159 lines
7.4 KiB
TeX
159 lines
7.4 KiB
TeX
% Created 2021-07-13 mar. 00:51
|
|
% Intended LaTeX compiler: pdflatex
|
|
\documentclass[a4paper, keeplastbox, biblatex, boxit]{jacow}
|
|
|
|
\usepackage{pdfpages,multirow,ragged2e}
|
|
\usepackage{graphicx,tabularx,booktabs}
|
|
\usepackage{blindtext,bm}
|
|
\usepackage{subcaption}
|
|
\usepackage[USenglish, english]{babel}
|
|
\setcounter{footnote}{1}
|
|
\usepackage[colorlinks=true, allcolors=blue]{hyperref}
|
|
\addbibresource{ref.bib}
|
|
\author{T. Dehaeze\textsuperscript{1,}\thanks{thomas.dehaeze@esrf.fr}, J. Bonnefoy, ESRF, Grenoble, France \\ C. Collette\textsuperscript{1}, Université Libre de Bruxelles, BEAMS department, Brussels, Belgium \\ \textsuperscript{1}also at Precision Mechatronics Laboratory, University of Liege, Belgium}
|
|
\date{2021-07-13}
|
|
\title{MECHATRONICS APPROACH FOR THE DEVELOPMENT OF A NANO-ACTIVE-STABILIZATION-SYSTEM}
|
|
\begin{document}
|
|
|
|
\maketitle
|
|
|
|
\begin{abstract}
|
|
With the growing number of fourth generation light sources, there is an increased need of fast positioning end-stations with nanometric precision.
|
|
Such systems are usually including dedicated control strategies, and many factors may limit their performances.
|
|
In order to design such complex systems in a predictive way, a mechatronic design approach also known as ``model based design'', may be utilized.
|
|
In this paper, we present how this mechatronic design approach was used for the development of a nano-hexapod for the ESRF ID31 beamline.
|
|
The chosen design approach consists of using models of the mechatronic system (including sensors, actuators and control strategies) to predict its behavior.
|
|
Based on this behavior and closed-loop simulations, the elements that are limiting the performances can be identified and re-designed accordingly.
|
|
This allows to make adequate choices concerning the design of the nano-hexapod and the overall mechatronic architecture early in the project and save precious time and resources.
|
|
Several test benches were used to validate the models and to gain confidence on the predictability of the final system's performances.
|
|
Measured nano-hexapod's dynamics was shown to be in very good agreement with the models.
|
|
Further tests should be done in order to confirm that the performances of the system match the predicted one.
|
|
The presented development approach is foreseen to be applied more frequently to future mechatronic system design at the ESRF.
|
|
\end{abstract}
|
|
|
|
\section{INTRODUCTION}
|
|
\label{sec:org0bd2d65}
|
|
|
|
See \cite{dehaeze18_sampl_stabil_for_tomog_exper}.
|
|
|
|
\section{NANO ACTIVE STABILIZATION SYSTEM}
|
|
\label{sec:orgcb63b2b}
|
|
|
|
\begin{figure}[htbp]
|
|
\centering
|
|
\includegraphics[scale=1,scale=1]{figs/nass_concept_schematic.pdf}
|
|
\caption{\label{fig:nass_concept_schematic}Nano Active Stabilization System - Schematic representation. 1) micro-station, 2) nano-hexapod, 3) sample, 4) metrology system}
|
|
\end{figure}
|
|
|
|
\section{MECHATRONIC APPROACH}
|
|
\label{sec:orgd2030b5}
|
|
\begin{figure*}
|
|
\centering
|
|
\includegraphics[scale=1,width=\linewidth]{figs/nass_mechatronics_approach.pdf}
|
|
\caption{\label{fig:nass_mechatronics_approach}Overview of the mechatronic approach}
|
|
\end{figure*}
|
|
|
|
\begin{figure*}[htbp]
|
|
\begin{subfigure}[t]{0.25\linewidth}
|
|
\centering
|
|
\includegraphics[width=0.7\linewidth]{figs/mass_spring_damper_hac_lac.pdf}
|
|
\caption{\label{fig:mass_spring_damper_hac_lac} Mass Spring Damper model}
|
|
\end{subfigure}
|
|
\hfill
|
|
\begin{subfigure}[t]{0.48\linewidth}
|
|
\centering
|
|
\includegraphics[width=0.95\linewidth]{figs/nass_simscape_3d.png}
|
|
\caption{\label{fig:nass_simscape_3d} Multi Body model}
|
|
\end{subfigure}
|
|
\hfill
|
|
\begin{subfigure}[t]{0.25\linewidth}
|
|
\centering
|
|
\includegraphics[width=0.95\linewidth]{figs/super_element_simscape_alt.pdf}
|
|
\caption{\label{fig:super_element_simscape} Finite Element Model}
|
|
\end{subfigure}
|
|
\hfill
|
|
\caption{\label{fig:nass_models}Models used during all the design process. From (\subref{fig:mass_spring_damper_hac_lac}), (\subref{fig:nass_simscape_3d}), (\subref{fig:super_element_simscape})}
|
|
\centering
|
|
\end{figure*}
|
|
|
|
|
|
\section{NANO-HEXAPOD DESIGN}
|
|
\label{sec:org923eba1}
|
|
|
|
\begin{figure*}
|
|
\centering
|
|
\includegraphics[scale=1,width=\linewidth]{figs/nano_hexapod_elements.pdf}
|
|
\caption{\label{fig:nano_hexapod_elements}CAD view of the nano-hexapod with key elements}
|
|
\end{figure*}
|
|
|
|
\begin{figure}[htbp]
|
|
\centering
|
|
\includegraphics[scale=1,width=\linewidth]{figs/picture_nano_hexapod_strut.pdf}
|
|
\caption{\label{fig:picture_nano_hexapod_strut}Picture of a nano-hexapod's strut}
|
|
\end{figure}
|
|
|
|
\begin{figure}[htbp]
|
|
\centering
|
|
\includegraphics[scale=1,width=\linewidth]{figs/nano_hexapod_picture.jpg}
|
|
\caption{\label{fig:nano_hexapod_picture}Picture of the Nano-Hexapod on top of the ID31 micro-station}
|
|
\end{figure}
|
|
|
|
\section{TEST-BENCHES}
|
|
\label{sec:orgeb70416}
|
|
|
|
\begin{figure}[htbp]
|
|
\centering
|
|
\includegraphics[scale=1,scale=1]{figs/test_bench_apa_schematic.pdf}
|
|
\caption{\label{fig:test_bench_apa_schematic}Schematic of the bench used to identify the APA dynamics}
|
|
\end{figure}
|
|
|
|
\begin{figure}[htbp]
|
|
\begin{subfigure}[t]{0.48\linewidth}
|
|
\centering
|
|
\includegraphics[width=0.95\linewidth]{figs/apa_test_bench_results_de.pdf}
|
|
\caption{\label{fig:apa_test_bench_results_de} Encoder}
|
|
\end{subfigure}
|
|
\hfill
|
|
\begin{subfigure}[t]{0.48\linewidth}
|
|
\centering
|
|
\includegraphics[width=0.95\linewidth]{figs/apa_test_bench_results_Vs.pdf}
|
|
\caption{\label{fig:apa_test_bench_results_Vs} Force Sensor}
|
|
\end{subfigure}
|
|
\caption{\label{fig:apa_test_bench_results}Measured Frequency Response functions compared with the Simscape model. From the actuator stacks voltage to the encoder (\subref{fig:apa_test_bench_results_de}) and to the force sensor stack (\subref{fig:apa_test_bench_results_Vs}).}
|
|
\centering
|
|
\end{figure}
|
|
|
|
\section{CONTROL RESULTS}
|
|
\label{sec:org2dca095}
|
|
|
|
\begin{figure}[htbp]
|
|
\centering
|
|
\includegraphics[scale=1,width=\linewidth]{figs/nass_hac_lac_block_diagram_without_elec.pdf}
|
|
\caption{\label{fig:nass_hac_lac_schematic_test}HAC-LAC Strategy - Block Diagram. The signals are: \(\bm{r}\) the wanted sample's position, \(\bm{X}\) the measured sample's position, \(\bm{\epsilon}_{\mathcal{X}}\) the sample's position error, \(\bm{\epsilon}_{\mathcal{L}}\) the sample position error expressed in the ``frame'' of the nano-hexapod struts, \(\bm{u}\) the generated DAC voltages applied to the voltage amplifiers and then to the piezoelectric actuator stacks, \(\bm{u}^\prime\) the new inputs corresponding to the damped plant, \(\bm{\tau}\) the measured sensor stack voltages. \(\bm{T}\) is . \(\bm{K}_{\tiny IFF}\) is the Low Authority Controller used for active damping. \(\bm{K}_{\mathcal{L}}\) is the High Authority Controller.}
|
|
\end{figure}
|
|
|
|
|
|
\begin{figure}[htbp]
|
|
\centering
|
|
\includegraphics[scale=1,width=\linewidth]{figs/nano_hexapod_identification_comp_simscape.pdf}
|
|
\caption{\label{fig:nano_hexapod_identification_comp_simscape}Measured FRF and Simscape identified dynamics.}
|
|
\end{figure}
|
|
|
|
|
|
\begin{figure}[htbp]
|
|
\centering
|
|
\includegraphics[scale=1,width=\linewidth]{figs/nano_hexapod_identification_damp_comp_simscape.pdf}
|
|
\caption{\label{fig:nano_hexapod_identification_damp_comp_simscape}Undamped and Damped plant using IFF (measured FRF and Simscape model).}
|
|
\end{figure}
|
|
|
|
\section{CONCLUSION}
|
|
\label{sec:orgce60d85}
|
|
|
|
\section{ACKNOWLEDGMENTS}
|
|
\label{sec:orgfea2444}
|
|
This research was made possible by a grant from the FRIA.
|
|
We thank the following people for their support, without whose help this work would never have been possible: V. Honkimaki, L. Ducotte and M. Lessourd and the whole team of the Precision Mechatronic Laboratory.
|
|
|
|
\printbibliography
|
|
\end{document}
|