Update talk files

This commit is contained in:
Thomas Dehaeze 2021-07-22 09:09:03 +02:00
parent aa74cc8471
commit 0d1a43eecf
47 changed files with 1717 additions and 1093 deletions

File diff suppressed because it is too large Load Diff

View File

@ -1,4 +1,4 @@
% Created 2021-07-20 mar. 14:23
% Created 2021-07-22 jeu. 08:10
% Intended LaTeX compiler: pdflatex
\documentclass[aspectratio=169, t]{clean-beamer}
\usepackage[utf8]{inputenc}
@ -25,10 +25,9 @@
\institute[shortinst]{\inst{1} European Synchrotron Radiation Facility, Grenoble, France \and %
\inst{2} Precision Mechatronics Laboratory, University of Liege, Belgium \and %
\inst{3} BEAMS Department, Free University of Brussels, Belgium}
\vspace{-0.5em}
\titlegraphic{\includegraphics[height=1.5cm]{figs/logo_pml_full.pdf} \hspace{5em} %
\includegraphics[height=1.5cm]{figs/logo_esrf.pdf} \hspace{5em} %
\includegraphics[height=1.5cm]{figs/logo_medsi.pdf}}
\includegraphics[height=1.5cm]{figs/logo_medsi.jpg}}
\beamertemplatenavigationsymbolsempty
\addtobeamertemplate{navigation symbols}{}{%
\usebeamerfont{footline}%
@ -36,16 +35,10 @@
\hspace{1em}%
\insertframenumber/\inserttotalframenumber
}
\setlength{\leftmargini}{5pt}
\setbeamertemplate{itemize items}[circle]
\usefonttheme[onlymath]{serif}
\AtBeginSection[]{
\begin{frame}<beamer>{Outline}
\tableofcontents[currentsection, hideothersubsections, sectionstyle=show/shaded]
\end{frame}
}
\makeatletter
\preto\Gin@extensions{gif,}
\DeclareGraphicsRule{.gif}{png}{.png}{\noexpand\Gin@base.png}
\preto\Gin@extensions{png,}
\DeclareGraphicsRule{.png}{pdf}{.pdf}{\noexpand\Gin@base.pdf}
\makeatother
@ -66,217 +59,589 @@
\begin{document}
\maketitle
\section*{Introduction}
\begin{frame}[label={sec:org4b0545d}]{The ID31 Micro Station}
\begin{frame}[label={sec:orgdc51d45}]{The ID31 Micro Station}
\begin{center}
\includegraphics[scale=1,width=\linewidth]{figs/assemblage.png}
\includegraphics[scale=1,width=0.95\linewidth]{figs/micro_hexapod_render.pdf}
\end{center}
\textbf{Objective}: Position samples along complex trajectories with high precision\newline
\textbf{Stacked Positioning Stages}: \(\approx 10\,\mu m\) precision limited by stages vibrations, thermal effects, ground motion, \ldots{}
\begin{tikzpicture}[remember picture,overlay]
\node[anchor=north east, padding=5pt] at (current page.north east){%
\includegraphics[width=2em]{figs/icon_animation.pdf}};
\end{tikzpicture}
\end{frame}
\begin{frame}[label={sec:orgb7c2959}]{Introduction - The Nano Active Stabilization System}
\begin{frame}[label={sec:orgd54db4c}]{Introduction - The Nano Active Stabilization System}
\textbf{Objective}: Improve the position accuracy from \(\approx 10\,\mu m\) down to \(\approx 10\,nm\) \newline
\textbf{Design approach}: ``Model based design'' (extensive use of models and test benches)
\textbf{Design approach}: ``Model based design'' / ``Predictive Design''
\begin{center}
\includegraphics[scale=1,width=\linewidth]{figs/nass-concept.pdf}
\end{center}
\end{frame}
\begin{frame}[label={sec:orgaf8e005}]{The Nano-Hexapod - Why such mechanical architecture?}
\begin{itemize}
\item Why stewart architecture
\begin{itemize}
\item 6 DoF to control / 6 actuators
\end{itemize}
\item Only flexible elements
\begin{itemize}
\item no backlash
\item no play
\end{itemize}
\item How it is working
\begin{itemize}
\item Jacobian matrix both for actuation and sensing
\end{itemize}
\item Forward / Inverse kinematics : meaning. Easy to compute for small displacements
\item[{$\square$}] Schematic of Stewart platform
\end{itemize}
\begin{frame}[label={sec:org58304ff}]{Overview of the Mechatronic Approach - Model Based Design}
\begin{center}
\includegraphics[scale=1,width=\linewidth]{figs/nano_hexapod_elements.red.pdf}
\includegraphics[scale=1,width=\linewidth]{figs/nass_mechatronics_approach.png}
\end{center}
\end{frame}
\begin{frame}[label={sec:orgb9ee458}]{Stewart Platforms Architecture}
\vspace{-2em}
\section{Conceptual Phase}
\begin{frame}[label={sec:org95b2a1a}]{Outline - Conceptual Phase}
\begin{center}
\includegraphics[scale=1,width=\linewidth]{figs/nass_mechatronics_approach_conceptual_phase.png}
\end{center}
\end{frame}
\begin{columns}
\begin{column}{0.5\columnwidth}
\begin{figure}[htbp]
\centering
\includegraphics[scale=1,width=\linewidth]{figs/stewart_schematic.png}
\caption{\label{fig:stewart_schematic}Geometry of a Stewart Platform}
\end{figure}
\begin{frame}[label={sec:org612b41f}]{Feedback Control - The Control Loop}
\vspace{-1em}
\begin{center}
\includegraphics[scale=1,width=\linewidth]{figs/classical_feedback_schematic.png}
\end{center}
\vspace{-1em}
\begin{tcolorbox}[title=Advantages]
\begin{columns}
\begin{column}{0.4\columnwidth}
\begin{tcolorbox}[title=Why Feedback?]
\begin{itemize}
\item Compact
\item Allows 6dof motion
\item Can be ``monolithic''
\item Model uncertainties
\item Unknown disturbances
\end{itemize}
\end{tcolorbox}
\end{column}
\begin{column}{0.5\columnwidth}
\begin{tcolorbox}[title=Definition of the Geomtry]
\begin{column}{0.6\columnwidth}
\begin{tcolorbox}[title=Every elements can limit the performances]
\begin{itemize}
\item \(\bm{a}_i\): position of the attachment points on the fixed base
\item \(\bm{b}_i\): position of moving attachment points
\item \(l_i\): length of each limb
\item \(\hat{\bm{s}}_i\): unit vector representing the direction of each limb
\item Drivers, Actuators, Sensors
\item Mechanical System
\item Controller
\end{itemize}
\end{tcolorbox}
\end{column}
\end{columns}
\end{frame}
\begin{frame}[label={sec:org09981cc}]{Stewart Platform Architecture - Kinematics}
\begin{itemize}
\item \(\bm{\mathcal{L}} = \left[ l_1, l_2, \ldots, l_6 \right]^T\): vector of actuated joint coordinates
\item \(\bm{\mathcal{X}} = \left[ {}^A\bm{P}, \bm{}^A\hat{\bm{s}} \right]^T\): vector of platform motion variables
\end{itemize}
\begin{frame}[label={sec:orga5ea61a}]{Noise Budgeting and Required Control Bandwidth}
\vspace{-1em}
\begin{align*}
\bm{\mathcal{X}} & \xrightarrow[\text{Simple}]{\text{Inverse Kinematics}} \bm{\mathcal{L}} \\
\bm{\mathcal{L}} & \xrightarrow[\text{Complex}]{\text{Forward Kinematics}} \bm{\mathcal{X}}
\end{align*}
For small displacements: \textbf{Jacobian} matrix
\begin{equation*}
\bm{J} = \begin{bmatrix}
{\hat{\bm{s}}_1}^T & (\bm{b}_1 \times \hat{\bm{s}}_1)^T \\
{\hat{\bm{s}}_2}^T & (\bm{b}_2 \times \hat{\bm{s}}_2)^T \\
{\hat{\bm{s}}_3}^T & (\bm{b}_3 \times \hat{\bm{s}}_3)^T \\
{\hat{\bm{s}}_4}^T & (\bm{b}_4 \times \hat{\bm{s}}_4)^T \\
{\hat{\bm{s}}_5}^T & (\bm{b}_5 \times \hat{\bm{s}}_5)^T \\
{\hat{\bm{s}}_6}^T & (\bm{b}_6 \times \hat{\bm{s}}_6)^T
\end{bmatrix}
\end{equation*}
\begin{align*}
\delta\bm{\mathcal{L}} &= \bm{J} \delta\bm{\mathcal{X}} \\
\delta\bm{\mathcal{X}} &= \bm{J}^{-1} \delta\bm{\mathcal{L}}
\end{align*}
As an example, for the Nano-Hexapod:
\begin{equation*}
\bm{J} = \begin{bmatrix*}[r]
0.69 & -0.38 & 0.61 & -0.13 & -0.10 & 0.08 \\
-0.69 & -0.38 & 0.61 & -0.13 & 0.10 & -0.08 \\
-0.02 & 0.80 & 0.61 & 0.15 & -0.06 & 0.08 \\
0.68 & -0.41 & 0.61 & -0.02 & -0.16 & -0.08 \\
-0.68 & -0.41 & 0.61 & -0.02 & 0.16 & 0.08 \\
0.02 & 0.80 & 0.61 & 0.15 & 0.06 & -0.08
\end{bmatrix*}, \quad \bm{J}^{-1} = \begin{bmatrix*}[r]
0.84 & -0.84 & -1.00 & -0.15 & 0.15 & 1.00 \\
0.66 & 0.66 & 0.39 & -1.06 & -1.06 & 0.39 \\
0.27 & 0.27 & 0.27 & 0.27 & 0.27 & 0.27 \\
-4.51 & -4.51 & 0.12 & 4.39 & 4.39 & 0.12 \\
2.46 & -2.46 & -5.14 & -2.67 & 2.67 & 5.14 \\
1.96 & -1.96 & 1.96 & -1.96 & 1.96 & -1.96
\end{bmatrix*}
\end{equation*}
\begin{itemize}
\item[{$\square$}] Control architecture in the frame of the legs with the Jacobian matrix
\end{itemize}
\begin{center}
\includegraphics[scale=1,width=\linewidth]{figs/identification_control_noise_budget.red.pdf}
\end{center}
\end{frame}
\begin{frame}[label={sec:orgec6681e}]{Control Challenges - Analogy}
\begin{frame}[label={sec:orgd23064f}]{Limitation of the Controller Bandwidth?}
\begin{columns}
\begin{column}{0.6\columnwidth}
\vspace{-2em}
\only<1>{
\begin{center}
\includegraphics[scale=1,width=\linewidth]{figs/001_Room.pdf}
\includegraphics[scale=1,width=\linewidth]{figs/control_bandwidth_1_classical.pdf}
\end{center}
}\only<2>{
\begin{center}
\includegraphics[scale=1,width=\linewidth]{figs/002_Analogies.pdf}
\includegraphics[scale=1,width=\linewidth]{figs/control_bandwidth_2_above_res.pdf}
\end{center}
}\only<3>{
\begin{center}
\includegraphics[scale=1,width=\linewidth]{figs/003_Laser.pdf}
\includegraphics[scale=1,width=\linewidth]{figs/control_bandwidth_3_next_gen.pdf}
\end{center}
}\only<4>{
}
\end{column}
\begin{column}{0.4\columnwidth}
\vspace{-2em}
\begin{center}
\includegraphics[scale=1,width=\linewidth]{figs/004_Top-Platform.pdf}
\includegraphics[scale=1,width=\linewidth]{figs/test_bench_apa_simple.pdf}
\end{center}
}\only<5>{
\only<1>{
\begin{tcolorbox}[title=Typical Approach, fontupper=\small]
``As stiff as possible'' \newline
Simple controller (e.g. PID)
\end{tcolorbox}
}\only<2>{
\begin{tcolorbox}[title=Alternative Approach, fontupper=\small]
Limited by complex dynamics\newline
Model based controller
\end{tcolorbox}
}\only<3>{
\begin{tcolorbox}[title=Next-Gen Systems, fontupper=\small]
Active research topic\newline
Complex controllers
\end{tcolorbox}
}
\end{column}
\end{columns}
\end{frame}
\begin{frame}[label={sec:org9493c8d}]{Soft or Stiff \(\nu\text{-hexapod}\) ? Interaction with the \(\mu\text{-station}\)}
\vspace{-3em}
\begin{columns}
\begin{column}{0.3\columnwidth}
\onslide<1->{
\begin{center}
\includegraphics[scale=1,width=\linewidth]{figs/005_Candle.pdf}
\includegraphics[scale=1,width=\linewidth]{figs/nass_example_uncertainty_support_only_hexapod.pdf}
\end{center}
}\only<6>{
}\onslide<2->{
\begin{center}
\includegraphics[scale=1,width=\linewidth]{figs/006_Objective and Challenges.pdf}
\includegraphics[scale=1,width=\linewidth]{figs/nass_example_uncertainty_support.pdf}
\end{center}
}\only<7>{
}
\end{column}
\begin{column}{0.7\columnwidth}
\onslide<1->{
\begin{center}
\includegraphics[scale=1,width=\linewidth]{figs/007_Truck.pdf}
\includegraphics[scale=1,width=\linewidth]{figs/nass_example_alone.pdf}
\end{center}
}\only<8>{
\vspace{-2em}
}\onslide<2->{
\begin{center}
\includegraphics[scale=1,width=\linewidth]{figs/008_Trampoline.pdf}
\includegraphics[scale=1,width=\linewidth]{figs/nass_example_support_uncertainty_d_L.pdf}
\end{center}
}\only<9>{
}
\end{column}
\end{columns}
\end{frame}
\begin{frame}[label={sec:orgddab963}]{Complexity of the Micro-Station Dynamics (Model Analysis)}
\vspace{-1em}
\begin{center}
\includegraphics[scale=1,width=\linewidth]{figs/009_Spindle.pdf}
\includegraphics[scale=1,width=0.95\linewidth]{figs/modes_annotated.png}
\end{center}
}\only<10>{
\begin{tikzpicture}[remember picture,overlay]
\node[anchor=north east, padding=5pt] at (current page.north east){%
\includegraphics[width=2em]{figs/icon_animation.pdf}};
\end{tikzpicture}
\end{frame}
\begin{frame}[label={sec:org3dfae25}]{Control Strategy: HAC-LAC}
\vspace{-0.5em}
\begin{center}
\includegraphics[scale=1,width=\linewidth]{figs/010_Metrology.pdf}
\includegraphics[scale=1,width=\linewidth]{figs/nass_schematic_test.pdf}
\end{center}
}\only<11>{
\vspace{-2.0em}
\begin{columns}
\begin{column}{0.5\columnwidth}
\begin{tcolorbox}[title=Low Authority Control]
\begin{itemize}
\item Collocated sensors/actuators
\item Guaranteed Stability
\item Adds damping
\item \(\searrow\) vibration near resonances
\end{itemize}
\end{tcolorbox}
\end{column}
\begin{column}{0.5\columnwidth}
\begin{tcolorbox}[title=High Authority Control]
\begin{itemize}
\item Position sensors
\item Complex dynamics
\item \(\searrow\) vibration in the bandwidth
\item Use transformation matrices
\end{itemize}
\end{tcolorbox}
\end{column}
\end{columns}
\end{frame}
\begin{frame}[label={sec:orgb8b73a0}]{Multi-Body Models - Simulations}
\begin{center}
\includegraphics[scale=1,width=\linewidth]{figs/simscape_simulation.jpg}
\end{center}
\begin{tikzpicture}[remember picture, overlay]
\node[align=left, anchor=south east, text width=5.5cm,shift={(-1em, 1em)}] at (current page.south east){%
\begin{tcolorbox}
\begin{center}
Validation of the concept
\end{center}
\end{tcolorbox}};
\end{tikzpicture}
\begin{tikzpicture}[remember picture,overlay]
\node[anchor=north east, padding=5pt] at (current page.north east){%
\includegraphics[width=2em]{figs/icon_animation.pdf}};
\end{tikzpicture}
\end{frame}
\section{Detail Design Phase}
\begin{frame}[label={sec:org6378434}]{Outline - Detail Design Phase}
\begin{center}
\includegraphics[scale=1,width=\linewidth]{figs/nass_mechatronics_approach_detailed_phase.png}
\end{center}
\end{frame}
\begin{frame}[label={sec:orgc57fa9c}]{Nano-Hexapod Overview - Key elements}
\begin{center}
\includegraphics[scale=1,width=\linewidth]{figs/nano_hexapod_elements.red.pdf}
\end{center}
\end{frame}
\begin{frame}[label={sec:orga847212}]{Include Flexible Elements in a Multi-Body model}
\begin{center}
\includegraphics[scale=1,width=\linewidth]{figs/super_element_simscape.pdf}
\end{center}
\end{frame}
\begin{frame}[label={sec:org36e74d8}]{Choice of Actuator - Amplifier Piezoelectric Actuator}
\vspace{-2em}
\begin{columns}
\begin{column}{0.5\columnwidth}
\scriptsize
\begin{center}
\begin{tabularx}{0.8\linewidth}{ccc}
\toprule
\textbf{Characteristic} & \textbf{Specs} & \textbf{Doc.}\\
\midrule
Axial Stiff. & \SI{\approx 1}{\newton/\micro\meter} & \SI{1.8}{\newton/\micro\meter}\\
Sufficient Stroke & \SI{> 100}{\micro\meter} & \SI{368}{\micro\meter}\\
Height & \SI{< 50}{\milli\meter} & \SI{30}{\milli\meter}\\
High Resolution & \SI{< 5}{\nano\meter} & \SI{3}{\nano\meter}\\
\bottomrule
\end{tabularx}
\end{center}
\normalsize
\vspace{-1em}
\begin{figure}[htbp]
\centering
\includegraphics[scale=1,width=0.9\linewidth]{figs/apa300ml_picture.jpg}
\caption{Picture of the APA300ML}
\end{figure}
\end{column}
\begin{column}{0.5\columnwidth}
\vspace{-1em}
\begin{columns}
\begin{column}{0.4\columnwidth}
\begin{figure}[htbp]
\centering
\includegraphics[scale=1,width=0.8\linewidth]{figs/2dof_apa_model.pdf}
\caption{2-DoF Model}
\end{figure}
\end{column}
\begin{column}{0.6\columnwidth}
\vspace{-1.6em}
\begin{figure}[htbp]
\centering
\includegraphics[scale=1,width=0.9\linewidth]{figs/mesh_APA_schematic.pdf}
\caption{APA Finite Element Model}
\end{figure}
\end{column}
\end{columns}
\begin{figure}[htbp]
\centering
\includegraphics[scale=1,width=\linewidth]{figs/mode_shapes_annotated.pdf}
\caption{Flexible Modes due to limited APA stiffness}
\end{figure}
\end{column}
\end{columns}
\end{frame}
\begin{frame}[label={sec:orgaefb8a2}]{Flexible Joints - Specifications and Optimization (\href{https://research.tdehaeze.xyz/test-bench-nass-flexible-joints/}{link})}
\vspace{-2em}
\begin{columns}
\begin{column}{0.75\columnwidth}
\scriptsize
\begin{center}
\begin{tabularx}{\linewidth}{ccccc}
\toprule
\textbf{Goal} & \textbf{Stiffness} & \textbf{Specs} & \textbf{FEM} & \textbf{Measured}\\
\midrule
High DVF Damping & Axial & \SI{> 100}{\newton/\micro\meter} & 94 & \\
Low Coupling & Bending & \SI{< 100}{\newton\meter/\radian} & 5 & 3.8\\
Low Coupling & Torsion & \SI{< 500}{\newton\meter/\radian} & 260 & \\
Sufficient Stroke & Bending Stroke & \SI{> 1}{\milli\radian} & 20 & 18\\
\bottomrule
\end{tabularx}
\end{center}
\normalsize
\end{column}
\begin{column}{0.25\columnwidth}
\vspace{-3em}
\begin{figure}[htbp]
\centering
\includegraphics[scale=1,width=\linewidth]{figs/flexible_joint_dimensions.pdf}
\caption{Dimensions after optimization}
\end{figure}
\end{column}
\end{columns}
\vspace{-3em}
\begin{columns}
\begin{column}{0.45\columnwidth}
\begin{figure}[htbp]
\centering
\includegraphics[scale=1,width=\linewidth]{figs/location_top_flexible_joints.pdf}
\caption{Positioning of the top joint}
\end{figure}
\end{column}
\begin{column}{0.55\columnwidth}
\vspace{2em}
\begin{figure}[htbp]
\centering
\includegraphics[scale=1,width=\linewidth]{figs/simscape_model_flexible_joint.pdf}
\caption{Simscape Model}
\end{figure}
\end{column}
\end{columns}
\end{frame}
\begin{frame}[label={sec:org1666f90}]{Instrumentation}
\begin{itemize}
\item PD200 amplifier
\item Encoders
\item Speedgoat, DAC, ADC
\item PEPU
\item Attocube
\end{itemize}
\end{frame}
\section{Experimental Phase}
\begin{frame}[label={sec:org8c075cc}]{Outline - Experimental Phase}
\begin{center}
\includegraphics[scale=1,width=\linewidth]{figs/nass_mechatronics_approach_experimental_phase.png}
\end{center}
\end{frame}
\begin{frame}[label={sec:org57e9067}]{Flexible Joints - Measurements}
\vspace{-2em}
\begin{columns}
\begin{column}{0.45\columnwidth}
\begin{figure}[htbp]
\centering
\includegraphics[scale=1,width=\linewidth]{figs/flexible_joint_bench.pdf}
\caption{Measurement bench}
\end{figure}
\end{column}
\begin{column}{0.55\columnwidth}
\begin{figure}[htbp]
\centering
\includegraphics[scale=1,width=\linewidth]{figs/flex_joint_meas_example_F_d_lin_fit.pdf}
\caption{Measured displacement and force}
\end{figure}
\end{column}
\end{columns}
\end{frame}
\begin{frame}[label={sec:org230d623}]{Amplified Piezoelectric Actuator - Test Bench}
\vspace{-1em}
\begin{center}
\includegraphics[scale=1,width=\linewidth]{figs/011_Flame.pdf}
\includegraphics[scale=1,width=\linewidth]{figs/test_bench_apa300ml.red.pdf}
\end{center}
\begin{tikzpicture}[remember picture, overlay]
\node[align=left, anchor=north east, text width=4.5cm] at (current page.north east){%
\begin{tcolorbox}[title=Goals]
\begin{itemize}
\item Identify Dynamics
\item Tune APA Model
\item Test IFF
\end{itemize}
\end{tcolorbox}};
\end{tikzpicture}
\end{frame}
\begin{frame}[label={sec:org9368c73}]{Amplified Piezoelectric Actuator - Extracted Model}
\begin{center}
\includegraphics[scale=1,width=\linewidth]{figs/apa_comp_model_frf.pdf}
\end{center}
\end{frame}
\begin{frame}[label={sec:orga3a7c76}]{Amplified Piezoelectric Actuator - Integral Force Feedback}
\vspace{-3em}
\begin{columns}
\begin{column}{0.62\columnwidth}
\begin{center}
\includegraphics[scale=1,width=\linewidth]{figs/test_bench_apa300ml_iff.pdf}
\end{center}
\[ K_{\text{IFF}}(s) = \frac{g}{s} \]
\end{column}
\begin{column}{0.38\columnwidth}
\begin{center}
\includegraphics[scale=1,width=\linewidth]{figs/iff_results_apa95ml.pdf}
\end{center}
\end{column}
\end{columns}
\end{frame}
\begin{frame}[label={sec:org4e8f560}]{Strut - Mounting Tool}
\vspace{-2.5em}
\begin{columns}
\begin{column}{0.63\columnwidth}
\begin{center}
\includegraphics[scale=1,width=\linewidth]{figs/image_mounting_strut_bench.JPG}
\end{center}
\end{column}
\begin{column}{0.37\columnwidth}
\begin{center}
\includegraphics[scale=1,width=\linewidth]{figs/mounted_strut_picture.jpg}
\end{center}
\begin{tikzpicture}[remember picture,overlay]
\node[anchor=north east, padding=5pt] at (current page.north east){%
\includegraphics[width=2em]{figs/icon_animation.pdf}};
\end{tikzpicture}
\end{column}
\end{columns}
\end{frame}
\begin{frame}[label={sec:orge547304}]{Strut - Dynamical Measurements}
\vspace{-1em}
\begin{center}
\includegraphics[scale=1,width=\linewidth]{figs/test_bench_strut.red.pdf}
\end{center}
\begin{tikzpicture}[remember picture, overlay]
\node[align=left, anchor=north east, text width=5cm] at (current page.north east){%
\begin{tcolorbox}[title=Goals]
\begin{itemize}
\item Identify Dynamics
\item Tune Model
\item Flexible joints effects
\item Encoder effect
\end{itemize}
\end{tcolorbox}};
\end{tikzpicture}
\end{frame}
\begin{frame}[label={sec:org76a12db}]{Strut - Encoders Output and Spurious Modes}
\vspace{-3em}
\begin{columns}
\begin{column}{0.45\columnwidth}
\begin{center}
\includegraphics[scale=1,width=\linewidth]{figs/frf_model_encoder_strut.pdf}
\end{center}
\end{column}
\begin{column}{0.55\columnwidth}
\begin{center}
\includegraphics[scale=1,width=\linewidth]{figs/meas_spur_res_struts_2_encoder.jpg}
\end{center}
\begin{center}
\includegraphics[scale=1,width=\linewidth]{figs/mode_shapes_annotated.pdf}
\end{center}
\begin{tikzpicture}[remember picture,overlay]
\node[anchor=north east, padding=5pt] at (current page.north east){%
\includegraphics[width=2em]{figs/icon_animation.pdf}};
\end{tikzpicture}
\end{column}
\end{columns}
\end{frame}
\begin{frame}[label={sec:org416c1db}]{Strut - Extracted Model}
\vspace{-1em}
\begin{center}
\includegraphics[scale=1,width=\linewidth]{figs/strut_meas_frf_model_int_force.pdf}
\end{center}
\end{frame}
\begin{frame}[label={sec:orgd58b991}]{Nano-Hexapod Mounting Tool}
\begin{center}
\includegraphics[scale=1,width=0.9\linewidth]{figs/nano_hexapod_mounting.JPG}
\end{center}
\begin{tikzpicture}[remember picture,overlay]
\node[anchor=north east, padding=5pt] at (current page.north east){%
\includegraphics[width=2em]{figs/icon_animation.pdf}};
\end{tikzpicture}
\end{frame}
\begin{frame}[label={sec:orgb957064}]{Mounted Nano-Hexapod}
\vspace{-1em}
\begin{center}
\includegraphics[scale=1,width=\linewidth]{figs/mounted_nano_hexapod_picture.jpg}
\end{center}
\end{frame}
\begin{frame}[label={sec:org92c51de}]{Nano-Hexapod - Identified Dynamics}
Diagonal + off-diagonal transfer function from Va to De (comp with model)
\end{frame}
\begin{frame}[label={sec:orgafcfc6b}]{Nano-Hexapod - Force Sensors}
Diagonal + off-diagonal transfer function from Va to Vs
\end{frame}
\begin{frame}[label={sec:org2608c34}]{Nano-Hexapod - Damped Dynamics}
Damped and Undamped, Diagonal + off-diagonal transfer function from Va to De
\end{frame}
\begin{frame}[label={sec:org9e7c6f4}]{The Nano-Hexapod on top of the Micro-Station}
\vspace{-0.5em}
\only<1>{
\begin{center}
\includegraphics[scale=1,width=0.85\linewidth]{figs/nano_hexapod_id31.jpg}
\end{center}
}\only<2>{
\begin{center}
\includegraphics[scale=1,width=0.85\linewidth]{figs/nano_hexapod_id31_zoom.jpg}
\end{center}
}
\end{frame}
\begin{frame}[label={sec:orgd25c78f}]{Overview of the Mechatronic Approach - Model Based Design}
\vspace{-1em}
\begin{center}
\includegraphics[scale=1,width=\linewidth]{figs/nass-mechatronics-approach.png}
\end{center}
\end{frame}
\begin{frame}[label={sec:org4f4bab3}]{Outline}
\tableofcontents
\section{Conclusion}
\begin{frame}[label={sec:orgee0f6f0}]{Conclusion}
\end{frame}
\end{document}

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 912 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 494 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 2.2 MiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 1.9 MiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 5.4 MiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 1.1 MiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 3.2 MiB

Binary file not shown.

Binary file not shown.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 213 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 456 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 32 KiB

After

Width:  |  Height:  |  Size: 29 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 49 KiB

After

Width:  |  Height:  |  Size: 45 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 525 KiB

Binary file not shown.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 76 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 2.9 MiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 3.1 MiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 349 KiB

After

Width:  |  Height:  |  Size: 349 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 2.7 MiB

After

Width:  |  Height:  |  Size: 2.7 MiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 214 KiB

After

Width:  |  Height:  |  Size: 2.7 MiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 679 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 978 KiB

Binary file not shown.

Binary file not shown.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 12 MiB

After

Width:  |  Height:  |  Size: 13 MiB

Binary file not shown.

Binary file not shown.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 45 MiB

After

Width:  |  Height:  |  Size: 12 MiB