Rename main orgmode matlab file
This commit is contained in:
		@@ -1,4 +1,4 @@
 | 
			
		||||
#+TITLE: Complementary Filters Shaping Using $\mathcal{H}_\infty$ Synthesis - Matlab Computation
 | 
			
		||||
#+TITLE: A new method of designing complementary filters for sensor fusion using the $\mathcal{H}_\infty$ synthesis - Matlab Computation
 | 
			
		||||
:DRAWER:
 | 
			
		||||
#+HTML_LINK_HOME: ../index.html
 | 
			
		||||
#+HTML_LINK_UP:   ../index.html
 | 
			
		||||
@@ -34,23 +34,12 @@
 | 
			
		||||
:END:
 | 
			
		||||
 | 
			
		||||
* Introduction                                                       :ignore:
 | 
			
		||||
In this document, the design of complementary filters is studied.
 | 
			
		||||
 | 
			
		||||
One use of complementary filter is described below:
 | 
			
		||||
#+begin_quote
 | 
			
		||||
  The basic idea of a complementary filter involves taking two or more sensors, filtering out unreliable frequencies for each sensor, and combining the filtered outputs to get a better estimate throughout the entire bandwidth of the system.
 | 
			
		||||
  To achieve this, the sensors included in the filter should complement one another by performing better over specific parts of the system bandwidth.
 | 
			
		||||
#+end_quote
 | 
			
		||||
 | 
			
		||||
This document is divided into several sections:
 | 
			
		||||
- in section [[#sec:h_inf_synthesis_complementary_filters]], the $\mathcal{H}_\infty$ synthesis is used for generating two complementary filters
 | 
			
		||||
- in section [[sec:three_comp_filters]], a method using the $\mathcal{H}_\infty$ synthesis is proposed to shape three of more complementary filters
 | 
			
		||||
- in section [[sec:comp_filters_ligo]], the $\mathcal{H}_\infty$ synthesis is used and compared with FIR complementary filters used for LIGO
 | 
			
		||||
 | 
			
		||||
#+begin_note
 | 
			
		||||
  Add the Matlab code use to obtain the results presented in the paper are accessible [[file:matlab.zip][here]] and presented below.
 | 
			
		||||
#+end_note
 | 
			
		||||
 | 
			
		||||
* H-Infinity synthesis of complementary filters
 | 
			
		||||
:PROPERTIES:
 | 
			
		||||
:header-args:matlab+: :tangle matlab/h_inf_synthesis_complementary_filters.m
 | 
			
		||||
@@ -155,6 +144,7 @@ xlabel('Frequency [Hz]'); ylabel('Magnitude');
 | 
			
		||||
hold off;
 | 
			
		||||
xlim([freqs(1), freqs(end)]);
 | 
			
		||||
ylim([5e-4, 20]);
 | 
			
		||||
yticks([1e-4, 1e-3, 1e-2, 1e-1, 1, 1e1]);
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
#+begin_src matlab :tangle no :exports results :results file replace
 | 
			
		||||
@@ -176,23 +166,28 @@ W2 = (((1/w0)*sqrt((1-(G0/Gc)^(2/n))/(1-(Gc/G1)^(2/n)))*s + (G0/Gc)^(1/n))/((1/G
 | 
			
		||||
 | 
			
		||||
#+begin_src matlab :exports none
 | 
			
		||||
figure;
 | 
			
		||||
tiledlayout(1, 1, 'TileSpacing', 'None', 'Padding', 'None');
 | 
			
		||||
ax1 = nexttile();
 | 
			
		||||
hold on;
 | 
			
		||||
set(gca,'ColorOrderIndex',1)
 | 
			
		||||
plot(freqs, 1./abs(squeeze(freqresp(W1, freqs, 'Hz'))), '--', 'DisplayName', '$|W_1|^{-1}$');
 | 
			
		||||
set(gca,'ColorOrderIndex',2)
 | 
			
		||||
plot(freqs, 1./abs(squeeze(freqresp(W2, freqs, 'Hz'))), '--', 'DisplayName', '$|W_2|^{-1}$');
 | 
			
		||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
 | 
			
		||||
xlabel('Frequency [Hz]'); ylabel('Magnitude');
 | 
			
		||||
xlabel('Frequency [Hz]', 'FontSize', 10); ylabel('Magnitude', 'FontSize', 10);
 | 
			
		||||
hold off;
 | 
			
		||||
xlim([freqs(1), freqs(end)]);
 | 
			
		||||
ylim([1e-4, 20]);
 | 
			
		||||
xticks([0.1, 1, 10, 100, 1000]);
 | 
			
		||||
leg = legend('location', 'southeast', 'FontSize', 8);
 | 
			
		||||
ylim([8e-4, 20]);
 | 
			
		||||
yticks([1e-3, 1e-2, 1e-1, 1, 1e1]);
 | 
			
		||||
yticklabels({'', '$10^{-2}$', '', '$10^0$', ''});
 | 
			
		||||
ax1.FontSize = 9;
 | 
			
		||||
leg = legend('location', 'south', 'FontSize', 8);
 | 
			
		||||
leg.ItemTokenSize(1) = 18;
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
#+begin_src matlab :tangle no :exports results :results file replace
 | 
			
		||||
exportFig('figs/weights_W1_W2.pdf', 'width', 'wide', 'height', 'normal');
 | 
			
		||||
exportFig('figs/weights_W1_W2.pdf', 'width', 'half', 'height', 350);
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
#+name: fig:weights_W1_W2
 | 
			
		||||
@@ -279,22 +274,21 @@ tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
 | 
			
		||||
ax1 = nexttile([2, 1]);
 | 
			
		||||
hold on;
 | 
			
		||||
set(gca,'ColorOrderIndex',1)
 | 
			
		||||
plot(freqs, 1./abs(squeeze(freqresp(W1, freqs, 'Hz'))), '--', 'DisplayName', '$w_1$');
 | 
			
		||||
plot(freqs, 1./abs(squeeze(freqresp(W1, freqs, 'Hz'))), '--', 'DisplayName', '$|W_1|^{-1}$');
 | 
			
		||||
set(gca,'ColorOrderIndex',2)
 | 
			
		||||
plot(freqs, 1./abs(squeeze(freqresp(W2, freqs, 'Hz'))), '--', 'DisplayName', '$w_2$');
 | 
			
		||||
plot(freqs, 1./abs(squeeze(freqresp(W2, freqs, 'Hz'))), '--', 'DisplayName', '$|W_2|^{-1}$');
 | 
			
		||||
 | 
			
		||||
set(gca,'ColorOrderIndex',1)
 | 
			
		||||
plot(freqs, abs(squeeze(freqresp(H1, freqs, 'Hz'))), '-', 'DisplayName', '$H_1$');
 | 
			
		||||
set(gca,'ColorOrderIndex',2)
 | 
			
		||||
plot(freqs, abs(squeeze(freqresp(H2, freqs, 'Hz'))), '-', 'DisplayName', '$H_2$');
 | 
			
		||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
 | 
			
		||||
hold off;
 | 
			
		||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
 | 
			
		||||
ylabel('Magnitude');
 | 
			
		||||
set(gca, 'XTickLabel',[]);
 | 
			
		||||
ylim([1e-4, 20]);
 | 
			
		||||
yticks([1e-4, 1e-3, 1e-2, 1e-1, 1, 1e1]);
 | 
			
		||||
leg = legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 2);
 | 
			
		||||
set(gca, 'XTickLabel',[]); ylabel('Magnitude');
 | 
			
		||||
ylim([8e-4, 20]);
 | 
			
		||||
yticks([1e-3, 1e-2, 1e-1, 1, 1e1]);
 | 
			
		||||
yticklabels({'', '$10^{-2}$', '', '$10^0$', ''})
 | 
			
		||||
leg = legend('location', 'south', 'FontSize', 8, 'NumColumns', 2);
 | 
			
		||||
leg.ItemTokenSize(1) = 18;
 | 
			
		||||
 | 
			
		||||
% Phase
 | 
			
		||||
@@ -305,16 +299,18 @@ plot(freqs, 180/pi*phase(squeeze(freqresp(H1, freqs, 'Hz'))), '-');
 | 
			
		||||
set(gca,'ColorOrderIndex',2)
 | 
			
		||||
plot(freqs, 180/pi*phase(squeeze(freqresp(H2, freqs, 'Hz'))), '-');
 | 
			
		||||
hold off;
 | 
			
		||||
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
 | 
			
		||||
set(gca, 'XScale', 'log');
 | 
			
		||||
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
 | 
			
		||||
yticks([-180:90:180]);
 | 
			
		||||
ylim([-180, 200])
 | 
			
		||||
yticklabels({'-180', '', '0', '', '180'})
 | 
			
		||||
 | 
			
		||||
linkaxes([ax1,ax2],'x');
 | 
			
		||||
xlim([freqs(1), freqs(end)]);
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
#+begin_src matlab :tangle no :exports results :results file replace
 | 
			
		||||
exportFig('figs/hinf_filters_results.pdf', 'width', 'wide', 'height', 600);
 | 
			
		||||
exportFig('figs/hinf_filters_results.pdf', 'width', 700, 'height', 450);
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
#+name: fig:hinf_filters_results
 | 
			
		||||
@@ -1352,7 +1348,7 @@ P = [ W1 0   1;
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
#+begin_src matlab :results output replace :exports both
 | 
			
		||||
[L, ~, gamma, ~] = hinfsyn(P, 1, 1,'TOLGAM', 0.001, 'METHOD', 'lmi', 'DISPLAY', 'on');
 | 
			
		||||
[L, ~, gamma, ~] = hinfsyn(P, 1, 1,'TOLGAM', 0.001, 'METHOD', 'ric', 'DISPLAY', 'on');
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
#+begin_src matlab
 | 
			
		||||
@@ -1368,20 +1364,80 @@ zpk(H2)
 | 
			
		||||
#+RESULTS:
 | 
			
		||||
#+begin_example
 | 
			
		||||
zpk(H1)
 | 
			
		||||
 | 
			
		||||
ans =
 | 
			
		||||
 | 
			
		||||
  (s+2.115e07) (s+153.6) (s+4.613) (s^2 + 6.858s + 12.03)
 | 
			
		||||
  --------------------------------------------------------
 | 
			
		||||
  (s+2.117e07) (s^2 + 102.1s + 2732) (s^2 + 69.43s + 3271)
 | 
			
		||||
            (s+3.842)^3 (s+153.6) (s+1.289e05)
 | 
			
		||||
  -------------------------------------------------------
 | 
			
		||||
  (s+1.29e05) (s^2 + 102.1s + 2733) (s^2 + 69.45s + 3272)
 | 
			
		||||
 | 
			
		||||
Continuous-time zero/pole/gain model.
 | 
			
		||||
zpk(H2)
 | 
			
		||||
 | 
			
		||||
ans =
 | 
			
		||||
 | 
			
		||||
       20455 (s+3425) (s+3318) (s^2 + 46.58s + 813.2)
 | 
			
		||||
  --------------------------------------------------------
 | 
			
		||||
  (s+2.117e07) (s^2 + 102.1s + 2732) (s^2 + 69.43s + 3271)
 | 
			
		||||
         125.61 (s+3358)^2 (s^2 + 46.61s + 813.8)
 | 
			
		||||
  -------------------------------------------------------
 | 
			
		||||
  (s+1.29e05) (s^2 + 102.1s + 2733) (s^2 + 69.45s + 3272)
 | 
			
		||||
 | 
			
		||||
Continuous-time zero/pole/gain model.
 | 
			
		||||
#+end_example
 | 
			
		||||
 | 
			
		||||
#+begin_src matlab :exports none
 | 
			
		||||
freqs = logspace(-1, 3, 1000);
 | 
			
		||||
figure;
 | 
			
		||||
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
 | 
			
		||||
 | 
			
		||||
% Magnitude
 | 
			
		||||
ax1 = nexttile([2, 1]);
 | 
			
		||||
hold on;
 | 
			
		||||
set(gca,'ColorOrderIndex',1)
 | 
			
		||||
plot(freqs, 1./abs(squeeze(freqresp(W1, freqs, 'Hz'))), '--', 'DisplayName', '$|W_1|^{-1}$');
 | 
			
		||||
set(gca,'ColorOrderIndex',2)
 | 
			
		||||
plot(freqs, 1./abs(squeeze(freqresp(W2, freqs, 'Hz'))), '--', 'DisplayName', '$|W_2|^{-1}$');
 | 
			
		||||
 | 
			
		||||
set(gca,'ColorOrderIndex',1)
 | 
			
		||||
plot(freqs, abs(squeeze(freqresp(H1, freqs, 'Hz'))), '-', 'DisplayName', '$H_1$');
 | 
			
		||||
set(gca,'ColorOrderIndex',2)
 | 
			
		||||
plot(freqs, abs(squeeze(freqresp(H2, freqs, 'Hz'))), '-', 'DisplayName', '$H_2$');
 | 
			
		||||
 | 
			
		||||
plot(freqs, abs(squeeze(freqresp(L, freqs, 'Hz'))), 'k--', 'DisplayName', '$|L|$');
 | 
			
		||||
hold off;
 | 
			
		||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
 | 
			
		||||
set(gca, 'XTickLabel',[]); ylabel('Magnitude');
 | 
			
		||||
ylim([1e-3, 1e3]);
 | 
			
		||||
yticks([1e-3, 1e-2, 1e-1, 1, 1e1, 1e2, 1e3]);
 | 
			
		||||
yticklabels({'', '$10^{-2}$', '', '$10^0$', '', '$10^2$', ''});
 | 
			
		||||
leg = legend('location', 'northeast', 'FontSize', 8, 'NumColumns', 3);
 | 
			
		||||
leg.ItemTokenSize(1) = 18;
 | 
			
		||||
 | 
			
		||||
% Phase
 | 
			
		||||
ax2 = nexttile;
 | 
			
		||||
hold on;
 | 
			
		||||
set(gca,'ColorOrderIndex',1)
 | 
			
		||||
plot(freqs, 180/pi*phase(squeeze(freqresp(H1, freqs, 'Hz'))), '-');
 | 
			
		||||
set(gca,'ColorOrderIndex',2)
 | 
			
		||||
plot(freqs, 180/pi*phase(squeeze(freqresp(H2, freqs, 'Hz'))), '-');
 | 
			
		||||
hold off;
 | 
			
		||||
set(gca, 'XScale', 'log');
 | 
			
		||||
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
 | 
			
		||||
yticks([-180:90:180]);
 | 
			
		||||
ylim([-180, 200])
 | 
			
		||||
yticklabels({'-180', '', '0', '', '180'})
 | 
			
		||||
 | 
			
		||||
linkaxes([ax1,ax2],'x');
 | 
			
		||||
xlim([freqs(1), freqs(end)]);
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
#+begin_src matlab :tangle no :exports results :results file replace
 | 
			
		||||
exportFig('figs/hinf_filters_results_mixed_sensitivity.pdf', 'width', 700   , 'height', 600);
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
#+name: fig:hinf_filters_results_mixed_sensitivity
 | 
			
		||||
#+caption:
 | 
			
		||||
#+RESULTS:
 | 
			
		||||
[[file:figs/hinf_filters_results_mixed_sensitivity.png]]
 | 
			
		||||
 | 
			
		||||
#+begin_src matlab :exports none
 | 
			
		||||
freqs = logspace(-2, 4, 1000);
 | 
			
		||||
 | 
			
		||||
@@ -2592,10 +2648,14 @@ bibliographystyle:unsrt
 | 
			
		||||
bibliography:ref.bib
 | 
			
		||||
 | 
			
		||||
* Functions
 | 
			
		||||
:PROPERTIES:
 | 
			
		||||
:header-args:matlab+: :comments none :mkdirp yes :eval no
 | 
			
		||||
:END:
 | 
			
		||||
<<sec:functions>>
 | 
			
		||||
 | 
			
		||||
** =generateWF=: Generate Weighting Functions
 | 
			
		||||
:PROPERTIES:
 | 
			
		||||
:header-args:matlab+: :tangle matlab/src/generateWF.m
 | 
			
		||||
:header-args:matlab+: :comments none :mkdirp yes :eval no
 | 
			
		||||
:END:
 | 
			
		||||
<<sec:generateWF>>
 | 
			
		||||
 | 
			
		||||
@@ -2620,7 +2680,7 @@ function [W] = generateWF(args)
 | 
			
		||||
%    - w0 - Frequency at which |W(j w0)| = Gc [rad/s]
 | 
			
		||||
%
 | 
			
		||||
% Outputs:
 | 
			
		||||
%    - W - Generated Weight
 | 
			
		||||
%    - W - Generated Weighting Function
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
*** Optional Parameters
 | 
			
		||||
@@ -2628,6 +2688,7 @@ function [W] = generateWF(args)
 | 
			
		||||
:UNNUMBERED: t
 | 
			
		||||
:END:
 | 
			
		||||
#+begin_src matlab
 | 
			
		||||
%% Argument validation
 | 
			
		||||
arguments
 | 
			
		||||
    args.n    (1,1) double {mustBeInteger, mustBePositive} = 1
 | 
			
		||||
    args.G0   (1,1) double {mustBeNumeric, mustBePositive} = 0.1
 | 
			
		||||
@@ -2635,7 +2696,19 @@ arguments
 | 
			
		||||
    args.Gc   (1,1) double {mustBeNumeric, mustBePositive} = 1
 | 
			
		||||
    args.w0   (1,1) double {mustBeNumeric, mustBePositive} = 1
 | 
			
		||||
end
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
Verification that the parameters $G_0$, $G_c$ and $G_\infty$ are satisfy condition eqref:eq:cond_formula_1 or eqref:eq:cond_formula_2.
 | 
			
		||||
#+name: eq:condition_params_formula
 | 
			
		||||
\begin{subequations}
 | 
			
		||||
  \begin{align}
 | 
			
		||||
    G_0 < 1 < G_\infty \text{ and } G_0 < G_c < G_\infty \label{eq:cond_formula_1}\\
 | 
			
		||||
    G_\infty < 1 < G_0 \text{ and } G_\infty < G_c < G_0 \label{eq:cond_formula_2}
 | 
			
		||||
  \end{align}
 | 
			
		||||
\end{subequations}
 | 
			
		||||
 | 
			
		||||
#+begin_src matlab
 | 
			
		||||
% Verification of correct relation between G0, Gc and Ginf
 | 
			
		||||
mustBeBetween(args.G0, args.Gc, args.Ginf);
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
@@ -2644,10 +2717,22 @@ mustBeBetween(args.G0, args.Gc, args.Ginf);
 | 
			
		||||
:UNNUMBERED: t
 | 
			
		||||
:END:
 | 
			
		||||
#+begin_src matlab
 | 
			
		||||
%% Initialize the Laplace variable
 | 
			
		||||
s = zpk('s');
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
The weighting function formula use is:
 | 
			
		||||
#+name: eq:weight_formula
 | 
			
		||||
\begin{equation}
 | 
			
		||||
  W(s) = \left( \frac{
 | 
			
		||||
           \hfill{} \frac{1}{\omega_c} \sqrt{\frac{1 - \left(\frac{G_0}{G_c}\right)^{\frac{2}{n}}}{1 - \left(\frac{G_c}{G_\infty}\right)^{\frac{2}{n}}}} s + \left(\frac{G_0}{G_c}\right)^{\frac{1}{n}}
 | 
			
		||||
         }{
 | 
			
		||||
           \left(\frac{1}{G_\infty}\right)^{\frac{1}{n}} \frac{1}{\omega_c} \sqrt{\frac{1 - \left(\frac{G_0}{G_c}\right)^{\frac{2}{n}}}{1 - \left(\frac{G_c}{G_\infty}\right)^{\frac{2}{n}}}} s + \left(\frac{1}{G_c}\right)^{\frac{1}{n}}
 | 
			
		||||
         }\right)^n
 | 
			
		||||
\end{equation}
 | 
			
		||||
 | 
			
		||||
#+begin_src matlab
 | 
			
		||||
%% Create the weighting function according to formula
 | 
			
		||||
W = (((1/args.w0)*sqrt((1-(args.G0/args.Gc)^(2/args.n))/(1-(args.Gc/args.Ginf)^(2/args.n)))*s + ...
 | 
			
		||||
      (args.G0/args.Gc)^(1/args.n))/...
 | 
			
		||||
     ((1/args.Ginf)^(1/args.n)*(1/args.w0)*sqrt((1-(args.G0/args.Gc)^(2/args.n))/(1-(args.Gc/args.Ginf)^(2/args.n)))*s + ...
 | 
			
		||||
@@ -2660,7 +2745,7 @@ W = (((1/args.w0)*sqrt((1-(args.G0/args.Gc)^(2/args.n))/(1-(args.Gc/args.Ginf)^(
 | 
			
		||||
:UNNUMBERED: t
 | 
			
		||||
:END:
 | 
			
		||||
#+begin_src matlab
 | 
			
		||||
% Custom validation function
 | 
			
		||||
%% Custom validation function
 | 
			
		||||
function mustBeBetween(a,b,c)
 | 
			
		||||
    if ~((a > b && b > c) || (c > b && b > a))
 | 
			
		||||
        eid = 'createWeight:inputError';
 | 
			
		||||
@@ -2672,7 +2757,6 @@ function mustBeBetween(a,b,c)
 | 
			
		||||
** =generateCF=: Generate Complementary Filters
 | 
			
		||||
:PROPERTIES:
 | 
			
		||||
:header-args:matlab+: :tangle matlab/src/generateCF.m
 | 
			
		||||
:header-args:matlab+: :comments none :mkdirp yes :eval no
 | 
			
		||||
:END:
 | 
			
		||||
<<sec:generateCF>>
 | 
			
		||||
 | 
			
		||||
@@ -2687,7 +2771,7 @@ This Matlab function is accessible [[file:matlab/src/generateCF.m][here]].
 | 
			
		||||
function [H1, H2] = generateCF(W1, W2, args)
 | 
			
		||||
% createWeight -
 | 
			
		||||
%
 | 
			
		||||
% Syntax: [W] = generateCF(args)
 | 
			
		||||
% Syntax: [H1, H2] = generateCF(W1, W2, args)
 | 
			
		||||
%
 | 
			
		||||
% Inputs:
 | 
			
		||||
%    - W1 - Weighting Function for H1
 | 
			
		||||
@@ -2706,6 +2790,7 @@ function [H1, H2] = generateCF(W1, W2, args)
 | 
			
		||||
:UNNUMBERED: t
 | 
			
		||||
:END:
 | 
			
		||||
#+begin_src matlab
 | 
			
		||||
%% Argument validation
 | 
			
		||||
arguments
 | 
			
		||||
    W1
 | 
			
		||||
    W2
 | 
			
		||||
@@ -2719,15 +2804,18 @@ end
 | 
			
		||||
:UNNUMBERED: t
 | 
			
		||||
:END:
 | 
			
		||||
#+begin_src matlab
 | 
			
		||||
%% The generalized plant is defined
 | 
			
		||||
P = [W1 -W1;
 | 
			
		||||
     0   W2;
 | 
			
		||||
     1   0];
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
#+begin_src matlab :results output replace :exports both
 | 
			
		||||
%% The standard H-infinity synthesis is performed
 | 
			
		||||
[H2, ~, gamma, ~] = hinfsyn(P, 1, 1,'TOLGAM', 0.001, 'METHOD', args.method, 'DISPLAY', args.display);
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
#+begin_src matlab
 | 
			
		||||
%% H1 is defined as the complementary of H2
 | 
			
		||||
H1 = 1 - H2;
 | 
			
		||||
#+end_src
 | 
			
		||||
		Reference in New Issue
	
	Block a user