Add youtube videos of the keynotes
This commit is contained in:
parent
1c9dbe6ac0
commit
7e10266a06
2026
notes.html
2026
notes.html
File diff suppressed because it is too large
Load Diff
548
notes.org
548
notes.org
@ -443,6 +443,9 @@ A nice way to have a 1dof flexure guiding with stiff frame is shown in Figure [[
|
|||||||
[[file:./figs/z_stage_triangles.png]]
|
[[file:./figs/z_stage_triangles.png]]
|
||||||
|
|
||||||
* Keynote: Mechatronic challenges in optical lithography :@hans_butler:
|
* Keynote: Mechatronic challenges in optical lithography :@hans_butler:
|
||||||
|
|
||||||
|
yt:DF8GrWlMwEE
|
||||||
|
|
||||||
** Introduction
|
** Introduction
|
||||||
*Question*: in chip manufacturing, how do developments in optical lithography impact the mechatronic design?
|
*Question*: in chip manufacturing, how do developments in optical lithography impact the mechatronic design?
|
||||||
|
|
||||||
@ -605,6 +608,280 @@ The conclusions are:
|
|||||||
- EUV: all-vacuum stages
|
- EUV: all-vacuum stages
|
||||||
- High-NA EUV: new optics, much larger accelerations
|
- High-NA EUV: new optics, much larger accelerations
|
||||||
|
|
||||||
|
* Keynote: High precision mechatronic approaches for advanced nanopositioning and nanomeasuring technologies :@eberhard_manske:
|
||||||
|
|
||||||
|
yt:6hSWI1wtjfo
|
||||||
|
|
||||||
|
** Coordinate Measurement Machines (CMM)
|
||||||
|
|
||||||
|
Examples of Nano Coordinate Measuring Machines are shown in Figure [[fig:prec_cmm]].
|
||||||
|
|
||||||
|
#+name: fig:prec_cmm
|
||||||
|
#+caption: Example of Coordinate Measuring Machines
|
||||||
|
#+attr_latex: :width \linewidth
|
||||||
|
[[file:./figs/prec_cmm.png]]
|
||||||
|
|
||||||
|
** Difference between CMM and nano-CMM
|
||||||
|
With classical CMM, the Abbe-principle is not fulfilled in the x and y directions (Figure [[fig:prec_cmm_nano_cmm]]).
|
||||||
|
|
||||||
|
The Abbe error can be determined with:
|
||||||
|
\begin{equation}
|
||||||
|
\Delta l_{x,y,z} = l_{x,y,z} \sin \Delta \phi_{x,y,z}
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
Even with the best spindle: $l_{x,y} = 100 mm$ and $\Delta \phi = 2 \text{arcsec}$, we obtain an error of:
|
||||||
|
\begin{equation}
|
||||||
|
\Delta l = 0.1 \mu m
|
||||||
|
\end{equation}
|
||||||
|
which is not compatible with nano-meter precisions.
|
||||||
|
|
||||||
|
Then, the classical CMM will not work for nano precision
|
||||||
|
|
||||||
|
#+name: fig:prec_cmm_nano_cmm
|
||||||
|
#+caption: Schematic of a CMM
|
||||||
|
#+attr_latex: :scale 0.5
|
||||||
|
[[file:./figs/prec_cmm_nano_cmm.png]]
|
||||||
|
|
||||||
|
** How to do nano-CMM
|
||||||
|
|
||||||
|
High precision mechatronic approaches are required for advanced nano-positionign and nano-measuring technologies:
|
||||||
|
- High precision measurement concept
|
||||||
|
- High precision measurement systems
|
||||||
|
- High precision nano-sensors
|
||||||
|
Combined with:
|
||||||
|
- Advanced automatic control
|
||||||
|
- Advanced measuring strategies
|
||||||
|
|
||||||
|
** Concept - Minimization of the Abbe Error
|
||||||
|
|
||||||
|
In order to minimize the Abbe error, the measuring "lines" should have a common point of intersection (Figure [[fig:prec_nano_cmm_concept]]).
|
||||||
|
|
||||||
|
The 3D-realization of Abbe-principle is as follows:
|
||||||
|
- 3 interferometers: cartesian coordinate system
|
||||||
|
- probe located as the intersection point of the interferometers
|
||||||
|
|
||||||
|
#+name: fig:prec_nano_cmm_concept
|
||||||
|
#+caption: Error minimal measuring principle
|
||||||
|
#+attr_latex: :scale 0.5
|
||||||
|
[[file:./figs/prec_nano_cmm_concept.png]]
|
||||||
|
|
||||||
|
** Minimization of residual Abbe error
|
||||||
|
|
||||||
|
Still some residual Abbe error can happen as shown in Figure [[fig:prec_abbe_min]] due to both a change of angle and change of position.
|
||||||
|
|
||||||
|
#+name: fig:prec_abbe_min
|
||||||
|
#+caption: Residual Abbe error
|
||||||
|
#+attr_latex: :width \linewidth
|
||||||
|
[[file:./figs/prec_abbe_min.png]]
|
||||||
|
|
||||||
|
** Compare of long travel guiding systems
|
||||||
|
|
||||||
|
In order to have the Abbe error compatible with nano-meter precision, the precision of the spindle should be less and one arcsec which is not easily feasible with air bearing of precision roller bearing technologies as shown in Figure [[fig:prec_comp_guid]].
|
||||||
|
|
||||||
|
#+name: fig:prec_comp_guid
|
||||||
|
#+caption: Characteristics of guidings
|
||||||
|
#+attr_latex: :scale 0.5
|
||||||
|
[[file:./figs/prec_comp_guid.png]]
|
||||||
|
|
||||||
|
** Extended 6 DoF Abbe comparator principle
|
||||||
|
|
||||||
|
The solution used was to measure in real time the angles of the frame using autocollimators as shown in Figure [[fig:prec_6dof_abbe]] and then to minimize this tilt by close loop operation with additional actuators.
|
||||||
|
|
||||||
|
The angular measurement error and control is less than $0.05 \text{arcses}$ which make the residual Abbe error:
|
||||||
|
\begin{equation}
|
||||||
|
\Delta l < 0.05\,nm
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
Without an error-minimal approach, nano-meter precision cannot be achieved in large areas.
|
||||||
|
|
||||||
|
#+name: fig:prec_6dof_abbe
|
||||||
|
#+caption: Use of additional autocollimator and actuators for Abbe minimization
|
||||||
|
#+attr_latex: :width \linewidth
|
||||||
|
[[file:./figs/prec_6dof_abbe.png]]
|
||||||
|
|
||||||
|
** Practical Realisation
|
||||||
|
|
||||||
|
A practical realization of the Extended 6 DoF Abbe comparator principle is shown in Figure [[fig:prec_practical_6dof]].
|
||||||
|
|
||||||
|
#+name: fig:prec_practical_6dof
|
||||||
|
#+caption: Practical Realization of the
|
||||||
|
#+attr_latex: :width \linewidth
|
||||||
|
[[file:./figs/prec_practical_6dof.png]]
|
||||||
|
|
||||||
|
** Tilt Compensation
|
||||||
|
|
||||||
|
To measure compensate for any tilt, two solutions are proposed:
|
||||||
|
1. Use a zero point angular auto-collimator (Figure [[fig:prec_tilt_corection]])
|
||||||
|
- Resolution: 0.005 arcsec
|
||||||
|
- Stability (1h): < 0.05 arcsec
|
||||||
|
2. 6 DoF laser interferoemter (Figure [[fig:prec_tilt_corection_bis]])
|
||||||
|
- Resolution: 0.00002 arcsec
|
||||||
|
- Stability (1h): < 0.00005 arcsec
|
||||||
|
|
||||||
|
#+name: fig:prec_tilt_corection
|
||||||
|
#+caption: Auto-Collimator
|
||||||
|
#+attr_latex: :scale 0.5
|
||||||
|
[[file:./figs/prec_tilt_corection.png]]
|
||||||
|
|
||||||
|
#+name: fig:prec_tilt_corection_bis
|
||||||
|
#+caption: 6 Interferometers to measure tilts
|
||||||
|
#+attr_latex: :scale 0.5
|
||||||
|
[[file:./figs/prec_tilt_corection_bis.png]]
|
||||||
|
|
||||||
|
** Comparison of long travail guiding systems - Bis
|
||||||
|
|
||||||
|
Now, if we actively compensate the tilts are shown previously, we can fulfill the requirements as shown in Figure [[fig:prec_comp_guid_bis]].
|
||||||
|
|
||||||
|
*Measurement and control technology to minimize Abbe errors to achieve*:
|
||||||
|
- sub-nanometer precision
|
||||||
|
- smaller moving mass
|
||||||
|
- better dynamics
|
||||||
|
|
||||||
|
#+name: fig:prec_comp_guid_bis
|
||||||
|
#+caption: Characteristics of the tilt compensation system
|
||||||
|
#+attr_latex: :width \linewidth
|
||||||
|
[[file:./figs/prec_comp_guid_bis.png]]
|
||||||
|
|
||||||
|
** Drive concept
|
||||||
|
|
||||||
|
Usually, in order to achieve a large range over small resolution, each axis of motion is a combination of a coarse motion and a fine motion stage.
|
||||||
|
The coarse motion stage generally consist of a stepper motor while the fine motion is a piezoelectric actuator.
|
||||||
|
|
||||||
|
The approach here is to use an *homogenous drive concept for increase dynamics* (Figure [[fig:prec_drive_concept]]).
|
||||||
|
|
||||||
|
Only one linear voice coil actuator is used which with large moving range and sub-nanometer resolution can be achieve at one time.
|
||||||
|
|
||||||
|
#+name: fig:prec_drive_concept
|
||||||
|
#+caption: Voice Coil Actuator
|
||||||
|
#+attr_latex: :scale 0.5
|
||||||
|
[[file:./figs/prec_drive_concept.png]]
|
||||||
|
|
||||||
|
|
||||||
|
** NPMM-200 with extended measuring volume
|
||||||
|
|
||||||
|
The NPMM-200 machine can be seen in Figure [[fig:prec_mechanics]].
|
||||||
|
|
||||||
|
Characteristics:
|
||||||
|
- Measuring range: 200 mm x 200 mm x 25 mm
|
||||||
|
- Resolution: 20 pm
|
||||||
|
- Abbe comparator principle
|
||||||
|
- 6 laser interferometers
|
||||||
|
- Active angular compensation
|
||||||
|
- Position uncertainty < 4 nm
|
||||||
|
- Measuring uncertainty up to 30 nm
|
||||||
|
|
||||||
|
#+name: fig:prec_mechanics
|
||||||
|
#+caption: Picture of the NPMM-200
|
||||||
|
#+attr_latex: :width \linewidth
|
||||||
|
[[file:./figs/prec_mechanics.png]]
|
||||||
|
|
||||||
|
The NPMM-200 actually operates inside a Vacuum chamber as shown in Figure [[fig:prec_vacuum_cham]].
|
||||||
|
|
||||||
|
#+name: fig:prec_vacuum_cham
|
||||||
|
#+caption: Vacuum chamber used
|
||||||
|
#+attr_latex: :scale 0.5
|
||||||
|
[[file:./figs/prec_vacuum_cham.png]]
|
||||||
|
|
||||||
|
** measurement capability
|
||||||
|
|
||||||
|
Some step responses are shown in Figure [[fig:prec_results_meas]] and show the nano-metric precision of the machine.
|
||||||
|
|
||||||
|
#+name: fig:prec_results_meas
|
||||||
|
#+caption: Sub nano-meter position accuracy
|
||||||
|
#+attr_latex: :width \linewidth
|
||||||
|
[[file:./figs/prec_results_meas.png]]
|
||||||
|
|
||||||
|
Picometer steps can even be achieved as shown in Figure [[fig:prec_results_pico]].
|
||||||
|
|
||||||
|
#+name: fig:prec_results_pico
|
||||||
|
#+caption: Picometer level control
|
||||||
|
#+attr_latex: :width 0.6\linewidth
|
||||||
|
[[file:./figs/prec_results_pico.png]]
|
||||||
|
|
||||||
|
** Extension of the measuring range (700mm)
|
||||||
|
|
||||||
|
If the measuring range is to be increase, there are some limits of the moving stage principle:
|
||||||
|
- large moving masses (~300kg)
|
||||||
|
- powerful drive systems required
|
||||||
|
- nano-meter position capability problematic
|
||||||
|
- large heat dissipation in the system
|
||||||
|
- dynamics and dynamic deformation
|
||||||
|
|
||||||
|
The proposed solution is to use *inverse dynamic concept for minimization of moving masses*.
|
||||||
|
|
||||||
|
** Inverse kinematic concept - Tetrahedrical concept
|
||||||
|
|
||||||
|
The proposed concept is shown in Figure [[fig:prec_inverse_kin]]:
|
||||||
|
- mirrors and object to be measured are fixed
|
||||||
|
- probe and interferometer heads are moved
|
||||||
|
- laser beams virtually intersect in the probe tip
|
||||||
|
- Tetrahedrical measuring volume
|
||||||
|
|
||||||
|
This fulfills the Abbe principe but:
|
||||||
|
- large construction space
|
||||||
|
- difficult guide and drive concept
|
||||||
|
|
||||||
|
#+name: fig:prec_inverse_kin
|
||||||
|
#+caption: Tetrahedrical concept
|
||||||
|
#+attr_latex: :scale 0.5
|
||||||
|
[[file:./figs/prec_inverse_kin.png]]
|
||||||
|
|
||||||
|
** Inverse kinematic concept - Scanning probe principle
|
||||||
|
|
||||||
|
An other concept, the scanning probe principle is shown in Figure [[fig:prec_inverse_kin_scan]]:
|
||||||
|
- cuboidal measuring volume
|
||||||
|
- Fixed x-y-z mirrors
|
||||||
|
- moving measuring head
|
||||||
|
- guide and drive system outside measuring volume
|
||||||
|
|
||||||
|
#+name: fig:prec_inverse_kin_scan
|
||||||
|
#+caption: Scanning probe principle
|
||||||
|
#+attr_latex: :scale 0.5
|
||||||
|
[[file:./figs/prec_inverse_kin_scan.png]]
|
||||||
|
|
||||||
|
** Inverse kinematic concept - Compact measuring head
|
||||||
|
|
||||||
|
In order to minimize the moving mass, compact measuring heads have been developed.
|
||||||
|
The goal was to make a lightweight measuring head (<1kg)
|
||||||
|
|
||||||
|
The interferometer used are fiber coupled laser interferometers with a mass of 37g (Figure [[fig:prec_interferometers]]).
|
||||||
|
|
||||||
|
#+name: fig:prec_interferometers
|
||||||
|
#+caption: Micro Interferometers
|
||||||
|
#+attr_latex: :scale 0.5
|
||||||
|
[[file:./figs/prec_interferometers.png]]
|
||||||
|
|
||||||
|
The concept is shown in Figure [[fig:prec_inverse_meas_head]]:
|
||||||
|
- 6dof interferometers are used
|
||||||
|
- one micro-probe
|
||||||
|
- the total mass of the head is less than 1kg
|
||||||
|
|
||||||
|
There is some abbe offset between measurement axis of probe and of interferometer but *Abbe error compensation by closed loop control of angular deviations* is used.
|
||||||
|
|
||||||
|
#+name: fig:prec_inverse_meas_head
|
||||||
|
#+caption:
|
||||||
|
#+attr_latex: :scale 0.5
|
||||||
|
[[file:./figs/prec_inverse_meas_head.png]]
|
||||||
|
|
||||||
|
** Inverse kinematic concept - Scanning probe principle
|
||||||
|
|
||||||
|
As shown in Figure [[fig:prec_abbe_compensation]], the abbe error can be compensated from the two top interferometers as:
|
||||||
|
\[ \text{for } l_x = a: \quad \Delta l_{\text{Abbe}} = \Delta l_{\text{int}} \]
|
||||||
|
Thus the tilt and Abbe errors can be compensated for with sub-nm resolution.
|
||||||
|
|
||||||
|
#+name: fig:prec_abbe_compensation
|
||||||
|
#+caption: Use of the interferometers to compensate for the Abbe errors
|
||||||
|
#+attr_latex: :scale 0.5
|
||||||
|
[[file:./figs/prec_abbe_compensation.png]]
|
||||||
|
|
||||||
|
** Conclusion
|
||||||
|
|
||||||
|
Proposed approaches to push the nano-positioning and nano-measuring technology:
|
||||||
|
- Measurement and control technology to minimize Abbe errors
|
||||||
|
- Homogeneous drive concept for increased dynamics
|
||||||
|
- Inverse kinematic concept for minimization of moving mass
|
||||||
|
- Abbe-error compensation by closed loop control of angular deviations
|
||||||
|
|
||||||
* Designing anti-aliasing-filters for control loops of mechatronic systems regarding the rejection of aliased resonances :@ulrich_schonhoff:
|
* Designing anti-aliasing-filters for control loops of mechatronic systems regarding the rejection of aliased resonances :@ulrich_schonhoff:
|
||||||
** The phenomenon of aliasing of resonances
|
** The phenomenon of aliasing of resonances
|
||||||
Weakly damped flexible modes of the mechanism can limit the performance of motion control systems.
|
Weakly damped flexible modes of the mechanism can limit the performance of motion control systems.
|
||||||
@ -1164,277 +1441,6 @@ The RR proposed algorithm is giving the best results
|
|||||||
- Computationally tractable design framework for large scale MIMO systems established
|
- Computationally tractable design framework for large scale MIMO systems established
|
||||||
- Near global optimal quality achieved on wafer stage setup using RR algorithm
|
- Near global optimal quality achieved on wafer stage setup using RR algorithm
|
||||||
|
|
||||||
* Keynote: High precision mechatronic approaches for advanced nanopositioning and nanomeasuring technologies :@eberhard_manske:
|
|
||||||
** Coordinate Measurement Machines (CMM)
|
|
||||||
|
|
||||||
Examples of Nano Coordinate Measuring Machines are shown in Figure [[fig:prec_cmm]].
|
|
||||||
|
|
||||||
#+name: fig:prec_cmm
|
|
||||||
#+caption: Example of Coordinate Measuring Machines
|
|
||||||
#+attr_latex: :width \linewidth
|
|
||||||
[[file:./figs/prec_cmm.png]]
|
|
||||||
|
|
||||||
** Difference between CMM and nano-CMM
|
|
||||||
With classical CMM, the Abbe-principle is not fulfilled in the x and y directions (Figure [[fig:prec_cmm_nano_cmm]]).
|
|
||||||
|
|
||||||
The Abbe error can be determined with:
|
|
||||||
\begin{equation}
|
|
||||||
\Delta l_{x,y,z} = l_{x,y,z} \sin \Delta \phi_{x,y,z}
|
|
||||||
\end{equation}
|
|
||||||
|
|
||||||
Even with the best spindle: $l_{x,y} = 100 mm$ and $\Delta \phi = 2 \text{arcsec}$, we obtain an error of:
|
|
||||||
\begin{equation}
|
|
||||||
\Delta l = 0.1 \mu m
|
|
||||||
\end{equation}
|
|
||||||
which is not compatible with nano-meter precisions.
|
|
||||||
|
|
||||||
Then, the classical CMM will not work for nano precision
|
|
||||||
|
|
||||||
#+name: fig:prec_cmm_nano_cmm
|
|
||||||
#+caption: Schematic of a CMM
|
|
||||||
#+attr_latex: :scale 0.5
|
|
||||||
[[file:./figs/prec_cmm_nano_cmm.png]]
|
|
||||||
|
|
||||||
** How to do nano-CMM
|
|
||||||
|
|
||||||
High precision mechatronic approaches are required for advanced nano-positionign and nano-measuring technologies:
|
|
||||||
- High precision measurement concept
|
|
||||||
- High precision measurement systems
|
|
||||||
- High precision nano-sensors
|
|
||||||
Combined with:
|
|
||||||
- Advanced automatic control
|
|
||||||
- Advanced measuring strategies
|
|
||||||
|
|
||||||
** Concept - Minimization of the Abbe Error
|
|
||||||
|
|
||||||
In order to minimize the Abbe error, the measuring "lines" should have a common point of intersection (Figure [[fig:prec_nano_cmm_concept]]).
|
|
||||||
|
|
||||||
The 3D-realization of Abbe-principle is as follows:
|
|
||||||
- 3 interferometers: cartesian coordinate system
|
|
||||||
- probe located as the intersection point of the interferometers
|
|
||||||
|
|
||||||
#+name: fig:prec_nano_cmm_concept
|
|
||||||
#+caption: Error minimal measuring principle
|
|
||||||
#+attr_latex: :scale 0.5
|
|
||||||
[[file:./figs/prec_nano_cmm_concept.png]]
|
|
||||||
|
|
||||||
** Minimization of residual Abbe error
|
|
||||||
|
|
||||||
Still some residual Abbe error can happen as shown in Figure [[fig:prec_abbe_min]] due to both a change of angle and change of position.
|
|
||||||
|
|
||||||
#+name: fig:prec_abbe_min
|
|
||||||
#+caption: Residual Abbe error
|
|
||||||
#+attr_latex: :width \linewidth
|
|
||||||
[[file:./figs/prec_abbe_min.png]]
|
|
||||||
|
|
||||||
** Compare of long travel guiding systems
|
|
||||||
|
|
||||||
In order to have the Abbe error compatible with nano-meter precision, the precision of the spindle should be less and one arcsec which is not easily feasible with air bearing of precision roller bearing technologies as shown in Figure [[fig:prec_comp_guid]].
|
|
||||||
|
|
||||||
#+name: fig:prec_comp_guid
|
|
||||||
#+caption: Characteristics of guidings
|
|
||||||
#+attr_latex: :scale 0.5
|
|
||||||
[[file:./figs/prec_comp_guid.png]]
|
|
||||||
|
|
||||||
** Extended 6 DoF Abbe comparator principle
|
|
||||||
|
|
||||||
The solution used was to measure in real time the angles of the frame using autocollimators as shown in Figure [[fig:prec_6dof_abbe]] and then to minimize this tilt by close loop operation with additional actuators.
|
|
||||||
|
|
||||||
The angular measurement error and control is less than $0.05 \text{arcses}$ which make the residual Abbe error:
|
|
||||||
\begin{equation}
|
|
||||||
\Delta l < 0.05\,nm
|
|
||||||
\end{equation}
|
|
||||||
|
|
||||||
Without an error-minimal approach, nano-meter precision cannot be achieved in large areas.
|
|
||||||
|
|
||||||
#+name: fig:prec_6dof_abbe
|
|
||||||
#+caption: Use of additional autocollimator and actuators for Abbe minimization
|
|
||||||
#+attr_latex: :width \linewidth
|
|
||||||
[[file:./figs/prec_6dof_abbe.png]]
|
|
||||||
|
|
||||||
** Practical Realisation
|
|
||||||
|
|
||||||
A practical realization of the Extended 6 DoF Abbe comparator principle is shown in Figure [[fig:prec_practical_6dof]].
|
|
||||||
|
|
||||||
#+name: fig:prec_practical_6dof
|
|
||||||
#+caption: Practical Realization of the
|
|
||||||
#+attr_latex: :width \linewidth
|
|
||||||
[[file:./figs/prec_practical_6dof.png]]
|
|
||||||
|
|
||||||
** Tilt Compensation
|
|
||||||
|
|
||||||
To measure compensate for any tilt, two solutions are proposed:
|
|
||||||
1. Use a zero point angular auto-collimator (Figure [[fig:prec_tilt_corection]])
|
|
||||||
- Resolution: 0.005 arcsec
|
|
||||||
- Stability (1h): < 0.05 arcsec
|
|
||||||
2. 6 DoF laser interferoemter (Figure [[fig:prec_tilt_corection_bis]])
|
|
||||||
- Resolution: 0.00002 arcsec
|
|
||||||
- Stability (1h): < 0.00005 arcsec
|
|
||||||
|
|
||||||
#+name: fig:prec_tilt_corection
|
|
||||||
#+caption: Auto-Collimator
|
|
||||||
#+attr_latex: :scale 0.5
|
|
||||||
[[file:./figs/prec_tilt_corection.png]]
|
|
||||||
|
|
||||||
#+name: fig:prec_tilt_corection_bis
|
|
||||||
#+caption: 6 Interferometers to measure tilts
|
|
||||||
#+attr_latex: :scale 0.5
|
|
||||||
[[file:./figs/prec_tilt_corection_bis.png]]
|
|
||||||
|
|
||||||
** Comparison of long travail guiding systems - Bis
|
|
||||||
|
|
||||||
Now, if we actively compensate the tilts are shown previously, we can fulfill the requirements as shown in Figure [[fig:prec_comp_guid_bis]].
|
|
||||||
|
|
||||||
*Measurement and control technology to minimize Abbe errors to achieve*:
|
|
||||||
- sub-nanometer precision
|
|
||||||
- smaller moving mass
|
|
||||||
- better dynamics
|
|
||||||
|
|
||||||
#+name: fig:prec_comp_guid_bis
|
|
||||||
#+caption: Characteristics of the tilt compensation system
|
|
||||||
#+attr_latex: :width \linewidth
|
|
||||||
[[file:./figs/prec_comp_guid_bis.png]]
|
|
||||||
|
|
||||||
** Drive concept
|
|
||||||
|
|
||||||
Usually, in order to achieve a large range over small resolution, each axis of motion is a combination of a coarse motion and a fine motion stage.
|
|
||||||
The coarse motion stage generally consist of a stepper motor while the fine motion is a piezoelectric actuator.
|
|
||||||
|
|
||||||
The approach here is to use an *homogenous drive concept for increase dynamics* (Figure [[fig:prec_drive_concept]]).
|
|
||||||
|
|
||||||
Only one linear voice coil actuator is used which with large moving range and sub-nanometer resolution can be achieve at one time.
|
|
||||||
|
|
||||||
#+name: fig:prec_drive_concept
|
|
||||||
#+caption: Voice Coil Actuator
|
|
||||||
#+attr_latex: :scale 0.5
|
|
||||||
[[file:./figs/prec_drive_concept.png]]
|
|
||||||
|
|
||||||
|
|
||||||
** NPMM-200 with extended measuring volume
|
|
||||||
|
|
||||||
The NPMM-200 machine can be seen in Figure [[fig:prec_mechanics]].
|
|
||||||
|
|
||||||
Characteristics:
|
|
||||||
- Measuring range: 200 mm x 200 mm x 25 mm
|
|
||||||
- Resolution: 20 pm
|
|
||||||
- Abbe comparator principle
|
|
||||||
- 6 laser interferometers
|
|
||||||
- Active angular compensation
|
|
||||||
- Position uncertainty < 4 nm
|
|
||||||
- Measuring uncertainty up to 30 nm
|
|
||||||
|
|
||||||
#+name: fig:prec_mechanics
|
|
||||||
#+caption: Picture of the NPMM-200
|
|
||||||
#+attr_latex: :width \linewidth
|
|
||||||
[[file:./figs/prec_mechanics.png]]
|
|
||||||
|
|
||||||
The NPMM-200 actually operates inside a Vacuum chamber as shown in Figure [[fig:prec_vacuum_cham]].
|
|
||||||
|
|
||||||
#+name: fig:prec_vacuum_cham
|
|
||||||
#+caption: Vacuum chamber used
|
|
||||||
#+attr_latex: :scale 0.5
|
|
||||||
[[file:./figs/prec_vacuum_cham.png]]
|
|
||||||
|
|
||||||
** measurement capability
|
|
||||||
|
|
||||||
Some step responses are shown in Figure [[fig:prec_results_meas]] and show the nano-metric precision of the machine.
|
|
||||||
|
|
||||||
#+name: fig:prec_results_meas
|
|
||||||
#+caption: Sub nano-meter position accuracy
|
|
||||||
#+attr_latex: :width \linewidth
|
|
||||||
[[file:./figs/prec_results_meas.png]]
|
|
||||||
|
|
||||||
Picometer steps can even be achieved as shown in Figure [[fig:prec_results_pico]].
|
|
||||||
|
|
||||||
#+name: fig:prec_results_pico
|
|
||||||
#+caption: Picometer level control
|
|
||||||
#+attr_latex: :width 0.6\linewidth
|
|
||||||
[[file:./figs/prec_results_pico.png]]
|
|
||||||
|
|
||||||
** Extension of the measuring range (700mm)
|
|
||||||
|
|
||||||
If the measuring range is to be increase, there are some limits of the moving stage principle:
|
|
||||||
- large moving masses (~300kg)
|
|
||||||
- powerful drive systems required
|
|
||||||
- nano-meter position capability problematic
|
|
||||||
- large heat dissipation in the system
|
|
||||||
- dynamics and dynamic deformation
|
|
||||||
|
|
||||||
The proposed solution is to use *inverse dynamic concept for minimization of moving masses*.
|
|
||||||
|
|
||||||
** Inverse kinematic concept - Tetrahedrical concept
|
|
||||||
|
|
||||||
The proposed concept is shown in Figure [[fig:prec_inverse_kin]]:
|
|
||||||
- mirrors and object to be measured are fixed
|
|
||||||
- probe and interferometer heads are moved
|
|
||||||
- laser beams virtually intersect in the probe tip
|
|
||||||
- Tetrahedrical measuring volume
|
|
||||||
|
|
||||||
This fulfills the Abbe principe but:
|
|
||||||
- large construction space
|
|
||||||
- difficult guide and drive concept
|
|
||||||
|
|
||||||
#+name: fig:prec_inverse_kin
|
|
||||||
#+caption: Tetrahedrical concept
|
|
||||||
#+attr_latex: :scale 0.5
|
|
||||||
[[file:./figs/prec_inverse_kin.png]]
|
|
||||||
|
|
||||||
** Inverse kinematic concept - Scanning probe principle
|
|
||||||
|
|
||||||
An other concept, the scanning probe principle is shown in Figure [[fig:prec_inverse_kin_scan]]:
|
|
||||||
- cuboidal measuring volume
|
|
||||||
- Fixed x-y-z mirrors
|
|
||||||
- moving measuring head
|
|
||||||
- guide and drive system outside measuring volume
|
|
||||||
|
|
||||||
#+name: fig:prec_inverse_kin_scan
|
|
||||||
#+caption: Scanning probe principle
|
|
||||||
#+attr_latex: :scale 0.5
|
|
||||||
[[file:./figs/prec_inverse_kin_scan.png]]
|
|
||||||
|
|
||||||
** Inverse kinematic concept - Compact measuring head
|
|
||||||
|
|
||||||
In order to minimize the moving mass, compact measuring heads have been developed.
|
|
||||||
The goal was to make a lightweight measuring head (<1kg)
|
|
||||||
|
|
||||||
The interferometer used are fiber coupled laser interferometers with a mass of 37g (Figure [[fig:prec_interferometers]]).
|
|
||||||
|
|
||||||
#+name: fig:prec_interferometers
|
|
||||||
#+caption: Micro Interferometers
|
|
||||||
#+attr_latex: :scale 0.5
|
|
||||||
[[file:./figs/prec_interferometers.png]]
|
|
||||||
|
|
||||||
The concept is shown in Figure [[fig:prec_inverse_meas_head]]:
|
|
||||||
- 6dof interferometers are used
|
|
||||||
- one micro-probe
|
|
||||||
- the total mass of the head is less than 1kg
|
|
||||||
|
|
||||||
There is some abbe offset between measurement axis of probe and of interferometer but *Abbe error compensation by closed loop control of angular deviations* is used.
|
|
||||||
|
|
||||||
#+name: fig:prec_inverse_meas_head
|
|
||||||
#+caption:
|
|
||||||
#+attr_latex: :scale 0.5
|
|
||||||
[[file:./figs/prec_inverse_meas_head.png]]
|
|
||||||
|
|
||||||
** Inverse kinematic concept - Scanning probe principle
|
|
||||||
|
|
||||||
As shown in Figure [[fig:prec_abbe_compensation]], the abbe error can be compensated from the two top interferometers as:
|
|
||||||
\[ \text{for } l_x = a: \quad \Delta l_{\text{Abbe}} = \Delta l_{\text{int}} \]
|
|
||||||
Thus the tilt and Abbe errors can be compensated for with sub-nm resolution.
|
|
||||||
|
|
||||||
#+name: fig:prec_abbe_compensation
|
|
||||||
#+caption: Use of the interferometers to compensate for the Abbe errors
|
|
||||||
#+attr_latex: :scale 0.5
|
|
||||||
[[file:./figs/prec_abbe_compensation.png]]
|
|
||||||
|
|
||||||
** Conclusion
|
|
||||||
|
|
||||||
Proposed approaches to push the nano-positioning and nano-measuring technology:
|
|
||||||
- Measurement and control technology to minimize Abbe errors
|
|
||||||
- Homogeneous drive concept for increased dynamics
|
|
||||||
- Inverse kinematic concept for minimization of moving mass
|
|
||||||
- Abbe-error compensation by closed loop control of angular deviations
|
|
||||||
|
|
||||||
* Reducing control delay times to enhance dynamic stiffness of magnetic bearings :@jan_philipp_schmidtmann:
|
* Reducing control delay times to enhance dynamic stiffness of magnetic bearings :@jan_philipp_schmidtmann:
|
||||||
** Introduction
|
** Introduction
|
||||||
This projects focuses on reducing the control delay times of a magnetic bearing shown in Figure [[fig:magn_bear_intro]].
|
This projects focuses on reducing the control delay times of a magnetic bearing shown in Figure [[fig:magn_bear_intro]].
|
||||||
|
Loading…
Reference in New Issue
Block a user