<?xml version="1.0" encoding="utf-8"?> <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> <html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"> <head> <!-- 2020-08-04 mar. 11:53 --> <meta http-equiv="Content-Type" content="text/html;charset=utf-8" /> <title>Finite Element Model with Simscape</title> <meta name="generator" content="Org mode" /> <meta name="author" content="Dehaeze Thomas" /> <link rel="stylesheet" type="text/css" href="./css/htmlize.css"/> <link rel="stylesheet" type="text/css" href="./css/readtheorg.css"/> <script src="./js/jquery.min.js"></script> <script src="./js/bootstrap.min.js"></script> <script src="./js/jquery.stickytableheaders.min.js"></script> <script src="./js/readtheorg.js"></script> <script>MathJax = { tex: { tags: 'ams', macros: {bm: ["\\boldsymbol{#1}",1],} } }; </script> <script type="text/javascript" src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script> </head> <body> <div id="org-div-home-and-up"> <a accesskey="h" href="./index.html"> UP </a> | <a accesskey="H" href="./index.html"> HOME </a> </div><div id="content"> <h1 class="title">Finite Element Model with Simscape</h1> <div id="table-of-contents"> <h2>Table of Contents</h2> <div id="text-table-of-contents"> <ul> <li><a href="#org4f0b86a">1. Amplified Piezoelectric Actuator - 3D elements</a> <ul> <li><a href="#org15fc227">1.1. Import Mass Matrix, Stiffness Matrix, and Interface Nodes Coordinates</a></li> <li><a href="#orgd262dde">1.2. Output parameters</a></li> <li><a href="#org6aafed9">1.3. Piezoelectric parameters</a></li> <li><a href="#orge996914">1.4. Identification of the Dynamics</a></li> <li><a href="#orgff6331a">1.5. Comparison with Ansys</a></li> <li><a href="#org9bf2a27">1.6. Force Sensor</a></li> <li><a href="#org06d3501">1.7. Distributed Actuator</a></li> <li><a href="#org324bb60">1.8. Distributed Actuator and Force Sensor</a></li> <li><a href="#org5840571">1.9. Dynamics from input voltage to displacement</a></li> <li><a href="#org7061a42">1.10. Dynamics from input voltage to output voltage</a></li> </ul> </li> <li><a href="#org4785733">2. APA300ML</a> <ul> <li><a href="#orgc8b6c2f">2.1. Import Mass Matrix, Stiffness Matrix, and Interface Nodes Coordinates</a></li> <li><a href="#org4f8843c">2.2. Output parameters</a></li> <li><a href="#org7dc97c1">2.3. Piezoelectric parameters</a></li> <li><a href="#orgf91f943">2.4. Identification of the APA Characteristics</a> <ul> <li><a href="#orgcb12518">2.4.1. Stiffness</a></li> <li><a href="#org43f261c">2.4.2. Resonance Frequency</a></li> <li><a href="#org38ca11e">2.4.3. Amplification factor</a></li> <li><a href="#org227839d">2.4.4. Stroke</a></li> </ul> </li> <li><a href="#orgfeabffd">2.5. Identification of the Dynamics</a></li> <li><a href="#orga13ac6b">2.6. IFF</a></li> <li><a href="#org5ed7231">2.7. DVF</a></li> <li><a href="#org7e2be0e">2.8. Identification for a simpler model</a></li> </ul> </li> <li><a href="#org0fc361f">3. Flexible Joint</a> <ul> <li><a href="#orgf82cf1b">3.1. Import Mass Matrix, Stiffness Matrix, and Interface Nodes Coordinates</a></li> <li><a href="#orgc3419f4">3.2. Output parameters</a></li> <li><a href="#org60de458">3.3. Flexible Joint Characteristics</a></li> <li><a href="#orgcd8bc89">3.4. Identification</a></li> </ul> </li> <li><a href="#org258adf3">4. Integral Force Feedback with Amplified Piezo</a> <ul> <li><a href="#org3e49415">4.1. Import Mass Matrix, Stiffness Matrix, and Interface Nodes Coordinates</a></li> <li><a href="#org690b14e">4.2. IFF Plant</a></li> <li><a href="#orga83d461">4.3. IFF controller</a></li> <li><a href="#org1fd0639">4.4. Closed Loop System</a></li> </ul> </li> </ul> </div> </div> <div id="outline-container-org4f0b86a" class="outline-2"> <h2 id="org4f0b86a"><span class="section-number-2">1</span> Amplified Piezoelectric Actuator - 3D elements</h2> <div class="outline-text-2" id="text-1"> <p> The idea here is to: </p> <ul class="org-ul"> <li>export a FEM of an amplified piezoelectric actuator from Ansys to Matlab</li> <li>import it into a Simscape model</li> <li>compare the obtained dynamics</li> <li>add 10kg mass on top of the actuator and identify the dynamics</li> <li>compare with results from Ansys where 10kg are directly added to the FEM</li> </ul> </div> <div id="outline-container-org15fc227" class="outline-3"> <h3 id="org15fc227"><span class="section-number-3">1.1</span> Import Mass Matrix, Stiffness Matrix, and Interface Nodes Coordinates</h3> <div class="outline-text-3" id="text-1-1"> <p> We first extract the stiffness and mass matrices. </p> <div class="org-src-container"> <pre class="src src-matlab">K = extractMatrix('piezo_amplified_3d_K.txt'); M = extractMatrix('piezo_amplified_3d_M.txt'); </pre> </div> <p> Then, we extract the coordinates of the interface nodes. </p> <div class="org-src-container"> <pre class="src src-matlab">[int_xyz, int_i, n_xyz, n_i, nodes] = extractNodes('piezo_amplified_3d.txt'); </pre> </div> <div class="org-src-container"> <pre class="src src-matlab">save('./mat/piezo_amplified_3d.mat', 'int_xyz', 'int_i', 'n_xyz', 'n_i', 'nodes', 'M', 'K'); </pre> </div> </div> </div> <div id="outline-container-orgd262dde" class="outline-3"> <h3 id="orgd262dde"><span class="section-number-3">1.2</span> Output parameters</h3> <div class="outline-text-3" id="text-1-2"> <div class="org-src-container"> <pre class="src src-matlab">load('./mat/piezo_amplified_3d.mat', 'int_xyz', 'int_i', 'n_xyz', 'n_i', 'nodes', 'M', 'K'); </pre> </div> <table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides"> <colgroup> <col class="org-left" /> <col class="org-right" /> </colgroup> <tbody> <tr> <td class="org-left">Total number of Nodes</td> <td class="org-right">168959</td> </tr> <tr> <td class="org-left">Number of interface Nodes</td> <td class="org-right">13</td> </tr> <tr> <td class="org-left">Number of Modes</td> <td class="org-right">30</td> </tr> <tr> <td class="org-left">Size of M and K matrices</td> <td class="org-right">108</td> </tr> </tbody> </table> <div id="org5e22c17" class="figure"> <p><img src="figs/amplified_piezo_interface_nodes.png" alt="amplified_piezo_interface_nodes.png" /> </p> <p><span class="figure-number">Figure 1: </span>Interface Nodes for the Amplified Piezo Actuator</p> </div> <table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides"> <caption class="t-above"><span class="table-number">Table 1:</span> Coordinates of the interface nodes</caption> <colgroup> <col class="org-right" /> <col class="org-right" /> <col class="org-right" /> <col class="org-right" /> <col class="org-right" /> </colgroup> <thead> <tr> <th scope="col" class="org-right">Node i</th> <th scope="col" class="org-right">Node Number</th> <th scope="col" class="org-right">x [m]</th> <th scope="col" class="org-right">y [m]</th> <th scope="col" class="org-right">z [m]</th> </tr> </thead> <tbody> <tr> <td class="org-right">1.0</td> <td class="org-right">168947.0</td> <td class="org-right">0.0</td> <td class="org-right">0.03</td> <td class="org-right">0.0</td> </tr> <tr> <td class="org-right">2.0</td> <td class="org-right">168949.0</td> <td class="org-right">0.0</td> <td class="org-right">-0.03</td> <td class="org-right">0.0</td> </tr> <tr> <td class="org-right">3.0</td> <td class="org-right">168950.0</td> <td class="org-right">-0.035</td> <td class="org-right">0.0</td> <td class="org-right">0.0</td> </tr> <tr> <td class="org-right">4.0</td> <td class="org-right">168951.0</td> <td class="org-right">-0.028</td> <td class="org-right">0.0</td> <td class="org-right">0.0</td> </tr> <tr> <td class="org-right">5.0</td> <td class="org-right">168952.0</td> <td class="org-right">-0.021</td> <td class="org-right">0.0</td> <td class="org-right">0.0</td> </tr> <tr> <td class="org-right">6.0</td> <td class="org-right">168953.0</td> <td class="org-right">-0.014</td> <td class="org-right">0.0</td> <td class="org-right">0.0</td> </tr> <tr> <td class="org-right">7.0</td> <td class="org-right">168954.0</td> <td class="org-right">-0.007</td> <td class="org-right">0.0</td> <td class="org-right">0.0</td> </tr> <tr> <td class="org-right">8.0</td> <td class="org-right">168955.0</td> <td class="org-right">0.0</td> <td class="org-right">0.0</td> <td class="org-right">0.0</td> </tr> <tr> <td class="org-right">9.0</td> <td class="org-right">168956.0</td> <td class="org-right">0.007</td> <td class="org-right">0.0</td> <td class="org-right">0.0</td> </tr> <tr> <td class="org-right">10.0</td> <td class="org-right">168957.0</td> <td class="org-right">0.014</td> <td class="org-right">0.0</td> <td class="org-right">0.0</td> </tr> <tr> <td class="org-right">11.0</td> <td class="org-right">168958.0</td> <td class="org-right">0.021</td> <td class="org-right">0.0</td> <td class="org-right">0.0</td> </tr> <tr> <td class="org-right">12.0</td> <td class="org-right">168959.0</td> <td class="org-right">0.035</td> <td class="org-right">0.0</td> <td class="org-right">0.0</td> </tr> <tr> <td class="org-right">13.0</td> <td class="org-right">168960.0</td> <td class="org-right">0.028</td> <td class="org-right">0.0</td> <td class="org-right">0.0</td> </tr> </tbody> </table> <table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides"> <caption class="t-above"><span class="table-number">Table 2:</span> First 10x10 elements of the Stiffness matrix</caption> <colgroup> <col class="org-right" /> <col class="org-right" /> <col class="org-right" /> <col class="org-right" /> <col class="org-right" /> <col class="org-right" /> <col class="org-right" /> <col class="org-right" /> <col class="org-right" /> <col class="org-right" /> </colgroup> <tbody> <tr> <td class="org-right">300000000.0</td> <td class="org-right">-30000.0</td> <td class="org-right">8000.0</td> <td class="org-right">-200.0</td> <td class="org-right">-30.0</td> <td class="org-right">-60000.0</td> <td class="org-right">20000000.0</td> <td class="org-right">-4000.0</td> <td class="org-right">500.0</td> <td class="org-right">8</td> </tr> <tr> <td class="org-right">-30000.0</td> <td class="org-right">100000000.0</td> <td class="org-right">400.0</td> <td class="org-right">30.0</td> <td class="org-right">200.0</td> <td class="org-right">-1</td> <td class="org-right">4000.0</td> <td class="org-right">-8000000.0</td> <td class="org-right">800.0</td> <td class="org-right">7</td> </tr> <tr> <td class="org-right">8000.0</td> <td class="org-right">400.0</td> <td class="org-right">50000000.0</td> <td class="org-right">-800000.0</td> <td class="org-right">-300.0</td> <td class="org-right">-40.0</td> <td class="org-right">300.0</td> <td class="org-right">100.0</td> <td class="org-right">5000000.0</td> <td class="org-right">40000.0</td> </tr> <tr> <td class="org-right">-200.0</td> <td class="org-right">30.0</td> <td class="org-right">-800000.0</td> <td class="org-right">20000.0</td> <td class="org-right">5</td> <td class="org-right">1</td> <td class="org-right">-10.0</td> <td class="org-right">-2</td> <td class="org-right">-40000.0</td> <td class="org-right">-300.0</td> </tr> <tr> <td class="org-right">-30.0</td> <td class="org-right">200.0</td> <td class="org-right">-300.0</td> <td class="org-right">5</td> <td class="org-right">40000.0</td> <td class="org-right">0.3</td> <td class="org-right">-4</td> <td class="org-right">-10.0</td> <td class="org-right">40.0</td> <td class="org-right">0.4</td> </tr> <tr> <td class="org-right">-60000.0</td> <td class="org-right">-1</td> <td class="org-right">-40.0</td> <td class="org-right">1</td> <td class="org-right">0.3</td> <td class="org-right">3000.0</td> <td class="org-right">7000.0</td> <td class="org-right">0.8</td> <td class="org-right">-1</td> <td class="org-right">0.0003</td> </tr> <tr> <td class="org-right">20000000.0</td> <td class="org-right">4000.0</td> <td class="org-right">300.0</td> <td class="org-right">-10.0</td> <td class="org-right">-4</td> <td class="org-right">7000.0</td> <td class="org-right">300000000.0</td> <td class="org-right">20000.0</td> <td class="org-right">3000.0</td> <td class="org-right">80.0</td> </tr> <tr> <td class="org-right">-4000.0</td> <td class="org-right">-8000000.0</td> <td class="org-right">100.0</td> <td class="org-right">-2</td> <td class="org-right">-10.0</td> <td class="org-right">0.8</td> <td class="org-right">20000.0</td> <td class="org-right">100000000.0</td> <td class="org-right">-4000.0</td> <td class="org-right">-100.0</td> </tr> <tr> <td class="org-right">500.0</td> <td class="org-right">800.0</td> <td class="org-right">5000000.0</td> <td class="org-right">-40000.0</td> <td class="org-right">40.0</td> <td class="org-right">-1</td> <td class="org-right">3000.0</td> <td class="org-right">-4000.0</td> <td class="org-right">50000000.0</td> <td class="org-right">800000.0</td> </tr> <tr> <td class="org-right">8</td> <td class="org-right">7</td> <td class="org-right">40000.0</td> <td class="org-right">-300.0</td> <td class="org-right">0.4</td> <td class="org-right">0.0003</td> <td class="org-right">80.0</td> <td class="org-right">-100.0</td> <td class="org-right">800000.0</td> <td class="org-right">20000.0</td> </tr> </tbody> </table> <table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides"> <caption class="t-above"><span class="table-number">Table 3:</span> First 10x10 elements of the Mass matrix</caption> <colgroup> <col class="org-right" /> <col class="org-right" /> <col class="org-right" /> <col class="org-right" /> <col class="org-right" /> <col class="org-right" /> <col class="org-right" /> <col class="org-right" /> <col class="org-right" /> <col class="org-right" /> </colgroup> <tbody> <tr> <td class="org-right">0.03</td> <td class="org-right">2e-06</td> <td class="org-right">-2e-07</td> <td class="org-right">1e-08</td> <td class="org-right">2e-08</td> <td class="org-right">0.0002</td> <td class="org-right">-0.001</td> <td class="org-right">2e-07</td> <td class="org-right">-8e-08</td> <td class="org-right">-9e-10</td> </tr> <tr> <td class="org-right">2e-06</td> <td class="org-right">0.02</td> <td class="org-right">-5e-07</td> <td class="org-right">7e-09</td> <td class="org-right">3e-08</td> <td class="org-right">2e-08</td> <td class="org-right">-3e-07</td> <td class="org-right">0.0003</td> <td class="org-right">-1e-08</td> <td class="org-right">1e-10</td> </tr> <tr> <td class="org-right">-2e-07</td> <td class="org-right">-5e-07</td> <td class="org-right">0.02</td> <td class="org-right">-9e-05</td> <td class="org-right">4e-09</td> <td class="org-right">-1e-08</td> <td class="org-right">2e-07</td> <td class="org-right">-2e-08</td> <td class="org-right">-0.0006</td> <td class="org-right">-5e-06</td> </tr> <tr> <td class="org-right">1e-08</td> <td class="org-right">7e-09</td> <td class="org-right">-9e-05</td> <td class="org-right">1e-06</td> <td class="org-right">6e-11</td> <td class="org-right">4e-10</td> <td class="org-right">-1e-09</td> <td class="org-right">3e-11</td> <td class="org-right">5e-06</td> <td class="org-right">3e-08</td> </tr> <tr> <td class="org-right">2e-08</td> <td class="org-right">3e-08</td> <td class="org-right">4e-09</td> <td class="org-right">6e-11</td> <td class="org-right">1e-06</td> <td class="org-right">2e-10</td> <td class="org-right">-2e-09</td> <td class="org-right">2e-10</td> <td class="org-right">-7e-09</td> <td class="org-right">-4e-11</td> </tr> <tr> <td class="org-right">0.0002</td> <td class="org-right">2e-08</td> <td class="org-right">-1e-08</td> <td class="org-right">4e-10</td> <td class="org-right">2e-10</td> <td class="org-right">2e-06</td> <td class="org-right">-2e-06</td> <td class="org-right">-1e-09</td> <td class="org-right">-7e-10</td> <td class="org-right">-9e-12</td> </tr> <tr> <td class="org-right">-0.001</td> <td class="org-right">-3e-07</td> <td class="org-right">2e-07</td> <td class="org-right">-1e-09</td> <td class="org-right">-2e-09</td> <td class="org-right">-2e-06</td> <td class="org-right">0.03</td> <td class="org-right">-2e-06</td> <td class="org-right">-1e-07</td> <td class="org-right">-5e-09</td> </tr> <tr> <td class="org-right">2e-07</td> <td class="org-right">0.0003</td> <td class="org-right">-2e-08</td> <td class="org-right">3e-11</td> <td class="org-right">2e-10</td> <td class="org-right">-1e-09</td> <td class="org-right">-2e-06</td> <td class="org-right">0.02</td> <td class="org-right">-8e-07</td> <td class="org-right">-1e-08</td> </tr> <tr> <td class="org-right">-8e-08</td> <td class="org-right">-1e-08</td> <td class="org-right">-0.0006</td> <td class="org-right">5e-06</td> <td class="org-right">-7e-09</td> <td class="org-right">-7e-10</td> <td class="org-right">-1e-07</td> <td class="org-right">-8e-07</td> <td class="org-right">0.02</td> <td class="org-right">9e-05</td> </tr> <tr> <td class="org-right">-9e-10</td> <td class="org-right">1e-10</td> <td class="org-right">-5e-06</td> <td class="org-right">3e-08</td> <td class="org-right">-4e-11</td> <td class="org-right">-9e-12</td> <td class="org-right">-5e-09</td> <td class="org-right">-1e-08</td> <td class="org-right">9e-05</td> <td class="org-right">1e-06</td> </tr> </tbody> </table> <p> Using <code>K</code>, <code>M</code> and <code>int_xyz</code>, we can use the <code>Reduced Order Flexible Solid</code> simscape block. </p> </div> </div> <div id="outline-container-org6aafed9" class="outline-3"> <h3 id="org6aafed9"><span class="section-number-3">1.3</span> Piezoelectric parameters</h3> <div class="outline-text-3" id="text-1-3"> <p> Parameters for the APA95ML: </p> <div class="org-src-container"> <pre class="src src-matlab">d33 = 3e-10; % Strain constant [m/V] n = 80; % Number of layers per stack eT = 1.6e-7; % Permittivity under constant stress [F/m] sD = 2e-11; % Elastic compliance under constant electric displacement [m2/N] ka = 235e6; % Stack stiffness [N/m] C = 5e-6; % Stack capactiance [F] </pre> </div> <div class="org-src-container"> <pre class="src src-matlab">na = 2; % Number of stacks used as actuator ns = 1; % Number of stacks used as force sensor </pre> </div> <p> The ratio of the developed force to applied voltage is \(d_{33} n k_a\) in [N/V]. We denote this constant by \(g_a\) and: \[ F_a = g_a V_a, \quad g_a = d_{33} n k_a \] </p> <div class="org-src-container"> <pre class="src src-matlab">d33*(na*n)*(ka/(na + ns)) % [N/V] </pre> </div> <pre class="example"> 3.76 </pre> <p> From (<a href="#citeproc_bib_item_1">Fleming and Leang 2014</a>) (page 123), the relation between relative displacement and generated voltage is: \[ V_s = \frac{d_{33}}{\epsilon^T s^D n} \Delta h \] where: </p> <ul class="org-ul"> <li>\(V_s\): measured voltage [V]</li> <li>\(d_{33}\): strain constant [m/V]</li> <li>\(\epsilon^T\): permittivity under constant stress [F/m]</li> <li>\(s^D\): elastic compliance under constant electric displacement [m^2/N]</li> <li>\(n\): number of layers</li> <li>\(\Delta h\): relative displacement [m]</li> </ul> <div class="org-src-container"> <pre class="src src-matlab">1e-6*d33/(eT*sD*ns*n) % [V/um] </pre> </div> <pre class="example"> 1.1719 </pre> </div> </div> <div id="outline-container-orge996914" class="outline-3"> <h3 id="orge996914"><span class="section-number-3">1.4</span> Identification of the Dynamics</h3> <div class="outline-text-3" id="text-1-4"> <p> The flexible element is imported using the <code>Reduced Order Flexible Solid</code> simscape block. </p> <p> To model the actuator, an <code>Internal Force</code> block is added between the nodes 3 and 12. A <code>Relative Motion Sensor</code> block is added between the nodes 1 and 2 to measure the displacement and the amplified piezo. </p> <p> One mass is fixed at one end of the piezo-electric stack actuator, the other end is fixed to the world frame. </p> <p> We first set the mass to be zero. </p> <div class="org-src-container"> <pre class="src src-matlab">m = 0.01; </pre> </div> <p> The dynamics is identified from the applied force to the measured relative displacement. </p> <div class="org-src-container"> <pre class="src src-matlab">%% Name of the Simulink File mdl = 'piezo_amplified_3d'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/F'], 1, 'openinput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/y'], 1, 'openoutput'); io_i = io_i + 1; Gh = -linearize(mdl, io); </pre> </div> <p> Then, we add 10Kg of mass: </p> <div class="org-src-container"> <pre class="src src-matlab">m = 5; </pre> </div> <p> And the dynamics is identified. </p> <p> The two identified dynamics are compared in Figure <a href="#org9bccbed">2</a>. </p> <div class="org-src-container"> <pre class="src src-matlab">%% Name of the Simulink File mdl = 'piezo_amplified_3d'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/F'], 1, 'openinput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/y'], 1, 'openoutput'); io_i = io_i + 1; Ghm = -linearize(mdl, io); </pre> </div> <div id="org9bccbed" class="figure"> <p><img src="figs/dynamics_act_disp_comp_mass.png" alt="dynamics_act_disp_comp_mass.png" /> </p> <p><span class="figure-number">Figure 2: </span>Dynamics from \(F\) to \(d\) without a payload and with a 10kg payload</p> </div> </div> </div> <div id="outline-container-orgff6331a" class="outline-3"> <h3 id="orgff6331a"><span class="section-number-3">1.5</span> Comparison with Ansys</h3> <div class="outline-text-3" id="text-1-5"> <p> Let’s import the results from an Harmonic response analysis in Ansys. </p> <div class="org-src-container"> <pre class="src src-matlab">Gresp0 = readtable('FEA_HarmResponse_00kg.txt'); Gresp10 = readtable('FEA_HarmResponse_10kg.txt'); </pre> </div> <p> The obtained dynamics from the Simscape model and from the Ansys analysis are compare in Figure <a href="#orgbddd59a">3</a>. </p> <div id="orgbddd59a" class="figure"> <p><img src="figs/dynamics_force_disp_comp_anasys.png" alt="dynamics_force_disp_comp_anasys.png" /> </p> <p><span class="figure-number">Figure 3: </span>Comparison of the obtained dynamics using Simscape with the harmonic response analysis using Ansys</p> </div> </div> </div> <div id="outline-container-org9bf2a27" class="outline-3"> <h3 id="org9bf2a27"><span class="section-number-3">1.6</span> Force Sensor</h3> <div class="outline-text-3" id="text-1-6"> <p> The dynamics is identified from internal forces applied between nodes 3 and 11 to the relative displacement of nodes 11 and 13. </p> <p> The obtained dynamics is shown in Figure <a href="#org32d2842">4</a>. </p> <div class="org-src-container"> <pre class="src src-matlab">m = 0; </pre> </div> <div class="org-src-container"> <pre class="src src-matlab">%% Name of the Simulink File mdl = 'piezo_amplified_3d'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/Fa'], 1, 'openinput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/Fs'], 1, 'openoutput'); io_i = io_i + 1; Gf = linearize(mdl, io); </pre> </div> <div class="org-src-container"> <pre class="src src-matlab">m = 10; </pre> </div> <div class="org-src-container"> <pre class="src src-matlab">%% Name of the Simulink File mdl = 'piezo_amplified_3d'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/Fa'], 1, 'openinput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/Fs'], 1, 'openoutput'); io_i = io_i + 1; Gfm = linearize(mdl, io); </pre> </div> <div id="org32d2842" class="figure"> <p><img src="figs/dynamics_force_force_sensor_comp_mass.png" alt="dynamics_force_force_sensor_comp_mass.png" /> </p> <p><span class="figure-number">Figure 4: </span>Dynamics from \(F\) to \(F_m\) for \(m=0\) and \(m = 10kg\)</p> </div> </div> </div> <div id="outline-container-org06d3501" class="outline-3"> <h3 id="org06d3501"><span class="section-number-3">1.7</span> Distributed Actuator</h3> <div class="outline-text-3" id="text-1-7"> <div class="org-src-container"> <pre class="src src-matlab">m = 0; </pre> </div> <p> The dynamics is identified from the applied force to the measured relative displacement. </p> <div class="org-src-container"> <pre class="src src-matlab">%% Name of the Simulink File mdl = 'piezo_amplified_3d_distri'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/F'], 1, 'openinput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/y'], 1, 'openoutput'); io_i = io_i + 1; Gd = linearize(mdl, io); </pre> </div> <p> Then, we add 10Kg of mass: </p> <div class="org-src-container"> <pre class="src src-matlab">m = 10; </pre> </div> <p> And the dynamics is identified. </p> <div class="org-src-container"> <pre class="src src-matlab">%% Name of the Simulink File mdl = 'piezo_amplified_3d_distri'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/F'], 1, 'openinput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/y'], 1, 'openoutput'); io_i = io_i + 1; Gdm = linearize(mdl, io); </pre> </div> </div> </div> <div id="outline-container-org324bb60" class="outline-3"> <h3 id="org324bb60"><span class="section-number-3">1.8</span> Distributed Actuator and Force Sensor</h3> <div class="outline-text-3" id="text-1-8"> <div class="org-src-container"> <pre class="src src-matlab">m = 0; </pre> </div> <div class="org-src-container"> <pre class="src src-matlab">%% Name of the Simulink File mdl = 'piezo_amplified_3d_distri_act_sens'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/F'], 1, 'openinput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/Fm'], 1, 'openoutput'); io_i = io_i + 1; Gfd = linearize(mdl, io); </pre> </div> <div class="org-src-container"> <pre class="src src-matlab">m = 10; </pre> </div> <div class="org-src-container"> <pre class="src src-matlab">%% Name of the Simulink File mdl = 'piezo_amplified_3d_distri_act_sens'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/F'], 1, 'openinput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/Fm'], 1, 'openoutput'); io_i = io_i + 1; Gfdm = linearize(mdl, io); </pre> </div> </div> </div> <div id="outline-container-org5840571" class="outline-3"> <h3 id="org5840571"><span class="section-number-3">1.9</span> Dynamics from input voltage to displacement</h3> <div class="outline-text-3" id="text-1-9"> <div class="org-src-container"> <pre class="src src-matlab">m = 5; </pre> </div> <p> And the dynamics is identified. </p> <p> The two identified dynamics are compared in Figure <a href="#org9bccbed">2</a>. </p> <div class="org-src-container"> <pre class="src src-matlab">%% Name of the Simulink File mdl = 'piezo_amplified_3d'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/V'], 1, 'openinput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/y'], 1, 'openoutput'); io_i = io_i + 1; G = -linearize(mdl, io); </pre> </div> <div class="org-src-container"> <pre class="src src-matlab">save('../test-bench-apa/mat/fem_model_5kg.mat', 'G') </pre> </div> </div> </div> <div id="outline-container-org7061a42" class="outline-3"> <h3 id="org7061a42"><span class="section-number-3">1.10</span> Dynamics from input voltage to output voltage</h3> <div class="outline-text-3" id="text-1-10"> <div class="org-src-container"> <pre class="src src-matlab">m = 5; </pre> </div> <div class="org-src-container"> <pre class="src src-matlab">%% Name of the Simulink File mdl = 'piezo_amplified_3d'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/Va'], 1, 'openinput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/Vs'], 1, 'openoutput'); io_i = io_i + 1; G = -linearize(mdl, io); </pre> </div> </div> </div> </div> <div id="outline-container-org4785733" class="outline-2"> <h2 id="org4785733"><span class="section-number-2">2</span> APA300ML</h2> <div class="outline-text-2" id="text-2"> <div id="orgbae0d7b" class="figure"> <p><img src="figs/apa300ml_ansys.jpg" alt="apa300ml_ansys.jpg" /> </p> <p><span class="figure-number">Figure 5: </span>Ansys FEM of the APA300ML</p> </div> </div> <div id="outline-container-orgc8b6c2f" class="outline-3"> <h3 id="orgc8b6c2f"><span class="section-number-3">2.1</span> Import Mass Matrix, Stiffness Matrix, and Interface Nodes Coordinates</h3> <div class="outline-text-3" id="text-2-1"> <p> We first extract the stiffness and mass matrices. </p> <div class="org-src-container"> <pre class="src src-matlab">K = extractMatrix('mat_K-48modes-7MDoF.matrix'); M = extractMatrix('mat_M-48modes-7MDoF.matrix'); </pre> </div> <div class="org-src-container"> <pre class="src src-matlab">K = extractMatrix('mat_K-80modes-7MDoF.matrix'); M = extractMatrix('mat_M-80modes-7MDoF.matrix'); </pre> </div> <p> Then, we extract the coordinates of the interface nodes. </p> <div class="org-src-container"> <pre class="src src-matlab">[int_xyz, int_i, n_xyz, n_i, nodes] = extractNodes('Nodes_MDoF_NLIST_MLIST.txt'); </pre> </div> <div class="org-src-container"> <pre class="src src-matlab">save('./mat/APA300ML.mat', 'int_xyz', 'int_i', 'n_xyz', 'n_i', 'nodes', 'M', 'K'); </pre> </div> </div> </div> <div id="outline-container-org4f8843c" class="outline-3"> <h3 id="org4f8843c"><span class="section-number-3">2.2</span> Output parameters</h3> <div class="outline-text-3" id="text-2-2"> <div class="org-src-container"> <pre class="src src-matlab">load('./mat/APA300ML.mat', 'int_xyz', 'int_i', 'n_xyz', 'n_i', 'nodes', 'M', 'K'); </pre> </div> <table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides"> <colgroup> <col class="org-left" /> <col class="org-right" /> </colgroup> <tbody> <tr> <td class="org-left">Total number of Nodes</td> <td class="org-right">7</td> </tr> <tr> <td class="org-left">Number of interface Nodes</td> <td class="org-right">7</td> </tr> <tr> <td class="org-left">Number of Modes</td> <td class="org-right">6</td> </tr> <tr> <td class="org-left">Size of M and K matrices</td> <td class="org-right">48</td> </tr> </tbody> </table> <table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides"> <caption class="t-above"><span class="table-number">Table 4:</span> Coordinates of the interface nodes</caption> <colgroup> <col class="org-right" /> <col class="org-right" /> <col class="org-right" /> <col class="org-right" /> <col class="org-right" /> </colgroup> <thead> <tr> <th scope="col" class="org-right">Node i</th> <th scope="col" class="org-right">Node Number</th> <th scope="col" class="org-right">x [m]</th> <th scope="col" class="org-right">y [m]</th> <th scope="col" class="org-right">z [m]</th> </tr> </thead> <tbody> <tr> <td class="org-right">1.0</td> <td class="org-right">53917.0</td> <td class="org-right">0.0</td> <td class="org-right">-0.015</td> <td class="org-right">0.0</td> </tr> <tr> <td class="org-right">2.0</td> <td class="org-right">53918.0</td> <td class="org-right">0.0</td> <td class="org-right">0.015</td> <td class="org-right">0.0</td> </tr> <tr> <td class="org-right">3.0</td> <td class="org-right">53919.0</td> <td class="org-right">-0.0325</td> <td class="org-right">0.0</td> <td class="org-right">0.0</td> </tr> <tr> <td class="org-right">4.0</td> <td class="org-right">53920.0</td> <td class="org-right">-0.0125</td> <td class="org-right">0.0</td> <td class="org-right">0.0</td> </tr> <tr> <td class="org-right">5.0</td> <td class="org-right">53921.0</td> <td class="org-right">-0.0075</td> <td class="org-right">0.0</td> <td class="org-right">0.0</td> </tr> <tr> <td class="org-right">6.0</td> <td class="org-right">53922.0</td> <td class="org-right">0.0125</td> <td class="org-right">0.0</td> <td class="org-right">0.0</td> </tr> <tr> <td class="org-right">7.0</td> <td class="org-right">53923.0</td> <td class="org-right">0.0325</td> <td class="org-right">0.0</td> <td class="org-right">0.0</td> </tr> </tbody> </table> <table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides"> <caption class="t-above"><span class="table-number">Table 5:</span> First 10x10 elements of the Stiffness matrix</caption> <colgroup> <col class="org-right" /> <col class="org-right" /> <col class="org-right" /> <col class="org-right" /> <col class="org-right" /> <col class="org-right" /> <col class="org-right" /> <col class="org-right" /> <col class="org-right" /> <col class="org-right" /> </colgroup> <tbody> <tr> <td class="org-right">200000000.0</td> <td class="org-right">30000.0</td> <td class="org-right">50000.0</td> <td class="org-right">200.0</td> <td class="org-right">-100.0</td> <td class="org-right">-300000.0</td> <td class="org-right">10000000.0</td> <td class="org-right">-6000.0</td> <td class="org-right">20000.0</td> <td class="org-right">-60.0</td> </tr> <tr> <td class="org-right">30000.0</td> <td class="org-right">7000000.0</td> <td class="org-right">10000.0</td> <td class="org-right">30.0</td> <td class="org-right">-30.0</td> <td class="org-right">-70.0</td> <td class="org-right">7000.0</td> <td class="org-right">-500000.0</td> <td class="org-right">3000.0</td> <td class="org-right">-10.0</td> </tr> <tr> <td class="org-right">50000.0</td> <td class="org-right">10000.0</td> <td class="org-right">30000000.0</td> <td class="org-right">200000.0</td> <td class="org-right">-200.0</td> <td class="org-right">-100.0</td> <td class="org-right">20000.0</td> <td class="org-right">-2000.0</td> <td class="org-right">2000000.0</td> <td class="org-right">-9000.0</td> </tr> <tr> <td class="org-right">200.0</td> <td class="org-right">30.0</td> <td class="org-right">200000.0</td> <td class="org-right">1000.0</td> <td class="org-right">-0.8</td> <td class="org-right">-0.4</td> <td class="org-right">50.0</td> <td class="org-right">-6</td> <td class="org-right">9000.0</td> <td class="org-right">-30.0</td> </tr> <tr> <td class="org-right">-100.0</td> <td class="org-right">-30.0</td> <td class="org-right">-200.0</td> <td class="org-right">-0.8</td> <td class="org-right">10000.0</td> <td class="org-right">0.2</td> <td class="org-right">-40.0</td> <td class="org-right">10.0</td> <td class="org-right">20.0</td> <td class="org-right">-0.05</td> </tr> <tr> <td class="org-right">-300000.0</td> <td class="org-right">-70.0</td> <td class="org-right">-100.0</td> <td class="org-right">-0.4</td> <td class="org-right">0.2</td> <td class="org-right">900.0</td> <td class="org-right">-30000.0</td> <td class="org-right">10.0</td> <td class="org-right">-40.0</td> <td class="org-right">0.1</td> </tr> <tr> <td class="org-right">10000000.0</td> <td class="org-right">7000.0</td> <td class="org-right">20000.0</td> <td class="org-right">50.0</td> <td class="org-right">-40.0</td> <td class="org-right">-30000.0</td> <td class="org-right">200000000.0</td> <td class="org-right">-50000.0</td> <td class="org-right">30000.0</td> <td class="org-right">-50.0</td> </tr> <tr> <td class="org-right">-6000.0</td> <td class="org-right">-500000.0</td> <td class="org-right">-2000.0</td> <td class="org-right">-6</td> <td class="org-right">10.0</td> <td class="org-right">10.0</td> <td class="org-right">-50000.0</td> <td class="org-right">7000000.0</td> <td class="org-right">-4000.0</td> <td class="org-right">8</td> </tr> <tr> <td class="org-right">20000.0</td> <td class="org-right">3000.0</td> <td class="org-right">2000000.0</td> <td class="org-right">9000.0</td> <td class="org-right">20.0</td> <td class="org-right">-40.0</td> <td class="org-right">30000.0</td> <td class="org-right">-4000.0</td> <td class="org-right">30000000.0</td> <td class="org-right">-200000.0</td> </tr> <tr> <td class="org-right">-60.0</td> <td class="org-right">-10.0</td> <td class="org-right">-9000.0</td> <td class="org-right">-30.0</td> <td class="org-right">-0.05</td> <td class="org-right">0.1</td> <td class="org-right">-50.0</td> <td class="org-right">8</td> <td class="org-right">-200000.0</td> <td class="org-right">1000.0</td> </tr> </tbody> </table> <table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides"> <caption class="t-above"><span class="table-number">Table 6:</span> First 10x10 elements of the Mass matrix</caption> <colgroup> <col class="org-right" /> <col class="org-right" /> <col class="org-right" /> <col class="org-right" /> <col class="org-right" /> <col class="org-right" /> <col class="org-right" /> <col class="org-right" /> <col class="org-right" /> <col class="org-right" /> </colgroup> <tbody> <tr> <td class="org-right">0.01</td> <td class="org-right">7e-06</td> <td class="org-right">-5e-06</td> <td class="org-right">-6e-08</td> <td class="org-right">3e-09</td> <td class="org-right">-5e-05</td> <td class="org-right">-0.0005</td> <td class="org-right">-2e-07</td> <td class="org-right">-3e-06</td> <td class="org-right">1e-08</td> </tr> <tr> <td class="org-right">7e-06</td> <td class="org-right">0.009</td> <td class="org-right">4e-07</td> <td class="org-right">6e-09</td> <td class="org-right">-4e-09</td> <td class="org-right">-3e-08</td> <td class="org-right">-2e-07</td> <td class="org-right">6e-05</td> <td class="org-right">5e-07</td> <td class="org-right">-1e-09</td> </tr> <tr> <td class="org-right">-5e-06</td> <td class="org-right">4e-07</td> <td class="org-right">0.01</td> <td class="org-right">2e-05</td> <td class="org-right">2e-08</td> <td class="org-right">3e-08</td> <td class="org-right">-2e-06</td> <td class="org-right">-1e-07</td> <td class="org-right">-0.0002</td> <td class="org-right">9e-07</td> </tr> <tr> <td class="org-right">-6e-08</td> <td class="org-right">6e-09</td> <td class="org-right">2e-05</td> <td class="org-right">3e-07</td> <td class="org-right">1e-10</td> <td class="org-right">3e-10</td> <td class="org-right">-7e-09</td> <td class="org-right">2e-10</td> <td class="org-right">-9e-07</td> <td class="org-right">3e-09</td> </tr> <tr> <td class="org-right">3e-09</td> <td class="org-right">-4e-09</td> <td class="org-right">2e-08</td> <td class="org-right">1e-10</td> <td class="org-right">1e-07</td> <td class="org-right">-3e-12</td> <td class="org-right">6e-09</td> <td class="org-right">-2e-10</td> <td class="org-right">-3e-09</td> <td class="org-right">9e-12</td> </tr> <tr> <td class="org-right">-5e-05</td> <td class="org-right">-3e-08</td> <td class="org-right">3e-08</td> <td class="org-right">3e-10</td> <td class="org-right">-3e-12</td> <td class="org-right">6e-07</td> <td class="org-right">1e-06</td> <td class="org-right">-3e-09</td> <td class="org-right">2e-08</td> <td class="org-right">-7e-11</td> </tr> <tr> <td class="org-right">-0.0005</td> <td class="org-right">-2e-07</td> <td class="org-right">-2e-06</td> <td class="org-right">-7e-09</td> <td class="org-right">6e-09</td> <td class="org-right">1e-06</td> <td class="org-right">0.01</td> <td class="org-right">-8e-06</td> <td class="org-right">-2e-06</td> <td class="org-right">9e-09</td> </tr> <tr> <td class="org-right">-2e-07</td> <td class="org-right">6e-05</td> <td class="org-right">-1e-07</td> <td class="org-right">2e-10</td> <td class="org-right">-2e-10</td> <td class="org-right">-3e-09</td> <td class="org-right">-8e-06</td> <td class="org-right">0.009</td> <td class="org-right">1e-07</td> <td class="org-right">2e-09</td> </tr> <tr> <td class="org-right">-3e-06</td> <td class="org-right">5e-07</td> <td class="org-right">-0.0002</td> <td class="org-right">-9e-07</td> <td class="org-right">-3e-09</td> <td class="org-right">2e-08</td> <td class="org-right">-2e-06</td> <td class="org-right">1e-07</td> <td class="org-right">0.01</td> <td class="org-right">-2e-05</td> </tr> <tr> <td class="org-right">1e-08</td> <td class="org-right">-1e-09</td> <td class="org-right">9e-07</td> <td class="org-right">3e-09</td> <td class="org-right">9e-12</td> <td class="org-right">-7e-11</td> <td class="org-right">9e-09</td> <td class="org-right">2e-09</td> <td class="org-right">-2e-05</td> <td class="org-right">3e-07</td> </tr> </tbody> </table> <p> Using <code>K</code>, <code>M</code> and <code>int_xyz</code>, we can use the <code>Reduced Order Flexible Solid</code> simscape block. </p> </div> </div> <div id="outline-container-org7dc97c1" class="outline-3"> <h3 id="org7dc97c1"><span class="section-number-3">2.3</span> Piezoelectric parameters</h3> <div class="outline-text-3" id="text-2-3"> <p> Parameters for the APA300ML: </p> <div class="org-src-container"> <pre class="src src-matlab">d33 = 3e-10; % Strain constant [m/V] n = 80; % Number of layers per stack eT = 1.6e-8; % Permittivity under constant stress [F/m] sD = 2e-11; % Elastic compliance under constant electric displacement [m2/N] ka = 235e6; % Stack stiffness [N/m] C = 5e-6; % Stack capactiance [F] </pre> </div> <div class="org-src-container"> <pre class="src src-matlab">na = 2; % Number of stacks used as actuator ns = 1; % Number of stacks used as force sensor </pre> </div> <p> The ratio of the developed force to applied voltage is \(d_{33} n k_a\) in [N/V]. We denote this constant by \(g_a\) and: \[ F_a = g_a V_a, \quad g_a = d_{33} n k_a \] </p> <div class="org-src-container"> <pre class="src src-matlab">d33*(na*n)*(ka/(na + ns)) % [N/V] </pre> </div> <pre class="example"> 0.42941 </pre> <p> From (<a href="#citeproc_bib_item_1">Fleming and Leang 2014</a>) (page 123), the relation between relative displacement and generated voltage is: \[ V_s = \frac{d_{33}}{\epsilon^T s^D n} \Delta h \] where: </p> <ul class="org-ul"> <li>\(V_s\): measured voltage [V]</li> <li>\(d_{33}\): strain constant [m/V]</li> <li>\(\epsilon^T\): permittivity under constant stress [F/m]</li> <li>\(s^D\): elastic compliance under constant electric displacement [m^2/N]</li> <li>\(n\): number of layers</li> <li>\(\Delta h\): relative displacement [m]</li> </ul> <div class="org-src-container"> <pre class="src src-matlab">1e-6*d33/(eT*sD*ns*n) % [V/um] </pre> </div> <pre class="example"> 5.8594 </pre> </div> </div> <div id="outline-container-orgf91f943" class="outline-3"> <h3 id="orgf91f943"><span class="section-number-3">2.4</span> Identification of the APA Characteristics</h3> <div class="outline-text-3" id="text-2-4"> </div> <div id="outline-container-orgcb12518" class="outline-4"> <h4 id="orgcb12518"><span class="section-number-4">2.4.1</span> Stiffness</h4> <div class="outline-text-4" id="text-2-4-1"> <p> The transfer function from vertical external force to the relative vertical displacement is identified. </p> <p> The inverse of its DC gain is the axial stiffness of the APA: </p> <div class="org-src-container"> <pre class="src src-matlab">1e-6/dcgain(G) % [N/um] </pre> </div> <pre class="example"> 1.8634 </pre> <p> The specified stiffness in the datasheet is \(k = 1.8\, [N/\mu m]\). </p> </div> </div> <div id="outline-container-org43f261c" class="outline-4"> <h4 id="org43f261c"><span class="section-number-4">2.4.2</span> Resonance Frequency</h4> <div class="outline-text-4" id="text-2-4-2"> <p> The resonance frequency is specified to be between 650Hz and 840Hz. This is also the case for the FEM model (Figure <a href="#org51e1766">6</a>). </p> <div id="org51e1766" class="figure"> <p><img src="figs/apa300ml_resonance.png" alt="apa300ml_resonance.png" /> </p> <p><span class="figure-number">Figure 6: </span>First resonance is around 800Hz</p> </div> </div> </div> <div id="outline-container-org38ca11e" class="outline-4"> <h4 id="org38ca11e"><span class="section-number-4">2.4.3</span> Amplification factor</h4> <div class="outline-text-4" id="text-2-4-3"> <p> The amplification factor is the ratio of the axial displacement to the stack displacement. </p> <p> The ratio of the two displacement is computed from the FEM model. </p> <div class="org-src-container"> <pre class="src src-matlab">-dcgain(G(1,1))./dcgain(G(2,1)) </pre> </div> <pre class="example"> 4.936 </pre> <p> If we take the ratio of the piezo height and length (approximation of the amplification factor): </p> <div class="org-src-container"> <pre class="src src-matlab">75/15 </pre> </div> <pre class="example"> 5 </pre> </div> </div> <div id="outline-container-org227839d" class="outline-4"> <h4 id="org227839d"><span class="section-number-4">2.4.4</span> Stroke</h4> <div class="outline-text-4" id="text-2-4-4"> <p> Estimation of the actuator stroke: \[ \Delta H = A n \Delta L \] with: </p> <ul class="org-ul"> <li>\(\Delta H\) Axial Stroke of the APA</li> <li>\(A\) Amplification factor (5 for the APA300ML)</li> <li>\(n\) Number of stack used</li> <li>\(\Delta L\) Stroke of the stack (0.1% of its length)</li> </ul> <div class="org-src-container"> <pre class="src src-matlab">1e6 * 5 * 3 * 20e-3 * 0.1e-2 </pre> </div> <pre class="example"> 300 </pre> <p> This is exactly the specified stroke in the data-sheet. </p> </div> </div> </div> <div id="outline-container-orgfeabffd" class="outline-3"> <h3 id="orgfeabffd"><span class="section-number-3">2.5</span> Identification of the Dynamics</h3> <div class="outline-text-3" id="text-2-5"> <p> The flexible element is imported using the <code>Reduced Order Flexible Solid</code> simscape block. </p> <p> To model the actuator, an <code>Internal Force</code> block is added between the nodes 3 and 12. A <code>Relative Motion Sensor</code> block is added between the nodes 1 and 2 to measure the displacement and the amplified piezo. </p> <p> One mass is fixed at one end of the piezo-electric stack actuator, the other end is fixed to the world frame. </p> <p> We first set the mass to be zero. The dynamics is identified from the applied force to the measured relative displacement. The same dynamics is identified for a payload mass of 10Kg. </p> <div class="org-src-container"> <pre class="src src-matlab">m = 10; </pre> </div> <div id="orgb3bcc13" class="figure"> <p><img src="figs/apa300ml_plant_dynamics.png" alt="apa300ml_plant_dynamics.png" /> </p> <p><span class="figure-number">Figure 7: </span>Transfer function from forces applied by the stack to the axial displacement of the APA</p> </div> </div> </div> <div id="outline-container-orga13ac6b" class="outline-3"> <h3 id="orga13ac6b"><span class="section-number-3">2.6</span> IFF</h3> <div class="outline-text-3" id="text-2-6"> <p> Let’s use 2 stacks as actuators and 1 stack as force sensor. </p> <p> The transfer function from actuator to sensors is identified and shown in Figure <a href="#org3cf9aa1">8</a>. </p> <div id="org3cf9aa1" class="figure"> <p><img src="figs/apa300ml_iff_plant.png" alt="apa300ml_iff_plant.png" /> </p> <p><span class="figure-number">Figure 8: </span>Transfer function from actuator to force sensor</p> </div> <p> For root locus corresponding to IFF is shown in Figure <a href="#org876e0f8">9</a>. </p> <div id="org876e0f8" class="figure"> <p><img src="figs/apa300ml_iff_root_locus.png" alt="apa300ml_iff_root_locus.png" /> </p> <p><span class="figure-number">Figure 9: </span>Root Locus for IFF</p> </div> </div> </div> <div id="outline-container-org5ed7231" class="outline-3"> <h3 id="org5ed7231"><span class="section-number-3">2.7</span> DVF</h3> <div class="outline-text-3" id="text-2-7"> <p> Now the dynamics from the stack actuator to the relative motion sensor is identified and shown in Figure <a href="#org6126c83">10</a>. </p> <div id="org6126c83" class="figure"> <p><img src="figs/apa300ml_dvf_plant.png" alt="apa300ml_dvf_plant.png" /> </p> <p><span class="figure-number">Figure 10: </span>Transfer function from stack actuator to relative motion sensor</p> </div> <p> The root locus for DVF is shown in Figure <a href="#org01f9702">11</a>. </p> <div id="org01f9702" class="figure"> <p><img src="figs/apa300ml_dvf_root_locus.png" alt="apa300ml_dvf_root_locus.png" /> </p> <p><span class="figure-number">Figure 11: </span>Root Locus for Direct Velocity Feedback</p> </div> </div> </div> <div id="outline-container-org7e2be0e" class="outline-3"> <h3 id="org7e2be0e"><span class="section-number-3">2.8</span> Identification for a simpler model</h3> <div class="outline-text-3" id="text-2-8"> <p> The goal in this section is to identify the parameters of a simple APA model from the FEM. This can be useful is a lower order model is to be used for simulations. </p> <p> The presented model is based on (<a href="#citeproc_bib_item_2">Souleille et al. 2018</a>). </p> <p> The model represents the Amplified Piezo Actuator (APA) from Cedrat-Technologies (Figure <a href="#org60372a9">12</a>). The parameters are shown in the table below. </p> <div id="org60372a9" class="figure"> <p><img src="./figs/souleille18_model_piezo.png" alt="souleille18_model_piezo.png" /> </p> <p><span class="figure-number">Figure 12: </span>Picture of an APA100M from Cedrat Technologies. Simplified model of a one DoF payload mounted on such isolator</p> </div> <table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides"> <caption class="t-above"><span class="table-number">Table 7:</span> Parameters used for the model of the APA 100M</caption> <colgroup> <col class="org-left" /> <col class="org-left" /> </colgroup> <thead> <tr> <th scope="col" class="org-left"> </th> <th scope="col" class="org-left">Meaning</th> </tr> </thead> <tbody> <tr> <td class="org-left">\(k_e\)</td> <td class="org-left">Stiffness used to adjust the pole of the isolator</td> </tr> <tr> <td class="org-left">\(k_1\)</td> <td class="org-left">Stiffness of the metallic suspension when the stack is removed</td> </tr> <tr> <td class="org-left">\(k_a\)</td> <td class="org-left">Stiffness of the actuator</td> </tr> <tr> <td class="org-left">\(c_1\)</td> <td class="org-left">Added viscous damping</td> </tr> </tbody> </table> <p> The goal is to determine \(k_e\), \(k_a\) and \(k_1\) so that the simplified model fits the FEM model. </p> <p> \[ \alpha = \frac{x_1}{f}(\omega=0) = \frac{\frac{k_e}{k_e + k_a}}{k_1 + \frac{k_e k_a}{k_e + k_a}} \] \[ \beta = \frac{x_1}{F}(\omega=0) = \frac{1}{k_1 + \frac{k_e k_a}{k_e + k_a}} \] </p> <p> If we can fix \(k_a\), we can determine \(k_e\) and \(k_1\) with: \[ k_e = \frac{k_a}{\frac{\beta}{\alpha} - 1} \] \[ k_1 = \frac{1}{\beta} - \frac{k_e k_a}{k_e + k_a} \] </p> <p> From the identified dynamics, compute \(\alpha\) and \(\beta\) </p> <div class="org-src-container"> <pre class="src src-matlab">alpha = abs(dcgain(G('y', 'Fa'))); beta = abs(dcgain(G('y', 'Fd'))); </pre> </div> <p> \(k_a\) is estimated using the following formula: </p> <div class="org-src-container"> <pre class="src src-matlab">ka = 0.8/abs(dcgain(G('y', 'Fa'))); </pre> </div> <p> The factor can be adjusted to better match the curves. </p> <p> Then \(k_e\) and \(k_1\) are computed. </p> <div class="org-src-container"> <pre class="src src-matlab">ke = ka/(beta/alpha - 1); k1 = 1/beta - ke*ka/(ke + ka); </pre> </div> <table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides"> <colgroup> <col class="org-left" /> <col class="org-right" /> </colgroup> <thead> <tr> <th scope="col" class="org-left"> </th> <th scope="col" class="org-right">Value [N/um]</th> </tr> </thead> <tbody> <tr> <td class="org-left">ka</td> <td class="org-right">42.9</td> </tr> <tr> <td class="org-left">ke</td> <td class="org-right">1.5</td> </tr> <tr> <td class="org-left">k1</td> <td class="org-right">0.4</td> </tr> </tbody> </table> <p> The damping in the system is adjusted to match the FEM model if necessary. </p> <div class="org-src-container"> <pre class="src src-matlab">c1 = 1e2; </pre> </div> <p> Analytical model of the simpler system: </p> <div class="org-src-container"> <pre class="src src-matlab">Ga = 1/(m*s^2 + k1 + c1*s + ke*ka/(ke + ka)) * ... [ 1 , k1 + c1*s + ke*ka/(ke + ka) , ke/(ke + ka) ; -ke*ka/(ke + ka), ke*ka/(ke + ka)*m*s^2 , -ke/(ke + ka)*(m*s^2 + c1*s + k1)]; Ga.InputName = {'Fd', 'w', 'Fa'}; Ga.OutputName = {'y', 'Fs'}; </pre> </div> <p> Adjust the DC gain for the force sensor: </p> <div class="org-src-container"> <pre class="src src-matlab">lambda = dcgain(Ga('Fs', 'Fd'))/dcgain(G('Fs', 'Fd')); </pre> </div> <div id="org67c5104" class="figure"> <p><img src="figs/apa300ml_comp_simpler_model.png" alt="apa300ml_comp_simpler_model.png" /> </p> <p><span class="figure-number">Figure 13: </span>Comparison of the Dynamics between the FEM model and the simplified one</p> </div> </div> </div> </div> <div id="outline-container-org0fc361f" class="outline-2"> <h2 id="org0fc361f"><span class="section-number-2">3</span> Flexible Joint</h2> <div class="outline-text-2" id="text-3"> <div id="orgd9dc946" class="figure"> <p><img src="figs/flexor_id16_screenshot.png" alt="flexor_id16_screenshot.png" /> </p> <p><span class="figure-number">Figure 14: </span>Flexor studied</p> </div> </div> <div id="outline-container-orgf82cf1b" class="outline-3"> <h3 id="orgf82cf1b"><span class="section-number-3">3.1</span> Import Mass Matrix, Stiffness Matrix, and Interface Nodes Coordinates</h3> <div class="outline-text-3" id="text-3-1"> <p> We first extract the stiffness and mass matrices. </p> <div class="org-src-container"> <pre class="src src-matlab">K = extractMatrix('mat_K_6modes_2MDoF.matrix'); M = extractMatrix('mat_M_6modes_2MDoF.matrix'); </pre> </div> <p> Then, we extract the coordinates of the interface nodes. </p> <div class="org-src-container"> <pre class="src src-matlab">[int_xyz, int_i, n_xyz, n_i, nodes] = extractNodes('out_nodes_3D.txt'); </pre> </div> <div class="org-src-container"> <pre class="src src-matlab">save('./mat/flexor_ID16.mat', 'int_xyz', 'int_i', 'n_xyz', 'n_i', 'nodes', 'M', 'K'); </pre> </div> </div> </div> <div id="outline-container-orgc3419f4" class="outline-3"> <h3 id="orgc3419f4"><span class="section-number-3">3.2</span> Output parameters</h3> <div class="outline-text-3" id="text-3-2"> <div class="org-src-container"> <pre class="src src-matlab">load('./mat/flexor_ID16.mat', 'int_xyz', 'int_i', 'n_xyz', 'n_i', 'nodes', 'M', 'K'); </pre> </div> <table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides"> <colgroup> <col class="org-left" /> <col class="org-right" /> </colgroup> <tbody> <tr> <td class="org-left">Total number of Nodes</td> <td class="org-right">2</td> </tr> <tr> <td class="org-left">Number of interface Nodes</td> <td class="org-right">2</td> </tr> <tr> <td class="org-left">Number of Modes</td> <td class="org-right">6</td> </tr> <tr> <td class="org-left">Size of M and K matrices</td> <td class="org-right">18</td> </tr> </tbody> </table> <table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides"> <caption class="t-above"><span class="table-number">Table 8:</span> Coordinates of the interface nodes</caption> <colgroup> <col class="org-right" /> <col class="org-right" /> <col class="org-right" /> <col class="org-right" /> <col class="org-right" /> </colgroup> <thead> <tr> <th scope="col" class="org-right">Node i</th> <th scope="col" class="org-right">Node Number</th> <th scope="col" class="org-right">x [m]</th> <th scope="col" class="org-right">y [m]</th> <th scope="col" class="org-right">z [m]</th> </tr> </thead> <tbody> <tr> <td class="org-right">1.0</td> <td class="org-right">181278.0</td> <td class="org-right">0.0</td> <td class="org-right">0.0</td> <td class="org-right">0.0</td> </tr> <tr> <td class="org-right">2.0</td> <td class="org-right">181279.0</td> <td class="org-right">0.0</td> <td class="org-right">0.0</td> <td class="org-right">-0.0</td> </tr> </tbody> </table> <table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides"> <caption class="t-above"><span class="table-number">Table 9:</span> First 10x10 elements of the Stiffness matrix</caption> <colgroup> <col class="org-right" /> <col class="org-right" /> <col class="org-right" /> <col class="org-right" /> <col class="org-right" /> <col class="org-right" /> <col class="org-right" /> <col class="org-right" /> <col class="org-right" /> <col class="org-right" /> </colgroup> <tbody> <tr> <td class="org-right">11200000.0</td> <td class="org-right">195.0</td> <td class="org-right">2220.0</td> <td class="org-right">-0.719</td> <td class="org-right">-265.0</td> <td class="org-right">1.59</td> <td class="org-right">-11200000.0</td> <td class="org-right">-213.0</td> <td class="org-right">-2220.0</td> <td class="org-right">0.147</td> </tr> <tr> <td class="org-right">195.0</td> <td class="org-right">11400000.0</td> <td class="org-right">1290.0</td> <td class="org-right">-148.0</td> <td class="org-right">-0.188</td> <td class="org-right">2.41</td> <td class="org-right">-212.0</td> <td class="org-right">-11400000.0</td> <td class="org-right">-1290.0</td> <td class="org-right">148.0</td> </tr> <tr> <td class="org-right">2220.0</td> <td class="org-right">1290.0</td> <td class="org-right">119000000.0</td> <td class="org-right">1.31</td> <td class="org-right">1.49</td> <td class="org-right">1.79</td> <td class="org-right">-2220.0</td> <td class="org-right">-1290.0</td> <td class="org-right">-119000000.0</td> <td class="org-right">-1.31</td> </tr> <tr> <td class="org-right">-0.719</td> <td class="org-right">-148.0</td> <td class="org-right">1.31</td> <td class="org-right">33.0</td> <td class="org-right">0.000488</td> <td class="org-right">-0.000977</td> <td class="org-right">0.141</td> <td class="org-right">148.0</td> <td class="org-right">-1.31</td> <td class="org-right">-33.0</td> </tr> <tr> <td class="org-right">-265.0</td> <td class="org-right">-0.188</td> <td class="org-right">1.49</td> <td class="org-right">0.000488</td> <td class="org-right">33.0</td> <td class="org-right">0.00293</td> <td class="org-right">266.0</td> <td class="org-right">0.154</td> <td class="org-right">-1.49</td> <td class="org-right">0.00026</td> </tr> <tr> <td class="org-right">1.59</td> <td class="org-right">2.41</td> <td class="org-right">1.79</td> <td class="org-right">-0.000977</td> <td class="org-right">0.00293</td> <td class="org-right">236.0</td> <td class="org-right">-1.32</td> <td class="org-right">-2.55</td> <td class="org-right">-1.79</td> <td class="org-right">0.000379</td> </tr> <tr> <td class="org-right">-11200000.0</td> <td class="org-right">-212.0</td> <td class="org-right">-2220.0</td> <td class="org-right">0.141</td> <td class="org-right">266.0</td> <td class="org-right">-1.32</td> <td class="org-right">11400000.0</td> <td class="org-right">24600.0</td> <td class="org-right">1640.0</td> <td class="org-right">120.0</td> </tr> <tr> <td class="org-right">-213.0</td> <td class="org-right">-11400000.0</td> <td class="org-right">-1290.0</td> <td class="org-right">148.0</td> <td class="org-right">0.154</td> <td class="org-right">-2.55</td> <td class="org-right">24600.0</td> <td class="org-right">11400000.0</td> <td class="org-right">1290.0</td> <td class="org-right">-72.0</td> </tr> <tr> <td class="org-right">-2220.0</td> <td class="org-right">-1290.0</td> <td class="org-right">-119000000.0</td> <td class="org-right">-1.31</td> <td class="org-right">-1.49</td> <td class="org-right">-1.79</td> <td class="org-right">1640.0</td> <td class="org-right">1290.0</td> <td class="org-right">119000000.0</td> <td class="org-right">1.32</td> </tr> <tr> <td class="org-right">0.147</td> <td class="org-right">148.0</td> <td class="org-right">-1.31</td> <td class="org-right">-33.0</td> <td class="org-right">0.00026</td> <td class="org-right">0.000379</td> <td class="org-right">120.0</td> <td class="org-right">-72.0</td> <td class="org-right">1.32</td> <td class="org-right">34.7</td> </tr> </tbody> </table> <table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides"> <caption class="t-above"><span class="table-number">Table 10:</span> First 10x10 elements of the Mass matrix</caption> <colgroup> <col class="org-right" /> <col class="org-right" /> <col class="org-right" /> <col class="org-right" /> <col class="org-right" /> <col class="org-right" /> <col class="org-right" /> <col class="org-right" /> <col class="org-right" /> <col class="org-right" /> </colgroup> <tbody> <tr> <td class="org-right">0.02</td> <td class="org-right">1e-09</td> <td class="org-right">-4e-08</td> <td class="org-right">-1e-10</td> <td class="org-right">0.0002</td> <td class="org-right">-3e-11</td> <td class="org-right">0.004</td> <td class="org-right">5e-08</td> <td class="org-right">7e-08</td> <td class="org-right">1e-10</td> </tr> <tr> <td class="org-right">1e-09</td> <td class="org-right">0.02</td> <td class="org-right">-3e-07</td> <td class="org-right">-0.0002</td> <td class="org-right">-1e-10</td> <td class="org-right">-2e-09</td> <td class="org-right">2e-08</td> <td class="org-right">0.004</td> <td class="org-right">3e-07</td> <td class="org-right">1e-05</td> </tr> <tr> <td class="org-right">-4e-08</td> <td class="org-right">-3e-07</td> <td class="org-right">0.02</td> <td class="org-right">7e-10</td> <td class="org-right">-2e-09</td> <td class="org-right">1e-09</td> <td class="org-right">3e-07</td> <td class="org-right">7e-08</td> <td class="org-right">0.003</td> <td class="org-right">1e-09</td> </tr> <tr> <td class="org-right">-1e-10</td> <td class="org-right">-0.0002</td> <td class="org-right">7e-10</td> <td class="org-right">4e-06</td> <td class="org-right">-1e-12</td> <td class="org-right">-6e-13</td> <td class="org-right">2e-10</td> <td class="org-right">-7e-06</td> <td class="org-right">-8e-10</td> <td class="org-right">-1e-09</td> </tr> <tr> <td class="org-right">0.0002</td> <td class="org-right">-1e-10</td> <td class="org-right">-2e-09</td> <td class="org-right">-1e-12</td> <td class="org-right">3e-06</td> <td class="org-right">2e-13</td> <td class="org-right">9e-06</td> <td class="org-right">4e-11</td> <td class="org-right">2e-09</td> <td class="org-right">-3e-13</td> </tr> <tr> <td class="org-right">-3e-11</td> <td class="org-right">-2e-09</td> <td class="org-right">1e-09</td> <td class="org-right">-6e-13</td> <td class="org-right">2e-13</td> <td class="org-right">4e-07</td> <td class="org-right">8e-11</td> <td class="org-right">9e-10</td> <td class="org-right">-1e-09</td> <td class="org-right">2e-12</td> </tr> <tr> <td class="org-right">0.004</td> <td class="org-right">2e-08</td> <td class="org-right">3e-07</td> <td class="org-right">2e-10</td> <td class="org-right">9e-06</td> <td class="org-right">8e-11</td> <td class="org-right">0.02</td> <td class="org-right">-7e-08</td> <td class="org-right">-3e-07</td> <td class="org-right">-2e-10</td> </tr> <tr> <td class="org-right">5e-08</td> <td class="org-right">0.004</td> <td class="org-right">7e-08</td> <td class="org-right">-7e-06</td> <td class="org-right">4e-11</td> <td class="org-right">9e-10</td> <td class="org-right">-7e-08</td> <td class="org-right">0.01</td> <td class="org-right">-4e-08</td> <td class="org-right">0.0002</td> </tr> <tr> <td class="org-right">7e-08</td> <td class="org-right">3e-07</td> <td class="org-right">0.003</td> <td class="org-right">-8e-10</td> <td class="org-right">2e-09</td> <td class="org-right">-1e-09</td> <td class="org-right">-3e-07</td> <td class="org-right">-4e-08</td> <td class="org-right">0.02</td> <td class="org-right">-1e-09</td> </tr> <tr> <td class="org-right">1e-10</td> <td class="org-right">1e-05</td> <td class="org-right">1e-09</td> <td class="org-right">-1e-09</td> <td class="org-right">-3e-13</td> <td class="org-right">2e-12</td> <td class="org-right">-2e-10</td> <td class="org-right">0.0002</td> <td class="org-right">-1e-09</td> <td class="org-right">2e-06</td> </tr> </tbody> </table> <p> Using <code>K</code>, <code>M</code> and <code>int_xyz</code>, we can use the <code>Reduced Order Flexible Solid</code> simscape block. </p> </div> </div> <div id="outline-container-org60de458" class="outline-3"> <h3 id="org60de458"><span class="section-number-3">3.3</span> Flexible Joint Characteristics</h3> <div class="outline-text-3" id="text-3-3"> <table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides"> <colgroup> <col class="org-left" /> <col class="org-right" /> <col class="org-right" /> </colgroup> <thead> <tr> <th scope="col" class="org-left"><b>Caracteristic</b></th> <th scope="col" class="org-right"><b>Value</b></th> <th scope="col" class="org-right"><b>Estimation by Francois</b></th> </tr> </thead> <tbody> <tr> <td class="org-left">Axial Stiffness [N/um]</td> <td class="org-right">119</td> <td class="org-right">60</td> </tr> <tr> <td class="org-left">Bending Stiffness [Nm/rad]</td> <td class="org-right">33</td> <td class="org-right">15</td> </tr> <tr> <td class="org-left">Bending Stiffness [Nm/rad]</td> <td class="org-right">33</td> <td class="org-right">15</td> </tr> <tr> <td class="org-left">Torsion Stiffness [Nm/rad]</td> <td class="org-right">236</td> <td class="org-right">20</td> </tr> </tbody> </table> </div> </div> <div id="outline-container-orgcd8bc89" class="outline-3"> <h3 id="orgcd8bc89"><span class="section-number-3">3.4</span> Identification</h3> <div class="outline-text-3" id="text-3-4"> <div class="org-src-container"> <pre class="src src-matlab">m = 10; </pre> </div> <p> The dynamics is identified from the applied force to the measured relative displacement. </p> <div class="org-src-container"> <pre class="src src-matlab">%% Name of the Simulink File mdl = 'flexor_ID16'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/T'], 1, 'openinput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/D'], 1, 'openoutput'); io_i = io_i + 1; G = linearize(mdl, io); </pre> </div> <table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides"> <colgroup> <col class="org-left" /> <col class="org-right" /> <col class="org-right" /> </colgroup> <thead> <tr> <th scope="col" class="org-left"><b>Caracteristic</b></th> <th scope="col" class="org-right"><b>Value</b></th> <th scope="col" class="org-right"><b>Identification</b></th> </tr> </thead> <tbody> <tr> <td class="org-left">Axial Stiffness Dz [N/um]</td> <td class="org-right">119</td> <td class="org-right">119</td> </tr> <tr> <td class="org-left">Bending Stiffness Rx [Nm/rad]</td> <td class="org-right">33</td> <td class="org-right">34</td> </tr> <tr> <td class="org-left">Bending Stiffness Ry [Nm/rad]</td> <td class="org-right">33</td> <td class="org-right">126</td> </tr> <tr> <td class="org-left">Torsion Stiffness Rz [Nm/rad]</td> <td class="org-right">236</td> <td class="org-right">238</td> </tr> </tbody> </table> </div> </div> </div> <div id="outline-container-org258adf3" class="outline-2"> <h2 id="org258adf3"><span class="section-number-2">4</span> Integral Force Feedback with Amplified Piezo</h2> <div class="outline-text-2" id="text-4"> <p> In this section, we try to replicate the results obtained in (<a href="#citeproc_bib_item_2">Souleille et al. 2018</a>). </p> </div> <div id="outline-container-org3e49415" class="outline-3"> <h3 id="org3e49415"><span class="section-number-3">4.1</span> Import Mass Matrix, Stiffness Matrix, and Interface Nodes Coordinates</h3> <div class="outline-text-3" id="text-4-1"> <p> We first extract the stiffness and mass matrices. </p> <div class="org-src-container"> <pre class="src src-matlab">K = extractMatrix('piezo_amplified_IFF_K.txt'); M = extractMatrix('piezo_amplified_IFF_M.txt'); </pre> </div> <p> Then, we extract the coordinates of the interface nodes. </p> <div class="org-src-container"> <pre class="src src-matlab">[int_xyz, int_i, n_xyz, n_i, nodes] = extractNodes('piezo_amplified_IFF.txt'); </pre> </div> </div> </div> <div id="outline-container-org690b14e" class="outline-3"> <h3 id="org690b14e"><span class="section-number-3">4.2</span> IFF Plant</h3> <div class="outline-text-3" id="text-4-2"> <p> The transfer function from the force actuator to the force sensor is identified and shown in Figure <a href="#org1ed2b1f">15</a>. </p> <div class="org-src-container"> <pre class="src src-matlab">Kiff = tf(0); </pre> </div> <div class="org-src-container"> <pre class="src src-matlab">m = 0; </pre> </div> <div class="org-src-container"> <pre class="src src-matlab">%% Name of the Simulink File mdl = 'piezo_amplified_IFF'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/Kiff'], 1, 'openinput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/G'], 1, 'openoutput'); io_i = io_i + 1; Gf = linearize(mdl, io); </pre> </div> <div class="org-src-container"> <pre class="src src-matlab">m = 10; </pre> </div> <div class="org-src-container"> <pre class="src src-matlab">Gfm = linearize(mdl, io); </pre> </div> <div id="org1ed2b1f" class="figure"> <p><img src="figs/piezo_amplified_iff_plant.png" alt="piezo_amplified_iff_plant.png" /> </p> <p><span class="figure-number">Figure 15: </span>IFF Plant</p> </div> </div> </div> <div id="outline-container-orga83d461" class="outline-3"> <h3 id="orga83d461"><span class="section-number-3">4.3</span> IFF controller</h3> <div class="outline-text-3" id="text-4-3"> <p> The controller is defined and the loop gain is shown in Figure <a href="#org6eddfbc">16</a>. </p> <div class="org-src-container"> <pre class="src src-matlab">Kiff = -1e12/s; </pre> </div> <div id="org6eddfbc" class="figure"> <p><img src="figs/piezo_amplified_iff_loop_gain.png" alt="piezo_amplified_iff_loop_gain.png" /> </p> <p><span class="figure-number">Figure 16: </span>IFF Loop Gain</p> </div> </div> </div> <div id="outline-container-org1fd0639" class="outline-3"> <h3 id="org1fd0639"><span class="section-number-3">4.4</span> Closed Loop System</h3> <div class="outline-text-3" id="text-4-4"> <div class="org-src-container"> <pre class="src src-matlab">m = 10; </pre> </div> <div class="org-src-container"> <pre class="src src-matlab">Kiff = -1e12/s; </pre> </div> <div class="org-src-container"> <pre class="src src-matlab">%% Name of the Simulink File mdl = 'piezo_amplified_IFF'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/Dw'], 1, 'openinput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/F'], 1, 'openinput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/Fd'], 1, 'openinput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/d'], 1, 'openoutput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/G'], 1, 'output'); io_i = io_i + 1; Giff = linearize(mdl, io); Giff.InputName = {'w', 'f', 'F'}; Giff.OutputName = {'x1', 'Fs'}; </pre> </div> <div class="org-src-container"> <pre class="src src-matlab">Kiff = tf(0); </pre> </div> <div class="org-src-container"> <pre class="src src-matlab">G = linearize(mdl, io); G.InputName = {'w', 'f', 'F'}; G.OutputName = {'x1', 'Fs'}; </pre> </div> <div id="org136372a" class="figure"> <p><img src="figs/piezo_amplified_iff_comp.png" alt="piezo_amplified_iff_comp.png" /> </p> <p><span class="figure-number">Figure 17: </span>OL and CL transfer functions</p> </div> <div id="orgccbb8ba" class="figure"> <p><img src="figs/souleille18_results.png" alt="souleille18_results.png" /> </p> <p><span class="figure-number">Figure 18: </span>Results obtained in <a class='org-ref-reference' href="#souleille18_concep_activ_mount_space_applic">souleille18_concep_activ_mount_space_applic</a></p> </div> </div> </div> </div> <p> </p> <style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><h2 class='citeproc-org-bib-h2'>Bibliography</h2> <div class="csl-bib-body"> <div class="csl-entry"><a name="citeproc_bib_item_1"></a>Fleming, Andrew J., and Kam K. Leang. 2014. <i>Design, Modeling and Control of Nanopositioning Systems</i>. Advances in Industrial Control. Springer International Publishing. <a href="https://doi.org/10.1007/978-3-319-06617-2">https://doi.org/10.1007/978-3-319-06617-2</a>.</div> <div class="csl-entry"><a name="citeproc_bib_item_2"></a>Souleille, Adrien, Thibault Lampert, V Lafarga, Sylvain Hellegouarch, Alan Rondineau, Gonçalo Rodrigues, and Christophe Collette. 2018. “A Concept of Active Mount for Space Applications.” <i>CEAS Space Journal</i> 10 (2). Springer:157–65.</div> </div> </div> <div id="postamble" class="status"> <p class="author">Author: Dehaeze Thomas</p> <p class="date">Created: 2020-08-04 mar. 11:53</p> </div> </body> </html>