Add link to home

This commit is contained in:
Thomas Dehaeze 2020-10-29 10:08:22 +01:00
parent 2d6a2953cf
commit d128fb5a87
2 changed files with 98 additions and 91 deletions

View File

@ -3,7 +3,7 @@
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
<head>
<!-- 2020-10-29 jeu. 09:59 -->
<!-- 2020-10-29 jeu. 10:08 -->
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
<title>Encoder - Test Bench</title>
<meta name="generator" content="Org mode" />
@ -25,55 +25,59 @@
<script type="text/javascript" src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
</head>
<body>
<div id="content">
<div id="org-div-home-and-up">
<a accesskey="h" href="../index.html"> UP </a>
|
<a accesskey="H" href="../index.html"> HOME </a>
</div><div id="content">
<h1 class="title">Encoder - Test Bench</h1>
<div id="table-of-contents">
<h2>Table of Contents</h2>
<div id="text-table-of-contents">
<ul>
<li><a href="#org6fbc445">1. Experimental Setup</a></li>
<li><a href="#orgdbbcb08">2. Huddle Test</a>
<li><a href="#orgfe3d6c5">1. Experimental Setup</a></li>
<li><a href="#org85c4a97">2. Huddle Test</a>
<ul>
<li><a href="#orge0cae84">2.1. Load Data</a></li>
<li><a href="#orgeb6de99">2.2. Time Domain Results</a></li>
<li><a href="#orga9c316e">2.3. Frequency Domain Noise</a></li>
<li><a href="#org6f9e775">2.1. Load Data</a></li>
<li><a href="#orgd27ba42">2.2. Time Domain Results</a></li>
<li><a href="#org963a243">2.3. Frequency Domain Noise</a></li>
</ul>
</li>
<li><a href="#org3f480f8">3. Comparison Interferometer / Encoder</a>
<li><a href="#org0e0c48a">3. Comparison Interferometer / Encoder</a>
<ul>
<li><a href="#org1144cae">3.1. Load Data</a></li>
<li><a href="#org504ca00">3.2. Time Domain Results</a></li>
<li><a href="#org0bb5487">3.3. Difference between Encoder and Interferometer as a function of time</a></li>
<li><a href="#org8ffe43b">3.4. Difference between Encoder and Interferometer as a function of position</a></li>
<li><a href="#orgc15a506">3.1. Load Data</a></li>
<li><a href="#orgc509698">3.2. Time Domain Results</a></li>
<li><a href="#org1b5953a">3.3. Difference between Encoder and Interferometer as a function of time</a></li>
<li><a href="#orgcb56769">3.4. Difference between Encoder and Interferometer as a function of position</a></li>
</ul>
</li>
<li><a href="#org8db94b6">4. Identification</a>
<li><a href="#org8399536">4. Identification</a>
<ul>
<li><a href="#org5dbc303">4.1. Load Data</a></li>
<li><a href="#org7e6c771">4.2. Identification</a></li>
<li><a href="#org4b364a5">4.1. Load Data</a></li>
<li><a href="#org0dd3820">4.2. Identification</a></li>
</ul>
</li>
<li><a href="#org34f3a3e">5. Change of Stiffness due to Sensors stack being open/closed circuit</a>
<li><a href="#org4a7e08f">5. Change of Stiffness due to Sensors stack being open/closed circuit</a>
<ul>
<li><a href="#org74a3435">5.1. Load Data</a></li>
<li><a href="#org3c7c26d">5.2. Transfer Functions</a></li>
<li><a href="#orgba85fb9">5.1. Load Data</a></li>
<li><a href="#org2876c52">5.2. Transfer Functions</a></li>
</ul>
</li>
<li><a href="#org939e6d1">6. Generated Number of Charge / Voltage</a>
<li><a href="#org1abff1f">6. Generated Number of Charge / Voltage</a>
<ul>
<li><a href="#org24ebf58">6.1. Steps</a></li>
<li><a href="#orgd891bf7">6.2. Sinus</a></li>
<li><a href="#org65e8206">6.1. Steps</a></li>
<li><a href="#org4df253f">6.2. Sinus</a></li>
</ul>
</li>
</ul>
</div>
</div>
<div id="outline-container-org6fbc445" class="outline-2">
<h2 id="org6fbc445"><span class="section-number-2">1</span> Experimental Setup</h2>
<div id="outline-container-orgfe3d6c5" class="outline-2">
<h2 id="orgfe3d6c5"><span class="section-number-2">1</span> Experimental Setup</h2>
<div class="outline-text-2" id="text-1">
<p>
The experimental Setup is schematically represented in Figure <a href="#orgd0e8875">1</a>.
The experimental Setup is schematically represented in Figure <a href="#orgb535f32">1</a>.
</p>
<p>
@ -82,21 +86,21 @@ The displacement of the mass (relative to the mechanical frame) is measured both
</p>
<div id="orgd0e8875" class="figure">
<div id="orgb535f32" class="figure">
<p><img src="figs/exp_setup_schematic.png" alt="exp_setup_schematic.png" />
</p>
<p><span class="figure-number">Figure 1: </span>Schematic of the Experiment</p>
</div>
<div id="orga0a129f" class="figure">
<div id="org7c9d65a" class="figure">
<p><img src="figs/IMG_20201023_153905.jpg" alt="IMG_20201023_153905.jpg" />
</p>
<p><span class="figure-number">Figure 2: </span>Side View of the encoder</p>
</div>
<div id="org3eb8621" class="figure">
<div id="org6ecf3f2" class="figure">
<p><img src="figs/IMG_20201023_153914.jpg" alt="IMG_20201023_153914.jpg" />
</p>
<p><span class="figure-number">Figure 3: </span>Front View of the encoder</p>
@ -104,8 +108,8 @@ The displacement of the mass (relative to the mechanical frame) is measured both
</div>
</div>
<div id="outline-container-orgdbbcb08" class="outline-2">
<h2 id="orgdbbcb08"><span class="section-number-2">2</span> Huddle Test</h2>
<div id="outline-container-org85c4a97" class="outline-2">
<h2 id="org85c4a97"><span class="section-number-2">2</span> Huddle Test</h2>
<div class="outline-text-2" id="text-2">
<p>
The goal in this section is the estimate the noise of both the encoder and the intereferometer.
@ -117,8 +121,8 @@ Ideally, a mechanical part would clamp the two together, we here suppose that th
</p>
</div>
<div id="outline-container-orge0cae84" class="outline-3">
<h3 id="orge0cae84"><span class="section-number-3">2.1</span> Load Data</h3>
<div id="outline-container-org6f9e775" class="outline-3">
<h3 id="org6f9e775"><span class="section-number-3">2.1</span> Load Data</h3>
<div class="outline-text-3" id="text-2-1">
<div class="org-src-container">
<pre class="src src-matlab">load(<span class="org-string">'mat/int_enc_huddle_test.mat'</span>, <span class="org-string">'interferometer'</span>, <span class="org-string">'encoder'</span>, <span class="org-string">'t'</span>);
@ -133,11 +137,11 @@ encoder = detrend(encoder, 0);
</div>
</div>
<div id="outline-container-orgeb6de99" class="outline-3">
<h3 id="orgeb6de99"><span class="section-number-3">2.2</span> Time Domain Results</h3>
<div id="outline-container-orgd27ba42" class="outline-3">
<h3 id="orgd27ba42"><span class="section-number-3">2.2</span> Time Domain Results</h3>
<div class="outline-text-3" id="text-2-2">
<div id="org686e97a" class="figure">
<div id="orgbec33e3" class="figure">
<p><img src="figs/huddle_test_time_domain.png" alt="huddle_test_time_domain.png" />
</p>
<p><span class="figure-number">Figure 4: </span>Huddle test - Time domain signals</p>
@ -149,7 +153,7 @@ encoder = detrend(encoder, 0);
</div>
<div id="orgb481e1f" class="figure">
<div id="org19de732" class="figure">
<p><img src="figs/huddle_test_time_domain_filtered.png" alt="huddle_test_time_domain_filtered.png" />
</p>
<p><span class="figure-number">Figure 5: </span>Huddle test - Time domain signals filtered with a LPF at 10Hz</p>
@ -157,8 +161,8 @@ encoder = detrend(encoder, 0);
</div>
</div>
<div id="outline-container-orga9c316e" class="outline-3">
<h3 id="orga9c316e"><span class="section-number-3">2.3</span> Frequency Domain Noise</h3>
<div id="outline-container-org963a243" class="outline-3">
<h3 id="org963a243"><span class="section-number-3">2.3</span> Frequency Domain Noise</h3>
<div class="outline-text-3" id="text-2-3">
<div class="org-src-container">
<pre class="src src-matlab">Ts = 1e<span class="org-type">-</span>4;
@ -170,7 +174,7 @@ win = hann(ceil(10<span class="org-type">/</span>Ts));
</div>
<div id="org8d5409d" class="figure">
<div id="orgb6a29d5" class="figure">
<p><img src="figs/huddle_test_asd.png" alt="huddle_test_asd.png" />
</p>
<p><span class="figure-number">Figure 6: </span>Amplitude Spectral Density of the signals during the Huddle test</p>
@ -179,8 +183,8 @@ win = hann(ceil(10<span class="org-type">/</span>Ts));
</div>
</div>
<div id="outline-container-org3f480f8" class="outline-2">
<h2 id="org3f480f8"><span class="section-number-2">3</span> Comparison Interferometer / Encoder</h2>
<div id="outline-container-org0e0c48a" class="outline-2">
<h2 id="org0e0c48a"><span class="section-number-2">3</span> Comparison Interferometer / Encoder</h2>
<div class="outline-text-2" id="text-3">
<p>
The goal here is to make sure that the interferometer and encoder measurements are coherent.
@ -188,8 +192,8 @@ We may see non-linearity in the interferometric measurement.
</p>
</div>
<div id="outline-container-org1144cae" class="outline-3">
<h3 id="org1144cae"><span class="section-number-3">3.1</span> Load Data</h3>
<div id="outline-container-orgc15a506" class="outline-3">
<h3 id="orgc15a506"><span class="section-number-3">3.1</span> Load Data</h3>
<div class="outline-text-3" id="text-3-1">
<div class="org-src-container">
<pre class="src src-matlab">load(<span class="org-string">'mat/int_enc_comp.mat'</span>, <span class="org-string">'interferometer'</span>, <span class="org-string">'encoder'</span>, <span class="org-string">'u'</span>, <span class="org-string">'t'</span>);
@ -205,18 +209,18 @@ u = detrend(u, 0);
</div>
</div>
<div id="outline-container-org504ca00" class="outline-3">
<h3 id="org504ca00"><span class="section-number-3">3.2</span> Time Domain Results</h3>
<div id="outline-container-orgc509698" class="outline-3">
<h3 id="orgc509698"><span class="section-number-3">3.2</span> Time Domain Results</h3>
<div class="outline-text-3" id="text-3-2">
<div id="org5e28133" class="figure">
<div id="orgdf791be" class="figure">
<p><img src="figs/int_enc_one_cycle.png" alt="int_enc_one_cycle.png" />
</p>
<p><span class="figure-number">Figure 7: </span>One cycle measurement</p>
</div>
<div id="org1d42180" class="figure">
<div id="org7e30f32" class="figure">
<p><img src="figs/int_enc_one_cycle_error.png" alt="int_enc_one_cycle_error.png" />
</p>
<p><span class="figure-number">Figure 8: </span>Difference between the Encoder and the interferometer during one cycle</p>
@ -224,8 +228,8 @@ u = detrend(u, 0);
</div>
</div>
<div id="outline-container-org0bb5487" class="outline-3">
<h3 id="org0bb5487"><span class="section-number-3">3.3</span> Difference between Encoder and Interferometer as a function of time</h3>
<div id="outline-container-org1b5953a" class="outline-3">
<h3 id="org1b5953a"><span class="section-number-3">3.3</span> Difference between Encoder and Interferometer as a function of time</h3>
<div class="outline-text-3" id="text-3-3">
<div class="org-src-container">
<pre class="src src-matlab">Ts = 1e<span class="org-type">-</span>4;
@ -246,7 +250,7 @@ d_err_mean = d_err_mean <span class="org-type">-</span> mean(d_err_mean);
</div>
<div id="org8fda1bf" class="figure">
<div id="org95838e4" class="figure">
<p><img src="figs/int_enc_error_mean_time.png" alt="int_enc_error_mean_time.png" />
</p>
<p><span class="figure-number">Figure 9: </span>Difference between the two measurement in the time domain, averaged for all the cycles</p>
@ -254,8 +258,8 @@ d_err_mean = d_err_mean <span class="org-type">-</span> mean(d_err_mean);
</div>
</div>
<div id="outline-container-org8ffe43b" class="outline-3">
<h3 id="org8ffe43b"><span class="section-number-3">3.4</span> Difference between Encoder and Interferometer as a function of position</h3>
<div id="outline-container-orgcb56769" class="outline-3">
<h3 id="orgcb56769"><span class="section-number-3">3.4</span> Difference between Encoder and Interferometer as a function of position</h3>
<div class="outline-text-3" id="text-3-4">
<p>
Compute the mean of the interferometer measurement corresponding to each of the encoder measurement.
@ -274,7 +278,7 @@ i_mean_error = (i_mean <span class="org-type">-</span> e_sorted);
</div>
<div id="org3b4facc" class="figure">
<div id="orga34e36f" class="figure">
<p><img src="figs/int_enc_error_mean_position.png" alt="int_enc_error_mean_position.png" />
</p>
<p><span class="figure-number">Figure 10: </span>Difference between the two measurement as a function of the measured position by the encoder, averaged for all the cycles</p>
@ -295,7 +299,7 @@ e_sorted_mean_over_period = mean(reshape(i_mean_error(i_init<span class="org-typ
</div>
<div id="org8f808d8" class="figure">
<div id="org064a7da" class="figure">
<p><img src="figs/int_non_linearity_period_wavelength.png" alt="int_non_linearity_period_wavelength.png" />
</p>
<p><span class="figure-number">Figure 11: </span>Non-Linearity of the Interferometer over the period of the wavelength</p>
@ -304,12 +308,12 @@ e_sorted_mean_over_period = mean(reshape(i_mean_error(i_init<span class="org-typ
</div>
</div>
<div id="outline-container-org8db94b6" class="outline-2">
<h2 id="org8db94b6"><span class="section-number-2">4</span> Identification</h2>
<div id="outline-container-org8399536" class="outline-2">
<h2 id="org8399536"><span class="section-number-2">4</span> Identification</h2>
<div class="outline-text-2" id="text-4">
</div>
<div id="outline-container-org5dbc303" class="outline-3">
<h3 id="org5dbc303"><span class="section-number-3">4.1</span> Load Data</h3>
<div id="outline-container-org4b364a5" class="outline-3">
<h3 id="org4b364a5"><span class="section-number-3">4.1</span> Load Data</h3>
<div class="outline-text-3" id="text-4-1">
<div class="org-src-container">
<pre class="src src-matlab">load(<span class="org-string">'mat/int_enc_id_noise_bis.mat'</span>, <span class="org-string">'interferometer'</span>, <span class="org-string">'encoder'</span>, <span class="org-string">'u'</span>, <span class="org-string">'t'</span>);
@ -325,8 +329,8 @@ u = detrend(u, 0);
</div>
</div>
<div id="outline-container-org7e6c771" class="outline-3">
<h3 id="org7e6c771"><span class="section-number-3">4.2</span> Identification</h3>
<div id="outline-container-org0dd3820" class="outline-3">
<h3 id="org0dd3820"><span class="section-number-3">4.2</span> Identification</h3>
<div class="outline-text-3" id="text-4-2">
<div class="org-src-container">
<pre class="src src-matlab">Ts = 1e<span class="org-type">-</span>4; <span class="org-comment">% Sampling Time [s]</span>
@ -344,14 +348,14 @@ win = hann(ceil(10<span class="org-type">/</span>Ts));
</div>
<div id="org002dcef" class="figure">
<div id="org4e10071" class="figure">
<p><img src="figs/identification_dynamics_coherence.png" alt="identification_dynamics_coherence.png" />
</p>
</div>
<div id="orgdbdd6e0" class="figure">
<div id="orgfa48d56" class="figure">
<p><img src="figs/identification_dynamics_bode.png" alt="identification_dynamics_bode.png" />
</p>
</div>
@ -359,12 +363,12 @@ win = hann(ceil(10<span class="org-type">/</span>Ts));
</div>
</div>
<div id="outline-container-org34f3a3e" class="outline-2">
<h2 id="org34f3a3e"><span class="section-number-2">5</span> Change of Stiffness due to Sensors stack being open/closed circuit</h2>
<div id="outline-container-org4a7e08f" class="outline-2">
<h2 id="org4a7e08f"><span class="section-number-2">5</span> Change of Stiffness due to Sensors stack being open/closed circuit</h2>
<div class="outline-text-2" id="text-5">
</div>
<div id="outline-container-org74a3435" class="outline-3">
<h3 id="org74a3435"><span class="section-number-3">5.1</span> Load Data</h3>
<div id="outline-container-orgba85fb9" class="outline-3">
<h3 id="orgba85fb9"><span class="section-number-3">5.1</span> Load Data</h3>
<div class="outline-text-3" id="text-5-1">
<div class="org-src-container">
<pre class="src src-matlab">oc = load(<span class="org-string">'./mat/identification_open_circuit.mat'</span>, <span class="org-string">'t'</span>, <span class="org-string">'encoder'</span>, <span class="org-string">'u'</span>);
@ -374,8 +378,8 @@ sc = load(<span class="org-string">'./mat/identification_short_circuit.mat'</spa
</div>
</div>
<div id="outline-container-org3c7c26d" class="outline-3">
<h3 id="org3c7c26d"><span class="section-number-3">5.2</span> Transfer Functions</h3>
<div id="outline-container-org2876c52" class="outline-3">
<h3 id="org2876c52"><span class="section-number-3">5.2</span> Transfer Functions</h3>
<div class="outline-text-3" id="text-5-2">
<div class="org-src-container">
<pre class="src src-matlab">Ts = 1e<span class="org-type">-</span>4; <span class="org-comment">% Sampling Time [s]</span>
@ -393,26 +397,26 @@ win = hann(ceil(10<span class="org-type">/</span>Ts));
</div>
<div id="org3137b17" class="figure">
<div id="org525ff65" class="figure">
<p><img src="figs/stiffness_force_sensor_coherence.png" alt="stiffness_force_sensor_coherence.png" />
</p>
</div>
<div id="org0b7ba5b" class="figure">
<div id="orge72a5de" class="figure">
<p><img src="figs/stiffness_force_sensor_bode.png" alt="stiffness_force_sensor_bode.png" />
</p>
</div>
<div id="org8bfdbdd" class="figure">
<div id="orgd8a00e8" class="figure">
<p><img src="figs/stiffness_force_sensor_bode_zoom.png" alt="stiffness_force_sensor_bode_zoom.png" />
</p>
<p><span class="figure-number">Figure 16: </span>Zoom on the change of resonance</p>
</div>
<div class="important" id="org98481c9">
<div class="important" id="org5981596">
<p>
The change of resonance frequency / stiffness is very small and is not important here.
</p>
@ -422,8 +426,8 @@ The change of resonance frequency / stiffness is very small and is not important
</div>
</div>
<div id="outline-container-org939e6d1" class="outline-2">
<h2 id="org939e6d1"><span class="section-number-2">6</span> Generated Number of Charge / Voltage</h2>
<div id="outline-container-org1abff1f" class="outline-2">
<h2 id="org1abff1f"><span class="section-number-2">6</span> Generated Number of Charge / Voltage</h2>
<div class="outline-text-2" id="text-6">
<p>
Two stacks are used as actuator (in parallel) and one stack is used as sensor.
@ -434,8 +438,8 @@ The amplifier gain is 20V/V (Cedrat LA75B).
</p>
</div>
<div id="outline-container-org24ebf58" class="outline-3">
<h3 id="org24ebf58"><span class="section-number-3">6.1</span> Steps</h3>
<div id="outline-container-org65e8206" class="outline-3">
<h3 id="org65e8206"><span class="section-number-3">6.1</span> Steps</h3>
<div class="outline-text-3" id="text-6-1">
<div class="org-src-container">
<pre class="src src-matlab">load(<span class="org-string">'./mat/force_sensor_steps.mat'</span>, <span class="org-string">'t'</span>, <span class="org-string">'encoder'</span>, <span class="org-string">'u'</span>, <span class="org-string">'v'</span>);
@ -455,7 +459,7 @@ xlabel(<span class="org-string">'Time [s]'</span>); ylabel(<span class="org-stri
</div>
<div id="org487995c" class="figure">
<div id="org0233cf4" class="figure">
<p><img src="figs/force_sen_steps_time_domain.png" alt="force_sen_steps_time_domain.png" />
</p>
<p><span class="figure-number">Figure 17: </span>Time domain signal during the 3 actuator voltage steps</p>
@ -580,7 +584,7 @@ Rin = abs(mean(tau))<span class="org-type">/</span>Cp;
The input impedance of the Speedgoat&rsquo;s ADC should then be close to \(1.5\,M\Omega\) (specified at \(1\,M\Omega\)).
</p>
<div class="important" id="org3005c4e">
<div class="important" id="org8ca234e">
<p>
How can we explain the voltage offset?
</p>
@ -588,11 +592,11 @@ How can we explain the voltage offset?
</div>
<p>
As shown in Figure <a href="#org63387ea">18</a> (taken from (<a href="#citeproc_bib_item_1">Reza and Andrew 2006</a>)), an input voltage offset is due to the input bias current \(i_n\).
As shown in Figure <a href="#org6a0d23a">18</a> (taken from (<a href="#citeproc_bib_item_1">Reza and Andrew 2006</a>)), an input voltage offset is due to the input bias current \(i_n\).
</p>
<div id="org63387ea" class="figure">
<div id="org6a0d23a" class="figure">
<p><img src="figs/piezo_sensor_model_instrumentation.png" alt="piezo_sensor_model_instrumentation.png" />
</p>
<p><span class="figure-number">Figure 18: </span>Model of a piezoelectric transducer (left) and instrumentation amplifier (right)</p>
@ -656,8 +660,8 @@ Which is much more acceptable.
</div>
</div>
<div id="outline-container-orgd891bf7" class="outline-3">
<h3 id="orgd891bf7"><span class="section-number-3">6.2</span> Sinus</h3>
<div id="outline-container-org4df253f" class="outline-3">
<h3 id="org4df253f"><span class="section-number-3">6.2</span> Sinus</h3>
<div class="outline-text-3" id="text-6-2">
<div class="org-src-container">
<pre class="src src-matlab">load(<span class="org-string">'./mat/force_sensor_sin.mat'</span>, <span class="org-string">'t'</span>, <span class="org-string">'encoder'</span>, <span class="org-string">'u'</span>, <span class="org-string">'v'</span>);
@ -670,11 +674,11 @@ t = t(t<span class="org-type">&gt;</span>25);
</div>
<p>
The driving voltage is a sinus at 0.5Hz centered on 3V and with an amplitude of 3V (Figure <a href="#orgf11f3a7">19</a>).
The driving voltage is a sinus at 0.5Hz centered on 3V and with an amplitude of 3V (Figure <a href="#orga819354">19</a>).
</p>
<div id="orgf11f3a7" class="figure">
<div id="orga819354" class="figure">
<p><img src="figs/force_sensor_sin_u.png" alt="force_sensor_sin_u.png" />
</p>
<p><span class="figure-number">Figure 19: </span>Driving Voltage</p>
@ -694,11 +698,11 @@ The full stroke as measured by the encoder is:
<p>
Its signal is shown in Figure <a href="#org3cc6daf">20</a>.
Its signal is shown in Figure <a href="#orgde5c100">20</a>.
</p>
<div id="org3cc6daf" class="figure">
<div id="orgde5c100" class="figure">
<p><img src="figs/force_sensor_sin_encoder.png" alt="force_sensor_sin_encoder.png" />
</p>
<p><span class="figure-number">Figure 20: </span>Encoder measurement</p>
@ -709,7 +713,7 @@ The generated voltage by the stack is shown in Figure
</p>
<div id="orgd2cbe17" class="figure">
<div id="org1f6aabd" class="figure">
<p><img src="figs/force_sensor_sin_stack.png" alt="force_sensor_sin_stack.png" />
</p>
<p><span class="figure-number">Figure 21: </span>Voltage measured on the stack used as a sensor</p>
@ -724,10 +728,10 @@ The capacitance of the stack is
</div>
<p>
The corresponding generated charge is then shown in Figure <a href="#org5b6dc79">22</a>.
The corresponding generated charge is then shown in Figure <a href="#orgcfb4c95">22</a>.
</p>
<div id="org5b6dc79" class="figure">
<div id="orgcfb4c95" class="figure">
<p><img src="figs/force_sensor_sin_charge.png" alt="force_sensor_sin_charge.png" />
</p>
<p><span class="figure-number">Figure 22: </span>Generated Charge</p>
@ -735,7 +739,7 @@ The corresponding generated charge is then shown in Figure <a href="#org5b6dc79"
<p>
The relation between the generated voltage and the measured displacement is almost linear as shown in Figure <a href="#org9b9ea94">23</a>.
The relation between the generated voltage and the measured displacement is almost linear as shown in Figure <a href="#orgd584dd5">23</a>.
</p>
<div class="org-src-container">
@ -744,7 +748,7 @@ The relation between the generated voltage and the measured displacement is almo
</div>
<div id="org9b9ea94" class="figure">
<div id="orgd584dd5" class="figure">
<p><img src="figs/force_sensor_linear_relation.png" alt="force_sensor_linear_relation.png" />
</p>
<p><span class="figure-number">Figure 23: </span>Almost linear relation between the relative displacement and the generated voltage</p>
@ -773,7 +777,7 @@ With a 16bits ADC, the resolution will then be equals to (in [nm]):
</div>
<div id="postamble" class="status">
<p class="author">Author: Dehaeze Thomas</p>
<p class="date">Created: 2020-10-29 jeu. 09:59</p>
<p class="date">Created: 2020-10-29 jeu. 10:08</p>
</div>
</body>
</html>

View File

@ -4,6 +4,9 @@
#+EMAIL: dehaeze.thomas@gmail.com
#+AUTHOR: Dehaeze Thomas
#+HTML_LINK_HOME: ../index.html
#+HTML_LINK_UP: ../index.html
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="./css/htmlize.css"/>
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="./css/readtheorg.css"/>
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="./css/zenburn.css"/>