Export to pdf

This commit is contained in:
Thomas Dehaeze 2021-02-02 19:16:41 +01:00
parent a0ee8de1d5
commit 43083a5c7b
4 changed files with 101 additions and 80 deletions

7
.gitignore vendored
View File

@ -1,3 +1,10 @@
auto/
*.tex
*.bbl
*.synctex.gz
.auctex-auto/
_minted*
# Windows default autosave extension # Windows default autosave extension
*.asv *.asv
*rtw/ *rtw/

View File

@ -3,7 +3,7 @@
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"> <html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
<head> <head>
<!-- 2020-11-12 jeu. 10:16 --> <!-- 2021-02-02 mar. 19:16 -->
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" /> <meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
<title>Encoder - Test Bench</title> <title>Encoder - Test Bench</title>
<meta name="generator" content="Org mode" /> <meta name="generator" content="Org mode" />
@ -22,19 +22,19 @@
<h2>Table of Contents</h2> <h2>Table of Contents</h2>
<div id="text-table-of-contents"> <div id="text-table-of-contents">
<ul> <ul>
<li><a href="#org1c5bda2">1. Experimental Setup</a></li> <li><a href="#org3c3af3a">1. Experimental Setup</a></li>
<li><a href="#orgdc41a88">2. Noise Spectral Density of the Encoder</a> <li><a href="#orgdb3277a">2. Noise Spectral Density of the Encoder</a>
<ul> <ul>
<li><a href="#org9693b2a">2.1. Load Data</a></li> <li><a href="#org81a5e5f">2.1. Load Data</a></li>
<li><a href="#orgb24809d">2.2. Time Domain Results</a></li> <li><a href="#orgbed7f20">2.2. Time Domain Results</a></li>
<li><a href="#org2228685">2.3. Frequency Domain Noise</a></li> <li><a href="#org319de75">2.3. Frequency Domain Noise</a></li>
</ul> </ul>
</li> </li>
<li><a href="#orge121b74">3. Dynamics from Actuator to Encoder</a> <li><a href="#orgb1ca2cf">3. Dynamics from Actuator to Encoder</a>
<ul> <ul>
<li><a href="#orgae3dfc0">3.1. Load Data</a></li> <li><a href="#orgfa505d1">3.1. Load Data</a></li>
<li><a href="#org83ba060">3.2. Excitation and Measured Signals</a></li> <li><a href="#org3f21900">3.2. Excitation and Measured Signals</a></li>
<li><a href="#orge31f70d">3.3. Identification</a></li> <li><a href="#org0b79009">3.3. Identification</a></li>
</ul> </ul>
</li> </li>
</ul> </ul>
@ -49,23 +49,23 @@ In this document, we wish to study the use of an encoder in parallel with an Amp
The document is divided into the following Sections: The document is divided into the following Sections:
</p> </p>
<ul class="org-ul"> <ul class="org-ul">
<li>Section <a href="#orgae74897">1</a>: the test-bench used is described</li> <li>Section <a href="#org4c85aef">1</a>: the test-bench used is described</li>
<li>Section <a href="#org2f2ab76">2</a>: the noise spectral density of the encoder is estimated</li> <li>Section <a href="#org088f993">2</a>: the noise spectral density of the encoder is estimated</li>
<li>Section <a href="#org3ffacc7">3</a>: the dynamics from the amplified piezoelectric actuator to the encoder measured displacement is identified</li> <li>Section <a href="#org077ed39">3</a>: the dynamics from the amplified piezoelectric actuator to the encoder measured displacement is identified</li>
</ul> </ul>
<div id="outline-container-org1c5bda2" class="outline-2"> <div id="outline-container-org3c3af3a" class="outline-2">
<h2 id="org1c5bda2"><span class="section-number-2">1</span> Experimental Setup</h2> <h2 id="org3c3af3a"><span class="section-number-2">1</span> Experimental Setup</h2>
<div class="outline-text-2" id="text-1"> <div class="outline-text-2" id="text-1">
<p> <p>
<a id="orgae74897"></a> <a id="org4c85aef"></a>
</p> </p>
<p> <p>
The experimental Setup is schematically represented in Figure <a href="#orgb6cceaa">1</a>. The experimental Setup is schematically represented in Figure <a href="#org87d981b">1</a>.
</p> </p>
<div class="note" id="org72fff46"> <div class="note" id="org217bb34">
<p> <p>
Here are the equipment used in the test bench: Here are the equipment used in the test bench:
</p> </p>
@ -85,21 +85,21 @@ The displacement of the mass (relative to the mechanical frame) is measured both
</p> </p>
<div id="orgb6cceaa" class="figure"> <div id="org87d981b" class="figure">
<p><img src="figs/exp_setup_schematic.png" alt="exp_setup_schematic.png" /> <p><img src="figs/exp_setup_schematic.png" alt="exp_setup_schematic.png" />
</p> </p>
<p><span class="figure-number">Figure 1: </span>Schematic of the Experiment</p> <p><span class="figure-number">Figure 1: </span>Schematic of the Experiment</p>
</div> </div>
<div id="orge5d61dd" class="figure"> <div id="org4703eda" class="figure">
<p><img src="figs/IMG_20201023_153905.jpg" alt="IMG_20201023_153905.jpg" /> <p><img src="figs/IMG_20201023_153905.jpg" alt="IMG_20201023_153905.jpg" />
</p> </p>
<p><span class="figure-number">Figure 2: </span>Side View of the encoder</p> <p><span class="figure-number">Figure 2: </span>Side View of the encoder</p>
</div> </div>
<div id="orgad29df1" class="figure"> <div id="orgd6a1cee" class="figure">
<p><img src="figs/IMG_20201023_153914.jpg" alt="IMG_20201023_153914.jpg" /> <p><img src="figs/IMG_20201023_153914.jpg" alt="IMG_20201023_153914.jpg" />
</p> </p>
<p><span class="figure-number">Figure 3: </span>Front View of the encoder</p> <p><span class="figure-number">Figure 3: </span>Front View of the encoder</p>
@ -107,11 +107,11 @@ The displacement of the mass (relative to the mechanical frame) is measured both
</div> </div>
</div> </div>
<div id="outline-container-orgdc41a88" class="outline-2"> <div id="outline-container-orgdb3277a" class="outline-2">
<h2 id="orgdc41a88"><span class="section-number-2">2</span> Noise Spectral Density of the Encoder</h2> <h2 id="orgdb3277a"><span class="section-number-2">2</span> Noise Spectral Density of the Encoder</h2>
<div class="outline-text-2" id="text-2"> <div class="outline-text-2" id="text-2">
<p> <p>
<a id="org2f2ab76"></a> <a id="org088f993"></a>
</p> </p>
<p> <p>
The goal in this section is the estimate the noise of both the encoder and the intereferometer. The goal in this section is the estimate the noise of both the encoder and the intereferometer.
@ -123,50 +123,50 @@ Ideally, a mechanical part would clamp the two together, we here suppose that th
</p> </p>
</div> </div>
<div id="outline-container-org9693b2a" class="outline-3"> <div id="outline-container-org81a5e5f" class="outline-3">
<h3 id="org9693b2a"><span class="section-number-3">2.1</span> Load Data</h3> <h3 id="org81a5e5f"><span class="section-number-3">2.1</span> Load Data</h3>
<div class="outline-text-3" id="text-2-1"> <div class="outline-text-3" id="text-2-1">
<p> <p>
The measurement data are loaded and the offset are removed using the <code>detrend</code> command. The measurement data are loaded and the offset are removed using the <code>detrend</code> command.
</p> </p>
<div class="org-src-container"> <div class="org-src-container">
<pre class="src src-matlab">load(<span class="org-string">'int_enc_huddle_test.mat'</span>, <span class="org-string">'interferometer'</span>, <span class="org-string">'encoder'</span>, <span class="org-string">'t'</span>); <pre class="src src-matlab"> load(<span class="org-string">'int_enc_huddle_test.mat'</span>, <span class="org-string">'interferometer'</span>, <span class="org-string">'encoder'</span>, <span class="org-string">'t'</span>);
</pre> </pre>
</div> </div>
<div class="org-src-container"> <div class="org-src-container">
<pre class="src src-matlab">interferometer = detrend(interferometer, 0); <pre class="src src-matlab"> interferometer = detrend(interferometer, 0);
encoder = detrend(encoder, 0); encoder = detrend(encoder, 0);
</pre> </pre>
</div> </div>
</div> </div>
</div> </div>
<div id="outline-container-orgb24809d" class="outline-3"> <div id="outline-container-orgbed7f20" class="outline-3">
<h3 id="orgb24809d"><span class="section-number-3">2.2</span> Time Domain Results</h3> <h3 id="orgbed7f20"><span class="section-number-3">2.2</span> Time Domain Results</h3>
<div class="outline-text-3" id="text-2-2"> <div class="outline-text-3" id="text-2-2">
<p> <p>
The measurement of both the encoder and interferometer are shown in Figure <a href="#org481639f">4</a>. The measurement of both the encoder and interferometer are shown in Figure <a href="#orgad4a9af">4</a>.
</p> </p>
<div id="org481639f" class="figure"> <div id="orgad4a9af" class="figure">
<p><img src="figs/huddle_test_time_domain.png" alt="huddle_test_time_domain.png" /> <p><img src="figs/huddle_test_time_domain.png" alt="huddle_test_time_domain.png" />
</p> </p>
<p><span class="figure-number">Figure 4: </span>Huddle test - Time domain signals</p> <p><span class="figure-number">Figure 4: </span>Huddle test - Time domain signals</p>
</div> </div>
<p> <p>
The raw signals are filtered with a Low Pass filter (defined below) such that we can see the low frequency motion (Figure <a href="#orgaea06bd">5</a>). The raw signals are filtered with a Low Pass filter (defined below) such that we can see the low frequency motion (Figure <a href="#orgc981fe9">5</a>).
</p> </p>
<div class="org-src-container"> <div class="org-src-container">
<pre class="src src-matlab">G_lpf = 1<span class="org-type">/</span>(1 <span class="org-type">+</span> s<span class="org-type">/</span>2<span class="org-type">/</span><span class="org-constant">pi</span><span class="org-type">/</span>10); <pre class="src src-matlab"> G_lpf = 1<span class="org-type">/</span>(1 <span class="org-type">+</span> s<span class="org-type">/</span>2<span class="org-type">/</span><span class="org-constant">pi</span><span class="org-type">/</span>10);
</pre> </pre>
</div> </div>
<div id="orgaea06bd" class="figure"> <div id="orgc981fe9" class="figure">
<p><img src="figs/huddle_test_time_domain_filtered.png" alt="huddle_test_time_domain_filtered.png" /> <p><img src="figs/huddle_test_time_domain_filtered.png" alt="huddle_test_time_domain_filtered.png" />
</p> </p>
<p><span class="figure-number">Figure 5: </span>Huddle test - Time domain signals filtered with a LPF at 10Hz</p> <p><span class="figure-number">Figure 5: </span>Huddle test - Time domain signals filtered with a LPF at 10Hz</p>
@ -174,24 +174,24 @@ The raw signals are filtered with a Low Pass filter (defined below) such that we
</div> </div>
</div> </div>
<div id="outline-container-org2228685" class="outline-3"> <div id="outline-container-org319de75" class="outline-3">
<h3 id="org2228685"><span class="section-number-3">2.3</span> Frequency Domain Noise</h3> <h3 id="org319de75"><span class="section-number-3">2.3</span> Frequency Domain Noise</h3>
<div class="outline-text-3" id="text-2-3"> <div class="outline-text-3" id="text-2-3">
<p> <p>
The noise of the measurement (supposing there is no motion) is now translated in the frequency domain by computed the Amplitude Spectral Density. The noise of the measurement (supposing there is no motion) is now translated in the frequency domain by computed the Amplitude Spectral Density.
</p> </p>
<div class="org-src-container"> <div class="org-src-container">
<pre class="src src-matlab">Ts = 1e<span class="org-type">-</span>4; <pre class="src src-matlab"> Ts = 1e<span class="org-type">-</span>4;
win = hann(ceil(10<span class="org-type">/</span>Ts)); win = hann(ceil(10<span class="org-type">/</span>Ts));
[p_i, f] = pwelch(interferometer, win, [], [], 1<span class="org-type">/</span>Ts); [p_i, f] = pwelch(interferometer, win, [], [], 1<span class="org-type">/</span>Ts);
[p_e, <span class="org-type">~</span>] = pwelch(encoder, win, [], [], 1<span class="org-type">/</span>Ts); [p_e, <span class="org-type">~</span>] = pwelch(encoder, win, [], [], 1<span class="org-type">/</span>Ts);
</pre> </pre>
</div> </div>
<p> <p>
The comparison of the ASD of the encoder and interferometer are shown in Figure <a href="#org38217d2">6</a>. The comparison of the ASD of the encoder and interferometer are shown in Figure <a href="#orgeae7d8d">6</a>.
</p> </p>
<p> <p>
@ -199,7 +199,7 @@ It is clear that although the encoder exhibit higher frequency noise, is it more
</p> </p>
<div id="org38217d2" class="figure"> <div id="orgeae7d8d" class="figure">
<p><img src="figs/huddle_test_asd.png" alt="huddle_test_asd.png" /> <p><img src="figs/huddle_test_asd.png" alt="huddle_test_asd.png" />
</p> </p>
<p><span class="figure-number">Figure 6: </span>Amplitude Spectral Density of the signals during the Huddle test</p> <p><span class="figure-number">Figure 6: </span>Amplitude Spectral Density of the signals during the Huddle test</p>
@ -208,25 +208,25 @@ It is clear that although the encoder exhibit higher frequency noise, is it more
</div> </div>
</div> </div>
<div id="outline-container-orge121b74" class="outline-2"> <div id="outline-container-orgb1ca2cf" class="outline-2">
<h2 id="orge121b74"><span class="section-number-2">3</span> Dynamics from Actuator to Encoder</h2> <h2 id="orgb1ca2cf"><span class="section-number-2">3</span> Dynamics from Actuator to Encoder</h2>
<div class="outline-text-2" id="text-3"> <div class="outline-text-2" id="text-3">
<p> <p>
<a id="org3ffacc7"></a> <a id="org077ed39"></a>
</p> </p>
<p> <p>
Now the dynamics from the force actuator to the measurement by the encoder is identified. Now the dynamics from the force actuator to the measurement by the encoder is identified.
</p> </p>
</div> </div>
<div id="outline-container-orgae3dfc0" class="outline-3"> <div id="outline-container-orgfa505d1" class="outline-3">
<h3 id="orgae3dfc0"><span class="section-number-3">3.1</span> Load Data</h3> <h3 id="orgfa505d1"><span class="section-number-3">3.1</span> Load Data</h3>
<div class="outline-text-3" id="text-3-1"> <div class="outline-text-3" id="text-3-1">
<p> <p>
As usual, the measurement data are loaded. As usual, the measurement data are loaded.
</p> </p>
<div class="org-src-container"> <div class="org-src-container">
<pre class="src src-matlab">load(<span class="org-string">'int_enc_id_noise_bis.mat'</span>, <span class="org-string">'interferometer'</span>, <span class="org-string">'encoder'</span>, <span class="org-string">'u'</span>, <span class="org-string">'t'</span>); <pre class="src src-matlab"> load(<span class="org-string">'int_enc_id_noise_bis.mat'</span>, <span class="org-string">'interferometer'</span>, <span class="org-string">'encoder'</span>, <span class="org-string">'u'</span>, <span class="org-string">'t'</span>);
</pre> </pre>
</div> </div>
@ -234,10 +234,10 @@ As usual, the measurement data are loaded.
The first 0.1 seconds are removed as it corresponds to transient behavior. The first 0.1 seconds are removed as it corresponds to transient behavior.
</p> </p>
<div class="org-src-container"> <div class="org-src-container">
<pre class="src src-matlab">interferometer = interferometer(t<span class="org-type">&gt;</span>0.1); <pre class="src src-matlab"> interferometer = interferometer(t<span class="org-type">&gt;</span>0.1);
encoder = encoder(t<span class="org-type">&gt;</span>0.1); encoder = encoder(t<span class="org-type">&gt;</span>0.1);
u = u(t<span class="org-type">&gt;</span>0.1); u = u(t<span class="org-type">&gt;</span>0.1);
t = t(t<span class="org-type">&gt;</span>0.1); t = t(t<span class="org-type">&gt;</span>0.1);
</pre> </pre>
</div> </div>
@ -245,79 +245,83 @@ t = t(t<span class="org-type">&gt;</span>0.1);
Finally the offset are removed using the <code>detrend</code> command. Finally the offset are removed using the <code>detrend</code> command.
</p> </p>
<div class="org-src-container"> <div class="org-src-container">
<pre class="src src-matlab">interferometer = detrend(interferometer, 0); <pre class="src src-matlab"> interferometer = detrend(interferometer, 0);
encoder = detrend(encoder, 0); encoder = detrend(encoder, 0);
u = detrend(u, 0); u = detrend(u, 0);
</pre> </pre>
</div> </div>
</div> </div>
</div> </div>
<div id="outline-container-org83ba060" class="outline-3"> <div id="outline-container-org3f21900" class="outline-3">
<h3 id="org83ba060"><span class="section-number-3">3.2</span> Excitation and Measured Signals</h3> <h3 id="org3f21900"><span class="section-number-3">3.2</span> Excitation and Measured Signals</h3>
<div class="outline-text-3" id="text-3-2"> <div class="outline-text-3" id="text-3-2">
<p> <p>
The excitation signal is a white noise filtered by a low pass filter to not excite too much the high frequency modes. The excitation signal is a white noise filtered by a low pass filter to not excite too much the high frequency modes.
</p> </p>
<p> <p>
The excitation signal is shown in Figure <a href="#org93c938e">7</a>. The excitation signal is shown in Figure <a href="#orgf417c0d">7</a>.
</p> </p>
<div id="org93c938e" class="figure"> <div id="orgf417c0d" class="figure">
<p><img src="figs/encoder_identification_excitation_time.png" alt="encoder_identification_excitation_time.png" /> <p><img src="figs/encoder_identification_excitation_time.png" alt="encoder_identification_excitation_time.png" />
</p> </p>
<p><span class="figure-number">Figure 7: </span>Excitation Voltage</p>
</div> </div>
<p> <p>
The measured motion by the interferometer and encoder is shown in Figure The measured motion by the interferometer and encoder is shown in Figure
</p> </p>
<div id="org85b6206" class="figure"> <div id="orgb870b1e" class="figure">
<p><img src="figs/encoder_identification_motion.png" alt="encoder_identification_motion.png" /> <p><img src="figs/encoder_identification_motion.png" alt="encoder_identification_motion.png" />
</p> </p>
<p><span class="figure-number">Figure 8: </span>Measured displacement by the encoder and interferometer</p>
</div> </div>
</div> </div>
</div> </div>
<div id="outline-container-orge31f70d" class="outline-3"> <div id="outline-container-org0b79009" class="outline-3">
<h3 id="orge31f70d"><span class="section-number-3">3.3</span> Identification</h3> <h3 id="org0b79009"><span class="section-number-3">3.3</span> Identification</h3>
<div class="outline-text-3" id="text-3-3"> <div class="outline-text-3" id="text-3-3">
<p> <p>
Now the dynamics from the voltage sent to the voltage amplitude driving the APA95ML to the measured displacement by both the encoder and interferometer are computed. Now the dynamics from the voltage sent to the voltage amplitude driving the APA95ML to the measured displacement by both the encoder and interferometer are computed.
</p> </p>
<div class="org-src-container"> <div class="org-src-container">
<pre class="src src-matlab">Ts = 1e<span class="org-type">-</span>4; <span class="org-comment">% Sampling Time [s]</span> <pre class="src src-matlab"> Ts = 1e<span class="org-type">-</span>4; <span class="org-comment">% Sampling Time [s]</span>
win = hann(ceil(10<span class="org-type">/</span>Ts)); win = hann(ceil(10<span class="org-type">/</span>Ts));
[tf_i_est, f] = tfestimate(u, interferometer, win, [], [], 1<span class="org-type">/</span>Ts); [tf_i_est, f] = tfestimate(u, interferometer, win, [], [], 1<span class="org-type">/</span>Ts);
[co_i_est, <span class="org-type">~</span>] = mscohere(u, interferometer, win, [], [], 1<span class="org-type">/</span>Ts); [co_i_est, <span class="org-type">~</span>] = mscohere(u, interferometer, win, [], [], 1<span class="org-type">/</span>Ts);
[tf_e_est, <span class="org-type">~</span>] = tfestimate(u, encoder, win, [], [], 1<span class="org-type">/</span>Ts); [tf_e_est, <span class="org-type">~</span>] = tfestimate(u, encoder, win, [], [], 1<span class="org-type">/</span>Ts);
[co_e_est, <span class="org-type">~</span>] = mscohere(u, encoder, win, [], [], 1<span class="org-type">/</span>Ts); [co_e_est, <span class="org-type">~</span>] = mscohere(u, encoder, win, [], [], 1<span class="org-type">/</span>Ts);
</pre> </pre>
</div> </div>
<p> <p>
The obtained coherence is shown in Figure <a href="#org646a3b0">9</a>. The obtained coherence is shown in Figure <a href="#orgd2811d2">9</a>.
It is shown that the identification is good until 500Hz for the interferometer and until 1kHz for the encoder. It is shown that the identification is good until 500Hz for the interferometer and until 1kHz for the encoder.
</p> </p>
<div id="org646a3b0" class="figure"> <div id="orgd2811d2" class="figure">
<p><img src="figs/identification_dynamics_coherence.png" alt="identification_dynamics_coherence.png" /> <p><img src="figs/identification_dynamics_coherence.png" alt="identification_dynamics_coherence.png" />
</p> </p>
<p><span class="figure-number">Figure 9: </span>Obtained coherence for both the encoder and interferometer</p>
</div> </div>
<p> <p>
The compared dynamics as measured by the intereferometer and encoder are shown in Figure <a href="#orgbf0b43f">10</a>. The compared dynamics as measured by the intereferometer and encoder are shown in Figure <a href="#org7032434">10</a>.
</p> </p>
<div id="orgbf0b43f" class="figure"> <div id="org7032434" class="figure">
<p><img src="figs/identification_dynamics_bode.png" alt="identification_dynamics_bode.png" /> <p><img src="figs/identification_dynamics_bode.png" alt="identification_dynamics_bode.png" />
</p> </p>
<p><span class="figure-number">Figure 10: </span>Obtained dynamics from actuator voltage to displacement as measured by the interferometer and by the encoder</p>
</div> </div>
@ -330,7 +334,7 @@ The second resonance at around 900Hz most likely corresponds to the resonance of
</div> </div>
<div id="postamble" class="status"> <div id="postamble" class="status">
<p class="author">Author: Dehaeze Thomas</p> <p class="author">Author: Dehaeze Thomas</p>
<p class="date">Created: 2020-11-12 jeu. 10:16</p> <p class="date">Created: 2021-02-02 mar. 19:16</p>
</div> </div>
</body> </body>
</html> </html>

View File

@ -10,6 +10,14 @@
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="https://research.tdehaeze.xyz/css/style.css"/> #+HTML_HEAD: <link rel="stylesheet" type="text/css" href="https://research.tdehaeze.xyz/css/style.css"/>
#+HTML_HEAD: <script type="text/javascript" src="https://research.tdehaeze.xyz/js/script.js"></script> #+HTML_HEAD: <script type="text/javascript" src="https://research.tdehaeze.xyz/js/script.js"></script>
#+BIND: org-latex-image-default-option "scale=1"
#+BIND: org-latex-image-default-width ""
#+LaTeX_CLASS: scrreprt
#+LaTeX_CLASS_OPTIONS: [a4paper, 10pt, DIV=12, parskip=full]
#+LaTeX_HEADER_EXTRA: \input{preamble.tex}
#+EXPORT_FILE_NAME: test-bench-pd200.tex
#+PROPERTY: header-args:latex :headers '("\\usepackage{tikz}" "\\usepackage{import}" "\\import{$HOME/Cloud/tikz/org/}{config.tex}") #+PROPERTY: header-args:latex :headers '("\\usepackage{tikz}" "\\usepackage{import}" "\\import{$HOME/Cloud/tikz/org/}{config.tex}")
#+PROPERTY: header-args:latex+ :imagemagick t :fit yes #+PROPERTY: header-args:latex+ :imagemagick t :fit yes
#+PROPERTY: header-args:latex+ :iminoptions -scale 100% -density 150 #+PROPERTY: header-args:latex+ :iminoptions -scale 100% -density 150
@ -63,11 +71,13 @@ The displacement of the mass (relative to the mechanical frame) is measured both
#+name: fig:encoder_side_view #+name: fig:encoder_side_view
#+ATTR_ORG: :width 300 #+ATTR_ORG: :width 300
#+ATTR_LATEX: :width \linewidth
#+caption: Side View of the encoder #+caption: Side View of the encoder
[[file:figs/IMG_20201023_153905.jpg]] [[file:figs/IMG_20201023_153905.jpg]]
#+name: fig:encoder_front_view #+name: fig:encoder_front_view
#+caption: Front View of the encoder #+caption: Front View of the encoder
#+ATTR_LATEX: :width \linewidth
[[file:figs/IMG_20201023_153914.jpg]] [[file:figs/IMG_20201023_153914.jpg]]
* Noise Spectral Density of the Encoder * Noise Spectral Density of the Encoder
@ -239,7 +249,7 @@ The excitation signal is shown in Figure [[fig:encoder_identification_excitation
#+end_src #+end_src
#+name: fig:encoder_identification_excitation_time #+name: fig:encoder_identification_excitation_time
#+caption: #+caption: Excitation Voltage
#+RESULTS: #+RESULTS:
[[file:figs/encoder_identification_excitation_time.png]] [[file:figs/encoder_identification_excitation_time.png]]
@ -259,7 +269,7 @@ The measured motion by the interferometer and encoder is shown in Figure
#+end_src #+end_src
#+name: fig:encoder_identification_motion #+name: fig:encoder_identification_motion
#+caption: #+caption: Measured displacement by the encoder and interferometer
#+RESULTS: #+RESULTS:
[[file:figs/encoder_identification_motion.png]] [[file:figs/encoder_identification_motion.png]]
@ -297,7 +307,7 @@ It is shown that the identification is good until 500Hz for the interferometer a
#+end_src #+end_src
#+name: fig:identification_dynamics_coherence #+name: fig:identification_dynamics_coherence
#+caption: #+caption: Obtained coherence for both the encoder and interferometer
#+RESULTS: #+RESULTS:
[[file:figs/identification_dynamics_coherence.png]] [[file:figs/identification_dynamics_coherence.png]]
@ -323,7 +333,7 @@ The compared dynamics as measured by the intereferometer and encoder are shown i
plot(f, 180/pi*angle(tf_e_est), '-') plot(f, 180/pi*angle(tf_e_est), '-')
set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'lin'); set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
hold off; hold off;
yticks(-360:90:360); yticks(-360:90:360);
axis padded 'auto x' axis padded 'auto x'
@ -336,7 +346,7 @@ The compared dynamics as measured by the intereferometer and encoder are shown i
#+end_src #+end_src
#+name: fig:identification_dynamics_bode #+name: fig:identification_dynamics_bode
#+caption: #+caption: Obtained dynamics from actuator voltage to displacement as measured by the interferometer and by the encoder
#+RESULTS: #+RESULTS:
[[file:figs/identification_dynamics_bode.png]] [[file:figs/identification_dynamics_bode.png]]

BIN
test-bench-encoder.pdf Normal file

Binary file not shown.