||
|
||||
%% Ty errors
|
||||
% Setpoint is in [mm]
|
||||
% Vertical error is in [um]
|
||||
ty_errors = load('ustation_errors_ty.mat');
|
||||
|
||||
% Compute best straight line to remove it from data
|
||||
average_error = mean(ty_errors.ty_z')';
|
||||
straight_line = average_error - detrend(average_error, 1);
|
||||
|
||||
%% Measurement of the linear (vertical) deviation of the Translation stage
|
||||
figure;
|
||||
hold on;
|
||||
plot(ty_errors.setpoint, ty_errors.ty_z(:,1), '-', 'color', colors(1,:), 'DisplayName', 'Raw data')
|
||||
plot(ty_errors.setpoint, ty_errors.ty_z(:,2:end), '-', 'color', colors(1,:), 'HandleVisibility', 'off')
|
||||
plot(ty_errors.setpoint, straight_line, '--', 'color', colors(2,:), 'DisplayName', 'Linear fit')
|
||||
hold off;
|
||||
xlabel('$D_y$ position [mm]'); ylabel('Vertical error [$\mu$m]');
|
||||
xlim([-5, 5]); ylim([-8, 8]);
|
||||
legend('location', 'southwest', 'FontSize', 8, 'NumColumns', 1);
|
||||
|
||||
%% Measurement of the linear (vertical) deviation of the Translation stage - Remove best linear fit
|
||||
figure;
|
||||
plot(ty_errors.setpoint, ty_errors.ty_z - straight_line, 'k-')
|
||||
xlabel('$D_y$ position [mm]'); ylabel('Residual vertical error [$\mu$m]');
|
||||
xlim([-5, 5]); ylim([-0.4, 0.4]);
|
||||
|
||||
%% Convert the data to frequency domain
|
||||
% Suppose a certain constant velocity scan
|
||||
delta_ty = (ty_errors.setpoint(end) - ty_errors.setpoint(1))/(length(ty_errors.setpoint) - 1); % [mm]
|
||||
ty_vel = 8*1.125; % [mm/s]
|
||||
Ts = delta_ty/ty_vel;
|
||||
Fs = 1/Ts;
|
||||
|
||||
% Frequency Analysis
|
||||
Nfft = floor(length(ty_errors.setpoint)); % Number of frequency points
|
||||
win = hanning(Nfft); % Windowing
|
||||
Noverlap = floor(Nfft/2); % Overlap for frequency analysis
|
||||
|
||||
% Comnpute the power spectral density
|
||||
[pxx_dy_dz, f_dy] = pwelch(1e-6*detrend(ty_errors.ty_z, 1), win, Noverlap, Nfft, Fs);
|
||||
pxx_dy_dz = mean(pxx_dy_dz')';
|
||||
|
||||
% Having the PSD of the lateral error equal to the PSD of the vertical error
|
||||
% is a reasonable assumption (and verified in practice)
|
||||
pxx_dy_dx = pxx_dy_dz;
|
||||
|
||||
%% Spindle Errors
|
||||
% Errors are already converted to x,y,z,Rx,Ry
|
||||
% Units are in [m] and [rad]
|
||||
spindle_errors = load('ustation_errors_spindle.mat');
|
||||
|
||||
%% Measured radial errors of the Spindle
|
||||
figure;
|
||||
hold on;
|
||||
plot(1e6*spindle_errors.Dx(1:100:end), 1e6*spindle_errors.Dy(1:100:end), 'DisplayName', 'Raw data')
|
||||
% Compute best fitting circle
|
||||
[x0, y0, R] = circlefit(spindle_errors.Dx, spindle_errors.Dy);
|
||||
theta = linspace(0, 2*pi, 500); % Angle to plot the circle [rad]
|
||||
plot(1e6*(x0 + R*cos(theta)), 1e6*(y0 + R*sin(theta)), '--', 'DisplayName', 'Best Fit')
|
||||
hold off;
|
||||
xlabel('X displacement [$\mu$m]'); ylabel('Y displacement [$\mu$m]');
|
||||
axis equal
|
||||
xlim([-1, 1]); ylim([-1, 1]);
|
||||
xticks([-1, -0.5, 0, 0.5, 1]);
|
||||
yticks([-1, -0.5, 0, 0.5, 1]);
|
||||
leg = legend('location', 'none', 'FontSize', 8, 'NumColumns', 1);
|
||||
leg.ItemTokenSize(1) = 15;
|
||||
|
||||
%% Measured axial errors of the Spindle
|
||||
figure;
|
||||
plot(spindle_errors.deg(1:100:end)/360, 1e9*spindle_errors.Dz(1:100:end))
|
||||
xlabel('Rotation [turn]'); ylabel('Z displacement [nm]');
|
||||
axis square
|
||||
xlim([0,2]); ylim([-40, 40]);
|
||||
|
||||
%% Measured tilt errors of the Spindle
|
||||
figure;
|
||||
plot(1e6*spindle_errors.Rx(1:100:end), 1e6*spindle_errors.Ry(1:100:end))
|
||||
xlabel('X angle [$\mu$rad]'); ylabel('Y angle [$\mu$rad]');
|
||||
axis equal
|
||||
xlim([-35, 35]); ylim([-35, 35]);
|
||||
xticks([-30, -15, 0, 15, 30]);
|
||||
yticks([-30, -15, 0, 15, 30]);
|
||||
|
||||
%% Remove the circular fit from the data
|
||||
[x0, y0, R] = circlefit(spindle_errors.Dx, spindle_errors.Dy);
|
||||
|
||||
% Search the best angular match
|
||||
fun = @(theta)rms((spindle_errors.Dx - (x0 + R*cos(pi/180*spindle_errors.deg+theta(1)))).^2 + (spindle_errors.Dy - (y0 - R*sin(pi/180*spindle_errors.deg+theta(1)))).^2);
|
||||
x0 = [0];
|
||||
delta_theta = fminsearch(fun, 0);
|
||||
|
||||
% Compute the remaining error after removing the best circular fit
|
||||
spindle_errors.Dx_err = spindle_errors.Dx - (x0 + R*cos(pi/180*spindle_errors.deg+delta_theta));
|
||||
spindle_errors.Dy_err = spindle_errors.Dy - (y0 - R*sin(pi/180*spindle_errors.deg+delta_theta));
|
||||
|
||||
%% Convert the data to frequency domain
|
||||
Ts = (spindle_errors.t(end) - spindle_errors.t(1))/(length(spindle_errors.t)-1); % [s]
|
||||
Fs = 1/Ts; % [Hz]
|
||||
|
||||
% Frequency Analysis
|
||||
Nfft = floor(2.0*Fs); % Number of frequency points
|
||||
win = hanning(Nfft); % Windowing
|
||||
Noverlap = floor(Nfft/2); % Overlap for frequency analysis
|
||||
|
||||
% Comnpute the power spectral density
|
||||
[pxx_rz_dz, f_rz] = pwelch(spindle_errors.Dz, win, Noverlap, Nfft, Fs);
|
||||
[pxx_rz_dx, ~ ] = pwelch(spindle_errors.Dx_err, win, Noverlap, Nfft, Fs);
|
||||
[pxx_rz_dy, ~ ] = pwelch(spindle_errors.Dy_err, win, Noverlap, Nfft, Fs);
|
||||
|
||||
%% Extract sensitivity to disturbances from the Simscape model
|
||||
% Initialize stages
|
||||
initializeGround();
|
||||
initializeGranite();
|
||||
initializeTy();
|
||||
initializeRy();
|
||||
initializeRz();
|
||||
initializeMicroHexapod();
|
||||
|
||||
initializeDisturbances('enable', false);
|
||||
initializeSimscapeConfiguration('gravity', false);
|
||||
initializeLoggingConfiguration();
|
||||
|
||||
% Configure inputs and outputs
|
||||
clear io; io_i = 1;
|
||||
io(io_i) = linio([mdl, '/Disturbances/Dwx'], 1, 'openinput'); io_i = io_i + 1; % Vertical Ground Motion
|
||||
io(io_i) = linio([mdl, '/Disturbances/Dwy'], 1, 'openinput'); io_i = io_i + 1; % Vertical Ground Motion
|
||||
io(io_i) = linio([mdl, '/Disturbances/Dwz'], 1, 'openinput'); io_i = io_i + 1; % Vertical Ground Motion
|
||||
io(io_i) = linio([mdl, '/Disturbances/Fdy_x'], 1, 'openinput'); io_i = io_i + 1; % Parasitic force Ty
|
||||
io(io_i) = linio([mdl, '/Disturbances/Fdy_z'], 1, 'openinput'); io_i = io_i + 1; % Parasitic force Ty
|
||||
io(io_i) = linio([mdl, '/Disturbances/Frz_x'], 1, 'openinput'); io_i = io_i + 1; % Parasitic force Rz
|
||||
io(io_i) = linio([mdl, '/Disturbances/Frz_y'], 1, 'openinput'); io_i = io_i + 1; % Parasitic force Rz
|
||||
io(io_i) = linio([mdl, '/Disturbances/Frz_z'], 1, 'openinput'); io_i = io_i + 1; % Parasitic force Rz
|
||||
io(io_i) = linio([mdl, '/Micro-Station/metrology_6dof/x'], 1, 'openoutput'); io_i = io_i + 1; % Relative motion - Hexapod/Granite
|
||||
io(io_i) = linio([mdl, '/Micro-Station/metrology_6dof/y'], 1, 'openoutput'); io_i = io_i + 1; % Relative motion - Hexapod/Granite
|
||||
io(io_i) = linio([mdl, '/Micro-Station/metrology_6dof/z'], 1, 'openoutput'); io_i = io_i + 1; % Relative motion - Hexapod/Granite
|
||||
|
||||
% Run the linearization
|
||||
Gd = linearize(mdl, io, 0);
|
||||
Gd.InputName = {'Dwx', 'Dwy', 'Dwz', 'Fdy_x', 'Fdy_z', 'Frz_x', 'Frz_y', 'Frz_z'};
|
||||
Gd.OutputName = {'Dx', 'Dy', 'Dz'};
|
||||
|
||||
% The identified dynamics are then saved for further use.
|
||||
save('./mat/ustation_disturbance_sensitivity.mat', 'Gd')
|
||||
|
||||
%% Sensitivity to Ground motion
|
||||
freqs = logspace(log10(10), log10(2e2), 1000);
|
||||
|
||||
figure;
|
||||
hold on;
|
||||
plot(freqs, abs(squeeze(freqresp(Gd('Dx', 'Dwx'), freqs, 'Hz'))), 'DisplayName', '$D_x/D_{xf}$');
|
||||
plot(freqs, abs(squeeze(freqresp(Gd('Dy', 'Dwy'), freqs, 'Hz'))), 'DisplayName', '$D_y/D_{yf}$');
|
||||
plot(freqs, abs(squeeze(freqresp(Gd('Dz', 'Dwz'), freqs, 'Hz'))), 'DisplayName', '$D_z/D_{zf}$');
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude [m/m]'); xlabel('Frequency [Hz]');
|
||||
leg = legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 1);
|
||||
leg.ItemTokenSize(1) = 15;
|
||||
|
||||
%% Sensitivity to Translation stage disturbance forces
|
||||
figure;
|
||||
hold on;
|
||||
plot(freqs, abs(squeeze(freqresp(Gd('Dx', 'Fdy_x'), freqs, 'Hz'))), 'color', colors(1,:), 'DisplayName', '$D_x/F_{xD_y}$');
|
||||
plot(freqs, abs(squeeze(freqresp(Gd('Dz', 'Fdy_z'), freqs, 'Hz'))), 'color', colors(3,:), 'DisplayName', '$D_z/F_{zD_y}$');
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude [m/N]'); xlabel('Frequency [Hz]');
|
||||
ylim([1e-10, 1e-7]);
|
||||
leg = legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 1);
|
||||
leg.ItemTokenSize(1) = 15;
|
||||
|
||||
%% Sensitivity to Spindle disturbance forces
|
||||
figure;
|
||||
hold on;
|
||||
plot(freqs, abs(squeeze(freqresp(Gd('Dx', 'Frz_x'), freqs, 'Hz'))), 'DisplayName', '$D_x/F_{xR_z}$');
|
||||
plot(freqs, abs(squeeze(freqresp(Gd('Dy', 'Frz_y'), freqs, 'Hz'))), 'DisplayName', '$D_y/F_{yR_z}$');
|
||||
plot(freqs, abs(squeeze(freqresp(Gd('Dz', 'Frz_z'), freqs, 'Hz'))), 'DisplayName', '$D_z/F_{zR_z}$');
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude [m/N]'); xlabel('Frequency [Hz]');
|
||||
ylim([1e-10, 1e-7]);
|
||||
leg = legend('location', 'northwest', 'FontSize', 8, 'NumColumns', 1);
|
||||
leg.ItemTokenSize(1) = 15;
|
||||
|
||||
%% Compute the PSD of the equivalent disturbance sources
|
||||
pxx_rz_fx = pxx_rz_dx./abs(squeeze(freqresp(Gd('Dx', 'Frz_x'), f_rz, 'Hz'))).^2;
|
||||
pxx_rz_fy = pxx_rz_dy./abs(squeeze(freqresp(Gd('Dy', 'Frz_y'), f_rz, 'Hz'))).^2;
|
||||
pxx_rz_fz = pxx_rz_dz./abs(squeeze(freqresp(Gd('Dz', 'Frz_z'), f_rz, 'Hz'))).^2;
|
||||
|
||||
pxx_dy_fx = pxx_dy_dx./abs(squeeze(freqresp(Gd('Dx', 'Fdy_x'), f_dy, 'Hz'))).^2;
|
||||
pxx_dy_fz = pxx_dy_dz./abs(squeeze(freqresp(Gd('Dz', 'Fdy_z'), f_dy, 'Hz'))).^2;
|
||||
|
||||
%% Save the PSD of the disturbance sources for further used
|
||||
% in the Simscape model
|
||||
|
||||
% Ground motion
|
||||
min_f = 1; max_f = 100;
|
||||
gm_dist.f = f_gm(f_gm < max_f & f_gm > min_f);
|
||||
gm_dist.pxx_x = pxx_gm_x(f_gm < max_f & f_gm > min_f);
|
||||
gm_dist.pxx_y = pxx_gm_y(f_gm < max_f & f_gm > min_f);
|
||||
gm_dist.pxx_z = pxx_gm_z(f_gm < max_f & f_gm > min_f);
|
||||
|
||||
% Translation stage
|
||||
min_f = 0.5; max_f = 500;
|
||||
dy_dist.f = f_dy(f_dy < max_f & f_dy > min_f);
|
||||
dy_dist.pxx_fx = pxx_dy_fx(f_dy < max_f & f_dy > min_f);
|
||||
dy_dist.pxx_fz = pxx_dy_fz(f_dy < max_f & f_dy > min_f);
|
||||
|
||||
% Spindle
|
||||
min_f = 1; max_f = 500;
|
||||
rz_dist.f = f_rz(f_rz < max_f & f_rz > min_f);
|
||||
rz_dist.pxx_fx = pxx_rz_fx(f_rz < max_f & f_rz > min_f);
|
||||
rz_dist.pxx_fy = pxx_rz_fy(f_rz < max_f & f_rz > min_f);
|
||||
rz_dist.pxx_fz = pxx_rz_fz(f_rz < max_f & f_rz > min_f);
|
||||
|
||||
% The identified dynamics are then saved for further use.
|
||||
save('./mat/ustation_disturbance_psd.mat', 'rz_dist', 'dy_dist', 'gm_dist')
|
||||
|
||||
%% Ground Motion
|
||||
figure;
|
||||
hold on;
|
||||
plot(f_gm, sqrt(pxx_gm_x), 'DisplayName', '$D_{wx}$');
|
||||
plot(f_gm, sqrt(pxx_gm_y), 'DisplayName', '$D_{wy}$');
|
||||
plot(f_gm, sqrt(pxx_gm_z), 'DisplayName', '$D_{wz}$');
|
||||
set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log');
|
||||
xlabel('Frequency [Hz]'); ylabel('Spectral Density $\left[\frac{m}{\sqrt{Hz}}\right]$')
|
||||
xlim([1, 200]);
|
||||
leg = legend('location', 'northeast', 'FontSize', 8, 'NumColumns', 1);
|
||||
leg.ItemTokenSize(1) = 15;
|
||||
|
||||
figure;
|
||||
hold on;
|
||||
plot(f_dy, sqrt(pxx_dy_fx), 'DisplayName', '$F_{xD_y}$');
|
||||
plot(f_dy, sqrt(pxx_dy_fz), 'DisplayName', '$F_{zD_y}$');
|
||||
set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log');
|
||||
xlabel('Frequency [Hz]'); ylabel('Spectral Density $\left[\frac{N}{\sqrt{Hz}}\right]$')
|
||||
xlim([1, 200]); ylim([1e-3, 1e3]);
|
||||
leg = legend('location', 'northeast', 'FontSize', 8, 'NumColumns', 1);
|
||||
leg.ItemTokenSize(1) = 15;
|
||||
|
||||
figure;
|
||||
hold on;
|
||||
plot(f_rz, sqrt(pxx_rz_fx), 'DisplayName', '$F_{xR_z}$');
|
||||
plot(f_rz, sqrt(pxx_rz_fy), 'DisplayName', '$F_{yR_z}$');
|
||||
plot(f_rz, sqrt(pxx_rz_fz), 'DisplayName', '$F_{zR_z}$');
|
||||
set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log');
|
||||
xlabel('Frequency [Hz]'); ylabel('Spectral Density $\left[\frac{N}{\sqrt{Hz}}\right]$')
|
||||
xlim([1, 200]); ylim([1e-3, 1e3]);
|
||||
leg = legend('location', 'northeast', 'FontSize', 8, 'NumColumns', 1);
|
||||
leg.ItemTokenSize(1) = 15;
|
||||
|
||||
%% Compute time domain disturbance signals
|
||||
initializeDisturbances();
|
||||
load('nass_model_disturbances.mat');
|
||||
|
||||
figure;
|
||||
hold on;
|
||||
plot(Rz.t, Rz.x, 'DisplayName', '$F_{xR_z}$');
|
||||
plot(Rz.t, Rz.y, 'DisplayName', '$F_{yR_z}$');
|
||||
plot(Rz.t, Rz.z, 'DisplayName', '$F_{zR_z}$');
|
||||
xlabel('Time [s]'); ylabel('Amplitude [N]')
|
||||
xlim([0, 1]); ylim([-100, 100]);
|
||||
leg = legend('location', 'northwest', 'FontSize', 8, 'NumColumns', 1);
|
||||
leg.ItemTokenSize(1) = 15;
|
||||
|
||||
figure;
|
||||
hold on;
|
||||
plot(Dy.t, Dy.x, 'DisplayName', '$F_{xD_y}$');
|
||||
plot(Dy.t, Dy.z, 'DisplayName', '$F_{zD_y}$');
|
||||
xlabel('Time [s]'); ylabel('Amplitude [N]')
|
||||
xlim([0, 1]); ylim([-60, 60])
|
||||
leg = legend('location', 'southwest', 'FontSize', 8, 'NumColumns', 1);
|
||||
leg.ItemTokenSize(1) = 15;
|
||||
|
||||
figure;
|
||||
hold on;
|
||||
plot(Dw.t, 1e6*Dw.x, 'DisplayName', '$D_{xf}$');
|
||||
plot(Dw.t, 1e6*Dw.y, 'DisplayName', '$D_{yf}$');
|
||||
plot(Dw.t, 1e6*Dw.z, 'DisplayName', '$D_{zf}$');
|
||||
xlabel('Time [s]'); ylabel('Amplitude [$\mu$m]')
|
||||
xlim([0, 1]); ylim([-0.6, 0.6])
|
||||
leg = legend('location', 'northwest', 'FontSize', 8, 'NumColumns', 1);
|
||||
leg.ItemTokenSize(1) = 15;
|
141
A4-simscape-micro-station/ustation_4_experiments.m
Normal file
141
A4-simscape-micro-station/ustation_4_experiments.m
Normal file
@@ -0,0 +1,141 @@
|
||||
%% ustation_4_experiments.m
|
||||
|
||||
%% Clear Workspace and Close figures
|
||||
clear; close all; clc;
|
||||
|
||||
%% Intialize Laplace variable
|
||||
s = zpk('s');
|
||||
|
||||
%% Path for functions, data and scripts
|
||||
addpath('./mat/'); % Path for Data
|
||||
addpath('./src/'); % Path for functions
|
||||
addpath('./STEPS/'); % Path for STEPS
|
||||
addpath('./subsystems/'); % Path for Subsystems Simulink files
|
||||
|
||||
% Simulink Model name
|
||||
mdl = 'ustation_simscape';
|
||||
|
||||
load('nass_model_conf_simulink.mat');
|
||||
|
||||
%% Colors for the figures
|
||||
colors = colororder;
|
||||
|
||||
%% Frequency Vector
|
||||
freqs = logspace(log10(10), log10(2e3), 1000);
|
||||
|
||||
%% Tomography experiment
|
||||
% Sample is not centered with the rotation axis
|
||||
% This is done by offsetfing the micro-hexapod by 0.9um
|
||||
P_micro_hexapod = [0.9e-6; 0; 0]; % [m]
|
||||
|
||||
set_param(conf_simulink, 'StopTime', '10');
|
||||
|
||||
initializeGround();
|
||||
initializeGranite();
|
||||
initializeTy();
|
||||
initializeRy();
|
||||
initializeRz();
|
||||
initializeMicroHexapod('AP', P_micro_hexapod);
|
||||
|
||||
initializeSimscapeConfiguration('gravity', false);
|
||||
initializeLoggingConfiguration('log', 'all');
|
||||
|
||||
initializeDisturbances(...
|
||||
'Dw_x', true, ... % Ground Motion - X direction
|
||||
'Dw_y', true, ... % Ground Motion - Y direction
|
||||
'Dw_z', true, ... % Ground Motion - Z direction
|
||||
'Fdy_x', false, ... % Translation Stage - X direction
|
||||
'Fdy_z', false, ... % Translation Stage - Z direction
|
||||
'Frz_x', true, ... % Spindle - X direction
|
||||
'Frz_y', true, ... % Spindle - Y direction
|
||||
'Frz_z', true); % Spindle - Z direction
|
||||
|
||||
initializeReferences(...
|
||||
'Rz_type', 'rotating', ...
|
||||
'Rz_period', 1, ...
|
||||
'Dh_pos', [P_micro_hexapod; 0; 0; 0]);
|
||||
|
||||
sim(mdl);
|
||||
exp_tomography = simout;
|
||||
|
||||
%% Compare with the measurements
|
||||
spindle_errors = load('ustation_errors_spindle.mat');
|
||||
|
||||
%% Measured radial errors of the Spindle
|
||||
figure;
|
||||
hold on;
|
||||
plot(1e6*spindle_errors.Dx(1:100:end), 1e6*spindle_errors.Dy(1:100:end), 'DisplayName', 'Measurements')
|
||||
plot(1e6*exp_tomography.y.x.Data, 1e6*exp_tomography.y.y.Data, 'DisplayName', 'Simulation')
|
||||
hold off;
|
||||
xlabel('X displacement [$\mu$m]'); ylabel('Y displacement [$\mu$m]');
|
||||
axis equal
|
||||
xlim([-1, 1]); ylim([-1, 1]);
|
||||
xticks([-1, -0.5, 0, 0.5, 1]);
|
||||
yticks([-1, -0.5, 0, 0.5, 1]);
|
||||
leg = legend('location', 'none', 'FontSize', 8, 'NumColumns', 1);
|
||||
leg.ItemTokenSize(1) = 15;
|
||||
|
||||
%% Measured axial errors of the Spindle
|
||||
figure;
|
||||
hold on;
|
||||
plot(spindle_errors.deg(1:100:end)/360, detrend(1e9*spindle_errors.Dz(1:100:end), 0), 'DisplayName', 'Measurements')
|
||||
plot(exp_tomography.y.z.Time, detrend(1e9*exp_tomography.y.z.Data, 0), 'DisplayName', 'Simulation')
|
||||
hold off;
|
||||
xlabel('Rotation [turn]'); ylabel('Z displacement [nm]');
|
||||
axis square
|
||||
xlim([0,2]); ylim([-40, 40]);
|
||||
leg = legend('location', 'southwest', 'FontSize', 8, 'NumColumns', 1);
|
||||
leg.ItemTokenSize(1) = 15;
|
||||
|
||||
%% Translation stage latteral scans
|
||||
set_param(conf_simulink, 'StopTime', '2');
|
||||
|
||||
initializeGround();
|
||||
initializeGranite();
|
||||
initializeTy();
|
||||
initializeRy();
|
||||
initializeRz();
|
||||
initializeMicroHexapod();
|
||||
|
||||
initializeSimscapeConfiguration('gravity', false);
|
||||
initializeLoggingConfiguration('log', 'all');
|
||||
|
||||
initializeDisturbances(...
|
||||
'Dw_x', true, ... % Ground Motion - X direction
|
||||
'Dw_y', true, ... % Ground Motion - Y direction
|
||||
'Dw_z', true, ... % Ground Motion - Z direction
|
||||
'Fdy_x', true, ... % Translation Stage - X direction
|
||||
'Fdy_z', true, ... % Translation Stage - Z direction
|
||||
'Frz_x', false, ... % Spindle - X direction
|
||||
'Frz_y', false, ... % Spindle - Y direction
|
||||
'Frz_z', false); % Spindle - Z direction
|
||||
|
||||
initializeReferences(...
|
||||
'Dy_type', 'triangular', ...
|
||||
'Dy_amplitude', 4.5e-3, ...
|
||||
'Dy_period', 2);
|
||||
|
||||
sim(mdl);
|
||||
exp_latteral_scans = simout;
|
||||
|
||||
% Load the experimentally measured errors
|
||||
ty_errors = load('ustation_errors_ty.mat');
|
||||
|
||||
% Compute best straight line to remove it from data
|
||||
average_error = mean(ty_errors.ty_z')';
|
||||
straight_line = average_error - detrend(average_error, 1);
|
||||
|
||||
% Only plot data for the scan from -4.5mm to 4.5mm
|
||||
dy_setpoint = 1e3*exp_latteral_scans.y.y.Data(exp_latteral_scans.y.y.time > 0.5 & exp_latteral_scans.y.y.time < 1.5);
|
||||
dz_error = detrend(1e6*exp_latteral_scans.y.z.Data(exp_latteral_scans.y.y.time > 0.5 & exp_latteral_scans.y.y.time < 1.5), 0);
|
||||
|
||||
figure;
|
||||
hold on;
|
||||
plot(ty_errors.setpoint, detrend(ty_errors.ty_z(:,1) - straight_line, 0), 'color', colors(1,:), 'DisplayName', 'Measurement')
|
||||
% plot(ty_errors.setpoint, detrend(ty_errors.ty_z(:,[4,6]) - straight_line, 0), 'color', colors(1,:), 'HandleVisibility', 'off')
|
||||
plot(dy_setpoint, dz_error, 'color', colors(2,:), 'DisplayName', 'Simulation')
|
||||
hold off;
|
||||
xlabel('$D_y$ position [mm]'); ylabel('Vertical error [$\mu$m]');
|
||||
xlim([-5, 5]); ylim([-0.4, 0.4]);
|
||||
leg = legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 1);
|
||||
leg.ItemTokenSize(1) = 15;
|
BIN
A4-simscape-micro-station/ustation_simscape.slx
Normal file
BIN
A4-simscape-micro-station/ustation_simscape.slx
Normal file
Binary file not shown.
Reference in New Issue
Block a user