Remove Mohit's folder

This commit is contained in:
Thomas Dehaeze 2021-09-01 17:05:20 +02:00
parent f34ae9b8c4
commit d424d56143
22 changed files with 0 additions and 8822 deletions

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

Binary file not shown.

Binary file not shown.

Binary file not shown.

File diff suppressed because it is too large Load Diff

View File

@ -1,951 +0,0 @@
%PDF-1.4
%ª«¬­
1 0 obj
<<
/Producer (Apache FOP Version 2.4.0-SNAPSHOT: PDFDocumentGraphics2D)
/CreationDate (D:20201116104636+01'00')
>>
endobj
2 0 obj
<<
/Type /ExtGState
/CA 0.2509804
>>
endobj
3 0 obj
<<
/Type /ExtGState
/CA 0.2509804
>>
endobj
4 0 obj
<<
/Type /ExtGState
/CA 0.2509804
>>
endobj
5 0 obj
<<
/Type /ExtGState
/CA 0.2509804
>>
endobj
6 0 obj
<<
/Type /ExtGState
/CA 0.2509804
>>
endobj
7 0 obj
<<
/Type /ExtGState
/CA 0.2509804
>>
endobj
8 0 obj
<<
/Type /ExtGState
/CA 0.2509804
>>
endobj
9 0 obj
<<
/Type /ExtGState
/CA 0.2509804
>>
endobj
10 0 obj
<<
/Type /ExtGState
/CA 0.2509804
>>
endobj
11 0 obj
<<
/Type /ExtGState
/CA 0.2509804
>>
endobj
12 0 obj
<<
/Type /ExtGState
/CA 0.2509804
>>
endobj
13 0 obj
<<
/Type /ExtGState
/CA 0.2509804
>>
endobj
14 0 obj
<<
/Type /ExtGState
/CA 0.2509804
>>
endobj
15 0 obj
<<
/Type /ExtGState
/CA 0.2509804
>>
endobj
16 0 obj
<<
/Type /ExtGState
/CA 0.2509804
>>
endobj
17 0 obj
<<
/Type /ExtGState
/CA 0.2509804
>>
endobj
18 0 obj
<<
/Type /ExtGState
/CA 0.2509804
>>
endobj
19 0 obj
<<
/Type /ExtGState
/CA 0.2509804
>>
endobj
20 0 obj
<<
/Type /ExtGState
/CA 0.2509804
>>
endobj
21 0 obj
<<
/Type /ExtGState
/CA 0.2509804
>>
endobj
22 0 obj
<<
/Type /ExtGState
/CA 0.2509804
>>
endobj
23 0 obj
<<
/Type /ExtGState
/CA 0.2509804
>>
endobj
24 0 obj
<<
/Type /ExtGState
/CA 0.2509804
>>
endobj
25 0 obj
<<
/Type /ExtGState
/CA 0.2509804
>>
endobj
26 0 obj
<<
/Type /ExtGState
/CA 0.14901961
>>
endobj
27 0 obj
<<
/Type /ExtGState
/CA 0.14901961
>>
endobj
28 0 obj
<<
/Type /ExtGState
/CA 0.14901961
>>
endobj
29 0 obj
<<
/Type /ExtGState
/CA 0.14901961
>>
endobj
30 0 obj
<<
/Type /ExtGState
/CA 0.2509804
>>
endobj
31 0 obj
<<
/Type /ExtGState
/CA 0.2509804
>>
endobj
32 0 obj
<<
/Type /ExtGState
/CA 0.2509804
>>
endobj
33 0 obj
<<
/Type /ExtGState
/CA 0.2509804
>>
endobj
34 0 obj
<<
/Type /ExtGState
/CA 0.2509804
>>
endobj
35 0 obj
<<
/Type /ExtGState
/CA 0.2509804
>>
endobj
36 0 obj
<<
/Type /ExtGState
/CA 0.2509804
>>
endobj
37 0 obj
<<
/Type /ExtGState
/CA 0.2509804
>>
endobj
38 0 obj
<<
/Type /ExtGState
/CA 0.2509804
>>
endobj
39 0 obj
<<
/Type /ExtGState
/CA 0.2509804
>>
endobj
40 0 obj
<<
/Type /ExtGState
/CA 0.2509804
>>
endobj
41 0 obj
<<
/Type /ExtGState
/CA 0.2509804
>>
endobj
42 0 obj
<<
/Type /ExtGState
/CA 0.2509804
>>
endobj
43 0 obj
<<
/Type /ExtGState
/CA 0.2509804
>>
endobj
44 0 obj
<<
/Type /ExtGState
/CA 0.2509804
>>
endobj
45 0 obj
<<
/Type /ExtGState
/CA 0.2509804
>>
endobj
46 0 obj
<<
/Type /ExtGState
/CA 0.2509804
>>
endobj
47 0 obj
<<
/Type /ExtGState
/CA 0.2509804
>>
endobj
48 0 obj
<<
/Type /ExtGState
/CA 0.2509804
>>
endobj
49 0 obj
<<
/Type /ExtGState
/CA 0.2509804
>>
endobj
50 0 obj
<<
/Type /ExtGState
/CA 0.2509804
>>
endobj
51 0 obj
<<
/Type /ExtGState
/CA 0.2509804
>>
endobj
52 0 obj
<<
/Type /ExtGState
/CA 0.2509804
>>
endobj
53 0 obj
<<
/Type /ExtGState
/CA 0.2509804
>>
endobj
54 0 obj
<<
/Type /ExtGState
/CA 0.2509804
>>
endobj
55 0 obj
<<
/Type /ExtGState
/CA 0.2509804
>>
endobj
56 0 obj
<<
/Type /ExtGState
/CA 0.2509804
>>
endobj
57 0 obj
<<
/Type /ExtGState
/CA 0.2509804
>>
endobj
58 0 obj
<<
/Type /ExtGState
/CA 0.2509804
>>
endobj
59 0 obj
<<
/Type /ExtGState
/CA 0.2509804
>>
endobj
60 0 obj
<<
/Type /ExtGState
/CA 0.2509804
>>
endobj
61 0 obj
<<
/Type /ExtGState
/CA 0.2509804
>>
endobj
62 0 obj
<<
/Type /ExtGState
/CA 0.14901961
>>
endobj
63 0 obj
<<
/Type /ExtGState
/CA 0.14901961
>>
endobj
64 0 obj
<<
/Type /ExtGState
/CA 0.14901961
>>
endobj
65 0 obj
<<
/Type /ExtGState
/CA 0.14901961
>>
endobj
66 0 obj
<<
/Type /ExtGState
/CA 0.14901961
>>
endobj
67 0 obj
<< /Length 68 0 R /Filter /FlateDecode >>
stream
xœÅ½ËŽ$;¶8?_á?P.#<23>O@ Û-  <>ºk&hÔ<68>5zпßë±Íƒôˆ:YåY·p+ÓWÒ<57>F#7÷{ý¯?ÒíÀÿý…ÿ“ú¼ý_û㸧\õéûŸðñÿú#ßç(¥ÖQôYüµõö—Rïe¶™zÏ·¿´ó>ZO¹•Æ<E280A2>éö?þ8nÿé<C3BF>”ú­¤yûÛ#UýéM:;þ@PøŸüëÿõçìßü§ÿ¿÷ÿò!ŽŒ=ðãÿ-ÝÎÿŽïø¿ñ·ÿüG¾ý?¤ûYŽÜÇíÿÃìþËiôûqÎVòyÆ·<>4±ÿóŸœVþò´r÷ÿþéšÖöÑK¦u~}ZKÓg¥]/tûè%Ó*_ŸVŸ÷ûJj×´Ö<C2B4>^2­úõiM¼±2ÇYsº¦µ~ôiµ/OëL'–¦¥:/qûè%Óê_ŸVî÷”Ƭ½ækZëG/™Öøú´ÎyÇ¡Ã6Ê×ÞÚ>zÉ´æ—§…™ÜûÑ°ŸÆ% ¶<>^2­t|}^í¸·ÞFÇ,®y­½f^_—óe`qJ<71>=µÇ¼Ö<C2BC>^3¯¯ úšò=ÏêqEn½f^_—ôõ<îX˜Zs¿ö×öÑkæõuQ_KÃâàﵕk^ëG¯™××e}­ØLœA©<41>õZ?zͼ¾.ìkOw½£ç^¯y­½f^_—ö­æûÙ!«øsž×öÑkæõuqßæ‰ÎÚژ׼Ö<C2BC>^3¯¯Ëûžó½@%Ÿ½]×ÐöÑkôÔ¯Ëû^Ê}¶7uºö×öÑkæõuyßñ-ç8SýÒ½¶<C2BD>^3¯¯ËûÞÇ}ÖYz~<>ëG¯™××å=4ø{©s}¬×úÑkæõuy?Žr?ëÙ±Ë&äúÑkæuÉû2¯y½O*=Mê Õø¸¬_vGçöÅ9œþI~½±í£×̪qVu@ˆã?Ÿ^÷ÍúÑkf5¾8«ñNãe2éë2\¿=<3D>{®©•>ëµ}Ö<>^`Õ]ˆ{QÎ{Á:öε¯—<C2AF>^0±¯KqM¬¥{ÅmÒê9®‰­½`b_ãšô•\hÊ<1F>W¹~ô‚‰}]Žkb¸€Û€¢~ÎvMlýèû AΉ<C38E>ƒMªi<&¶~ô‚‰}]s÷Äò½×2ÄÔcbËG/˜Ø×UwM,w|~%×ÇÄÖ<C384>^0±¯ëîœXžË“ZêåšØöÑ &öuå]ëý>!´N˜×ÄÖ<C384>^0±Ÿ“üÐîîÇ.Ƕ<C387>^à8ý9ÉŸk»w­k¿&¶~ô‰ýœäÏPgÒ.Ƕ<C387>^0±Ÿ“ü¹@6@h<>í}^`Z?'÷óÙ¡H”1ÇñxëG/˜ØÏÉý YzîRlûèû9¹Ÿæ|Öƶ<C386>^0±Ÿ“û :ó“6¶}ô‰ýœÜOýxÖƶ<C386>^0±Ÿ“û¸wžµ±í£Lìçä~ªç³6¶}ôÈÔÏÉýTºT¯w)¶~òiýœÔO%QñZ¥ØöÑ &ösRËò¬m½`b?'÷ÓqJñ*8„×ÄÖ<C384>^0±Ÿ“û£IïÂ*•˜×úÉ ¦õsR¿×gElýäÓú9™ßªt®:Û5­õ“Lëç$~ÏJØúÉ ¦õsò¾&)\å(×¹~òiýœ´g,
VãñP¥—^ìÿ9Iñù¤~­Ÿ¼`Z—¤ÿº?îò¤¾`ù'&qæóþpÞèÏ/˜ÈùÉùaæWöV~b JùCyÒŸ_0¯úÖÃCû*×ú±ÿjþ¡Gÿ=Cí»~WOûÇô—ŸÖÊ÷˜ÿ¼eñNàGÁß0¥E.~Ôö°Åo˜ÀcwjœøòãHÇü®ÃñÏzÞ$ß>¡çPÖóùö =„¥6È·ÿü³©÷šŽã``ö›&ðƒôÝß0¥¥îþŽ)ý m÷wLé)»¿cJ?H×ý SúQªîï˜ÒÒtÇ”~<7E>¢û;¦ôCýæÛ§ô£Œáß1¥$ ÿŽ)ý Oø7LéG)¿cJ?ÈþSúAbðï˜ÒrÇ”~<7E>ü;¦ôC»ëÛ§ô£ääß1¥ä%ÿ†)ý(%ùwLéÙÈ¿cJ?HDþSúAòï˜ÒÒ<>Ô~”yü;¦ôäú~s{óø>ü|-ßænxªÌ}6ö¿}BÏ5¹Ï¦þ÷Oè©÷ÙÐÿþ =Õá>›ùß?¡§
Üg#ÿÛ'ô\{ûlâÿ„žªnŸ üïŸÐS½í³yÿýú<>_úÛ'ô\úûlÚÿ„žj~Ÿ ûïŸÐS±ï³Yÿíz®ò}6ê¿BOå½Ï&ý÷Oè©®÷Ù ÿþ =ô>›óß?¡§JÞgcþû'ôƒøØ·O蹦øÙ<C3B8>ÿþ =?›ñß>¡ç*âg#þû'ôT>ülÂÿ„žê†Ÿ øïŸÐSÁð³ùþý~6Þ¿}BÏ%ÂϦû÷OhÓøùóÓYç-·û8Úí¯ÿŠùðKÿþœÎƒ䥤šÇ-å4î<34>™! 3Ĥþå¯<z{ý_z´tÀع®¸ÎÛ¼ýõo·ÿöo1ƒôïnÿýö×ÿüÇø«Öàe¿ M¦Õfÿä7óúzp|Û¸w\é/}pè.¥´œñ¯pGÏ£äÏ;ÖþWL!UÜ}ÐxË's8?™Ã?þþ'mÖÖ±kÿ®÷ÿ…ßüuïÿŸÄ/{ÿÿøþìý—êý§&›ÎEæ»6ÀW~ô×í€/Ìâ—m<E28094>/ÌáÏöÀg“øÇ÷@>þíYêÀ/ÿèuðÑΙç?»¾ò£xòðŸh |eù¿0 ºöR?Æ'«ÿÙò¼—ñ<E28094><C3B1>@üü=ãOGÁ5žN<c˼ÔÏôa!f÷ÖÜÆ-<ã€^ô˜EýÒ üÂ<C3BC>ÒÍ:¡ƒõO~´ýªmãžJí#ò£ýWýh­xÉÇ(Ÿ-ïøU?zb§HÿÿøóWýf>ïÇìØJß¹ºó>g®õ³ý÷¿è7¬+\¯ç'?ù/¿è'^ç<ÛñÙiùß~Ño¬öÙ¶ýßÑOVì ^<5E>ùÙùü¿è7{½§1ûg?ùÑO6)­~rPÒ±ÿ毘¾²QÔOŠGYIv.úqží»«i®®u
/©íúÂ$¢œk<C593> 꺾0<C2BE>G)×:…—Ôt}9U`{¿áƒ±Â#ÍÈÂûF<C3BB>OlÅm
ß¹ß+ ·)|ßV\«
·)|çV|w¾mïáwHņÀœ³<C593>o—ŠO}çÖ™¼²Ý—¤ÃÞqnÒ [Ï}eJO½æ¶)½°éÜW¦ôÔenÒ ÛÍ}eJOýå¶)½°ÑÜW¦ôÔYnÒ [Ì}iJ{O¹}J¯k.÷%Õhï&·Mé…må~J[ÛæòÍÚÚS3»u.¯ìj÷•)=µ±Û¦ôÂ~v_™ÒS»mJ/ìd÷•)=µ®Û¦ôÂv_™ÒSÓºmJ/ì^÷¥)míêö½¬oÝW&ôÔ¨nÑ ;Ö}iJ{‹º}J¯ëU÷6ä:“ïµ!Ÿºã­3ye¼¯Lé©/Þ6¥6ÈûÊ”ž:âmSzak¼¯Lé©Þ6¥6ÅûÊ”žºàmSza;¼¯Liï·Íèu<C3A8>ð¾4¡½óÝ>£×µÀû’©ý]<5D>ñ•Íï~ʳµÍå{=[Ï-÷¶¹¼°÷Þ¦ôÔlo<6C>Ñ »î}aBOmöÖ ½°ßÞ&ôÔ`o<>Ð ;í}aBO­õÖ ½°ÇÞW&´7ÕÛ&ôºîz_ñmíô6÷ÙËúê}É<>÷w•ÄvÔûº‡}óœý†Sz/DüfûîÖÜfòÜšŸiìSú~·æ'û”¾ß­ù yÆ>¥ïwk~B±OéûÝšŸfìSú~·æ'TOSúv·æ'$û”¾ß­¹Eþö¹|säowknsù nÍOØ9ö)}¿[ó^Ž}JßïÖü„cŸÒ÷»5?áâاôýnÍ<6E>,O3ún·æ'üûŒ¾ß­ù óÆÓ”¾Ý­¹ä#l3ùÞ|„Ý­¹Íä7¸5?¡ûاôýnÍOˆ>ö)}¿[óŠ<>}JßïÖü„ÜcŸÒ÷»5?Òzì3úv·æ'„O3úv·æ'Tû”¾ß­¹eIísùÞ,©'·æ>—ïwk~äÙfôýnÍ<6E>ì!Û„¾ß­ù7dÐ÷»5?2†lú~·æG®<47>}BßîÖüÀ²»Ï¾Û­ù‘äÉ<C3A4>÷;tÄóú<Üš_/“SKŒRÒLé°ûT+ÖŽR?å{Ê™ò­¹^²HîÿÉsÜ{š9}ò“ÿ\™äæ<>ëýLí„Æû—“uÕI~aé¸÷Ìÿ|2‰®VzÄ<ð—£”£çó{ÞÿŸþâ÷¼þ?<3F>Â7½ý?<3F>ß½ü®PzCKí^ǵ|Ï«ÿ“ßûžÿ'ø¦×þ'3ø³—þOVF¯38O\#ý<<3C>ẇ×Ðï•ý¤æ+_ûŸþb.Øh•uÈÿÀÿéeÿÓ)üÙÂZýs U¦ÖÞK¯í{ÖýÏ~ð{ýÏfðåíþTŠþ—Æÿ“N<Î2<C38E>÷©­ÿdR <52>šqÕÆ<<3C>^?ŠÞ6ï9-uÍ°%h\ãQ+ùÉ»øEÓ(øw#µ4>Fþ¶iäŽÝ1êç«q~Û4Ø=cÖMøã4>«ºþ5Ó ûªŽc~¶å»&#`à(æôÙ,>ižðkfÕ£-÷ÏöÅgõþ¿è…Lˆ<4C>R<EFBFBD>ó³µø¤§Ã¯™Em÷û4—ÏÖ¢¿¨ºú¸—ÒÝÁ:Òÿ<1B>Ùea=ß8O<1A>J‰i÷™,ú‘Ÿ#Õ{[Û—FªBOÍI_äü¹Yn3Ù<33>q[oÇW:ãî<C3A3>À˜ç™kÅÿsüóݦ”[â§Yª=cõŽš¦Ú¬Ø/ZÚ÷™¦§™¾×ˆaÐÁGdˆýÑæœÕPÉGƒž)Ìõ~Î~ rà觠‰5jÇd/"c6sê<73>õY:,<2C>جgKÇ´1¾³ÌæåÄ*þt†¿˜˜r`PjŠÞ-±1<C2B1>ì‡åf¯jbتØÒ3Í× ÙXûM…àxè=3Ƶ<JÍpºT)~Œ1õ¦BÇÊáO­ú \Øj.NÌ/¥
k|Û°þ傱>Rå¸Æõcžñ<C5BE>PÆQ€Å¸qàK²WeàŸÎ4è¾4vBØè“ž×8h3Ð…Mhã­â<C2AD>®qódÿ?bçqÏ<71>Í<EFBFBD>j<úÌ…:H`|ç<>çÁXme(Ã.á¯<C3A1>ýG‰ïœ§O~C
Œ³ã(âá…aåczž'[€Gg ¬V˜˜30¶hv<>Ã[>OϳÜKë¥<C3AB>ãðÒ:@XÅkÁ<6B>1rŒKx{ø4°<34>®qÐ}±é…ái'Þmò»ÍùÄLKÖï¹e¬ËÑk­£Æ <>ÇÉ“IhÜ[<5B> ÖELå,XÆᯜw<éYÕ7SÎF­Â
°Wð¦1+ë•bºÆ¸RÙ`WËRÒ½TÆ\¯q³çê%£R[O«<12>À¾Ã[åm<1B>ñôÂN˜x-˜Ÿ±†xN-u)ü‰ ,ƵcÆKÍ>©Œ\³Ý‰0< @mk ¬KŽq½ŒëõÁl9KeÿûkÜÄמžg¿Ókƒ½ØÀ3`‡ÖKîÀâ;yºg¬ç€LÄ“´ãfærz.rû7°Žã1Â)ÁÞl<15>4÷‰®Ç=0†ãŽM/Œo+ÑjŒƒtKÉ[Ø#¯È¥ì!áR¡iŸ'ž5^щƒ1yaPú`);ëøÊéï„8ÇÙÇHË9þãÆ\
Ô4œÛvÆ8LzÔâgÀ=©‡©Æ8ümVK*Vø œÔ˜KøIË\`#ãvãÝ%¬B”Å#ЖÆ<â Áx,Ü<ÂÏTæÅc¬Õof ßc*.Gaäh8ðßãz»r" ѱ‚óã01Ibé~@`†Ä DtÈ7!L »…±åpÅuW=®@æöxµ¸mŽŽfLMÉÏÀ ;ÆQãzÃY¯E±Ôʽ&ì™·[aㇳxX¥Ñ_Û<E280B9>J/ÞœÀx¹5n7z ÄÚ½½‘-ÂXa¼oëØ<C3AB>íãðtsç€<E282AC>ûºŒ‡·§ž€Æ:¤°w 6bOË<E280BA>¥ Ruú4tÒÀ§¬ƒ@æsaêÀQZŒØs3é;;þ
Máàe.l<1E>ÀÞ<C380> š˜Ëìn”m ;uàBð3`eûi¤C^QÂ]aGF<>¦ð˜Æ°Œ týäÕÔ½UƒŠå<C5A0>Ô!®&v÷£ ˆêÇÓ±?TüyÄ°Òò¬Öw:ÄÕøoèI·3äx Œ];<3B>Å8P,„ÞPlч÷3b\Ï ÷†<1F>émPTƈq°‰)MƒÐ|ÆæqàÎÒ3 È+(<28>²'°™˜r)ŒÒò€ì,þNˆ£Rã†6±ùûyz\Kž3!ˆ«Þ[ç<>,(sÛZ$<24>“ǯ$Ç0\Ï=¥QÔ÷ XŒƒŠ(£ÚXÇì8ÔÆp BéðT ®`éqV9ôèÐø
˜W½DËp
E‡H4†W<EFBFBD>¤Í2 ®ð !Xü¯â¹!¬ðý<C3B0><C3BD><05>¬>& a…{½öص#54¨Aî h}½ú0#lo± a…×\y[ à i¢ßVqµÇÏAD'_Î@pÊq)•€påè€cçO|{;¨|<7C>Þ|Êo<†MHüD`cyn¼ûS*!H*þ§‡ò;0?ì(«ŒC9°ìØ1¸üG@¸ê±$)†AT`cú+!¨Ør3” QOÈ»XÈ)ȶçq`ép{x”ˆpØ03¾§?çth_2#nTA“·}ó0Üóg6<E28099>¹l™.<05>¶Æhý¬»‡â;Ý¿
ã©Îò€ Â)åý#ˆÅ0
Rè½³qʺ¡÷¾¯Ì¦Íøi\1 ßY[ò¯ÞÑT ñ#QÂÆ`4ž<34>ø)»mN7NŒn^bE^´Ý¿'?3žaªãºEp©Âèƒú\‡Óé,,Tò30-Àâ+iQÏflPBBÓìžJ¢9¿6qÏ<71>œýÂéÇ<C3A9>àg êvMa8¡ðg:pà¿1»€Æ%j<…FxŒ£qsJ\fRÑSW¯5ÆaP9k ³ã~5c'S)žxû¼‡ùfíò€vŽ».+¸çqIÕÓ•øÃèU7 1Úkø(ÆaÝÈaUÝesÍ1nrqãùë’=SK¹0,..˜éyâzÁTrK˜Ñ¬ƒ qd¯ ,qÞ 3^´»ÖmÐdšâk5Ä(í®30hXø{÷\|£x]hŠaE ƒ¾C»Yl;6pž-Æ5ì¹CF1Úªø§1nà*ìºb2Mq¼h} 1ü©4 <0B>LSü°%f /2†K 4šØàý‡—¦/1H¿_9húìÁÏú9<¬A;<3B>æáqí¤ê2ý<08>¾nÜû3ÆAæC÷T:µDX>3Æ<33>|F*ŠˆÖ`ECˆÂ“ƒwj<77>ÁL_Ü€§ 0vú„À—×­Á;$É°£išÓ1ß9XTç“ lP'=¥öfîGn4cT
p=<3D>R{<7B>ñA ÃŽÄoͳƸN7Ÿï¤ ÿyÕd¹sÒûŽc Ëd ò
Š ]Æ O!\N:¹öKñ•SA ×o,~çIY†U—ÚÛèNñ®§¥1ÌíÄ;®Ï77 ±AS²O<C2B2>KX|h:E°ÅyÒ+b¬6[LÄ ±:^p1n`ƒtŸ>`<7½w<C2BD>Ãœ’Ä`7´À°ðØiš•`‰äâïÄ¢ãæëÆ2¶ã2>=Žj;mE áô¸“„f«©‰¸‡aãˆYÐÁ܆Û%{Ídè90nÇf¿ÛÉ^Á6îq×ÞéRlöº<C3B6>”]£7eMšûU¹`‡N9Žp,Š•!ïwâ8687ÝßÙØɶÇÃA\Uúü¤õžÔÓÔOÄU… MÒzOØgЇëh<C3AB>a§vÞvÆ ×Ã7,q^ê-u<>æW@ÀxA$dÖG`:6WÔØ´-' âD>ÆÓßÉCAYÞ%ÞO•1\Îí¸  <09>N<10>¬Ðg†—†8l÷Æƺùµ„UÚÞ¸~’ÇÁ솓%6¸ð!b“ÇÁ¶=ž Ý©ÓH„[jzòW*xX(d<>5\5É¡<>KgÁéeÕ^<5E>ç¸ñ+µÿj oÆ¢GMHæ»Ç?†·Mé(V8¶+vÓð0ÙÒg¿° m^Ä z<>WÞhà<>WmÚÂÚé;y,89ÿ­ éRÄ(.p?ÖX“ò/0˜ÐCcQúÙz­2Ãñ6îVäbQ:ŒÄPÉ`iS<69>Kez¶F;¬nÃK„&<= &„ŒE¬pˆPLdxÜ$Í]¶+<<8Y±?ì?"6)ÞmMWÒbbãZ¬4¶<34>Çf/R}+½ò ÂóœJ•IºM\<5C>Õ†öáÝîaxcÓóÂúã<C3BA>c·AïÁ»Ô¯Ñ
[= Ò|b­õä´ÁùŸb¨à<1E>`<T;J`8Žå<C5BD>A"âçæ<C3A7>ýøFlEl}:ㄵ3_®Fb“~«"Õ—Fwá›°ÊŒ-¬Iö8쓇ÂI‡>Y<>àËÂû¦žlp\¡ôWžr臽fçsõ;˜ø±™cˆ"û”­Ö/<2F>¶ámÔãÀ½%ËŠž}ìÙã˜uèMä<>Ñ6!6âÀÎ9ý<39>Ð뜀Fˆ.sÏ3¾2huÉïgÐÀÉTwáf¿b
'kœÙÃð)$õàƒW~ZJ*ïÓéÅ34aÄã7< دnð4Ééž„áÑ
M¸2OE*€á¸Í*Âà:T9<<0E>.âÀ°"И§ÇA%høÐsa„÷Bž‡ï?°Ou”´SyxܤÜMÖþÆ<C3BE>EÌãlz<> F8`keÙ&òwhfZMÖáC|»ä¡KèN“œØ„u×·<E28094><18>
8da˜TÁÃßI½ût¤°6Ù\¯a2ÂiDyœT¿2/ ÷Ö¥xVsB»öïQŠN.<2E>Ças4iÝÄáFc²+ClÐ)’†ŸDzRÆ$}Šu©èïä´! 6UŠ×>»¤šü„Z¹¨ H*üUŽ$A¥]5H\ÐùS<C3B9>aP¨p™ðÍž8ë©Æ8?i U8¢NS ö®úÆÛÞÒqsæbˆá ~ßéµÄû ÷£Õ krÆ°“RGB“üIøŒÌ<C592>q—ïë„)Žá¯ŸãU+•‘v%Å8œÈÿÃPÁSò8,lÚÃO0ôÐtx\Ã<>©`)1nUœ§$µX¦K<~<7E>á<EFBFBD><EFBFBD>«‚ÂMÃ'mÙxw4Mgõº0¼<30>ÍzHíå^)PÉG
ŒÞƒj‡<Í›³‡·=¢ò<>Æ*$ªÎD®{ìh;ä»Tb…<05>Áò˜Õyœ!æ$wNf<12>ÕŠÎ%­Z«Ä¤>É<xH·UNãÞ!Þ¹Ø$[ ”HZÁí¸Ïç%­`B†û
¯‰ú-I5Ðctó8=.Ó-¤.Áaɉ7ÓàÊâ­N- ¯«â„Ú€0µ"•
<EFBFBD>ïÆðgšÍÃ
ì[Ø+~j†6 Íæq™\úpESXàŸT+N°<4E>.w>_zGSê£<C3AA>C71¬8ÄAñ8ú¦í>E¦Ø ãŠuÐ ÏŒl4Âa“tþyJO#†‹K*/NjŽó<C5BD>öóÌV•<56>öh<>4Ó61Ç1<C387> 7øÑ‚¬Ãª$û¤ðz³ú3ë=bQÂÏ
2 yθE <E28093><1D>ðõ劇:‰áíE#ü¨Œ&pÜÁø9ª€q èÊC¢@FáÄôWü £ÿü‡<C3BC>Œî“Eü°JXÂ<58>·éS®<53>#,Tz3-χFbt¿A¥—sÆ<C386>uilLú[i©1ø<31>qÎJ°•Õʾq‰p>.ߟô{Ll0?ŽØÃ%d z nJ®
V<EFBFBD>76ãɨceò Oa<4F><05>yÂð5¸ÆâKÆñ©ô”ë4»S#‰AùjMYHßD§ÒËM…ÓÁáGg`#ômƦ»ÐØ|ÏRÐVvCƒ¦šÚV$™Îݡȳ0¬IO­Z'†¬[,Ü<>Æ×àm§ƒñ2-õM9ª(iq@  éÅ, kL2D aÌc€ÕÆ5ð{<7B>†Ä—kõ *´éºÜ”!x4G] A”aM¨Þ%*¨Øan•BÉ>(9˜„Í€¥õÃ1¨<31>)tê¼uy¹·€1d 2_žL:˜ädÅ7Ü™=œãð8‰.<Ð&©aQV3<56>东a èT´l(ÿy»¥úÆ1(ÑÁY,Ã*£¸^µ;ú~G¾B6xx[åi2o)†<>§·:‹Ý`Ó1åâÆÛ :šeåÖ€ÑA©ˆ &<26>lØáô 'º‰o¼hqíT2Ÿ­{÷3tÇP™ Å3ºÊÉN,1Ø|
*M¥p;tð`qÒÈAcŸJ»¢<1A>7É3â™0¬!™ã¨™0ÿ f¸l˪5Á…ªÁ lÖ;¯øÊ=•$¨•ùGf¦©^ÏCñ¹ÄØLã0:ºf†a¦q<C2A6><71> ˜¼tÆSËÝ÷Y`ƒ†9½ñÄŽ^˜+ ˆ<> |#<23>ñ¡TÒ+%©ØÙ<>¿=«? .©ËC ÆÊd”èF%ï²—*G/v(tŸƒo‡j1—kôâod`V:ýxT§!¯DV-ŒÔ娅7šáG>¢ ŸÅ4Åü¿ƒ^¯ágc\Ò…´E0 räž Â°ÍZ®È`Û<>ƒUD­+ÂTA*Ù禷“d¸$´8èÆæ=R8Ë»<gY[Äpª¦W´¡xûÂ"ÑÃuÆ5èÙ%oÍ2
Ää·Ú×À©†v£9‡-C¿²ž®3®Q±(…ãü¯=Oo°Î¸þ?ó hXRˮγP_/̯ïFƒ´ÒèôEÞé[ZZÈÄ·õÊ\˜˜”ªá2<C3A1>©NÛÑ 1ww~<7E>º<EFBFBD>“ï®ê&S61VN+]žˡΠF“±÷:Hñ<48>´#ð²˜èFLqËäýEÛ;ÑùÃEétÕBîäé_cP#2<>胀"JB§€z¢E<C2A2>o¡Wb¶·¢j'mohèÀ8Œ¡®ãSGãûPðã˜å0NÖùh|z#ÇÍÑšô'a c01Š\z<>ÆÔºÓ*9_3ô1Jl5î<35>œ6„½-ÏÓM®%æv9ÒúÆŸ3½ôVMGøŒÁú>¿.z¹ ¨q+ú•Æ4 Ûde“Òä<Û¥¼±Ðqv ý½jK$nw\òäbÎBÅ™€Jl `0¦a<C2A6>ùF/ £ˆ€ëP'ïu:ñ¤íì±,Œi0-ŒË3H‰LÄp¶Y Ë!‰©À|Tøˆ<18>RqéÚ¤.5í«=).pž&Ã-ôB.NŒÕROÆ4p0$ çñgœ[~“1 ØWtÂË;Û˜‡ãÄœÛd`£DÆø÷¨6CZÑ Ogp¢ÎrZ˜Ô“˜ûDK¦z><3E>ÕÌ©©a]p<>Ñ1}ÒÕíëbÊÃש&EÐM!Ü­3MÆ4èvƒP <50>cÆa¤‡\¦3H®u(Âý´0¥XòN#Ÿ™îIFÃŒ1¤Q2<51>ˆ7ºùǯJ 4±^<5E>c"<22>îl`wÔiØô\j4W˜Ò²˜°Ëq'MI§!4`fðÇÁ <06>ëÌÁ»)*ýí´‡´Œhàýã¾½1šÃ¾MbôuWÓ£0•1ÖQÏÀèˆbb 8™F‡c¶Á<C2B6>m™CåmþÎÆ,ËÇÌ(Ó€¼(ŽƒÍÌTNŽ£ éhÕ˜ õ³f
;¬tdaŒià¼1LjÑ0êP¾=Ž1 ü8¶Ä-+x”K<>á"`jGqû#ÊzË[hk4i¾ðù˜6¨Ãë÷ÒÍ@ ÌIgy³ŽëB{2x‡1Æ4`0‡H—˜-IwZƘteÞ. t¨¤Ã<C2A4><C383>Óh®“f|TÐ<>ˆ(‰1 ˆD®4Sœ+o½X2Í"ÿÏ<C3BF>WVwf§EA©¿Ã¼:šæAÍ»1 fuÀBá0*ÛUÊŸ°Nu&C&‰+ÃËØî-r7 SXôË OŒÎG`e⇧˜Fc"žáZAÒÃe5©È8;vì$ÝlÄ&ÅÃ,ESkz“b/§S»eú¬»§I<C2A7><49>œI‘ « ÏÇ|¬n¤<E280BA>PSË"¢^æ êf#Ô-ã8 <18>«EZI¡iÆ“NÉ<4E>wUqëç¡K¯pݹÝ';]Ñ(¾2»Ü®L®ÀNTŒICxrfª1)cÐ%o¯2~鮺A<S9p#fKdR*¨¼ÄxkÎá#™Å‰Û”ËÌÔ¥Hy" hP£ÎsFóš75±“<11>î²&±œ‘Ä4Þ.óŽÉ/Ø4]=Ž!<21>R²(Q!+ øšse ­oÇxs"O¯)9§¥(<28>ŽM¥_cÀÔ¢Øh$â0!³=p*4¾Õ0hŽG2lQ¨ˆÉsÔxéò„bqÏžá l4œ#¦,1W ;HUhxCy‡™Äö`°×:˼_ix㦠¥Ü©®l<C2AE>VªÉgÆ”+f|Ò“ lPáqx<71>©Z<C2A9><5A>ÌQÑ6?å¹€Œo$RÀ<52>¾¼¨Æh*‰ƒIc<49>ÁRK(
ë)c…ðpÐï™+ŒÑŒ0™¾†m{°:!°ݘQKa=;É[¡0œC"àÆd¹ƒù!†
ÃY™Ì7&ÙaÅ€Å\ ¢˜:Cˉ{劗õJ<C3B5>°]¹,Tw˜
{X|Æ3œÞÍ,Á1LA j<>Ãݺ_<C2BA>ÇpL-.Ø`вXƒÁÊ`&¶sЩÄÆ>cŽCþ¾Ì«ïjBk7¦[â»<C3A2>è u0£›—)œ„oxÜ#Ê<>Ÿ ŸŒ^²¤²<01><>7¦“BÂ*R#L[à&ê$¡ƒª¸0eAWéÇôUì×쯤Vɤ <16>A³‡yÕ“×Ä:½û<C2BD><C3BB>5D±
á]¥JAƒÞ“¸)73£½E§kå<>y»P”û9£&+<2B>y,lñà‹¨>nÔ0x¸*TôOf]T?]Wnk·†Ã¶$t Œ zÀ2YÓùò{s6^û<>U­ªÏËòèŒd(<28>Ÿã:7
BÞC\G"´o•Hö(³ý-í#8<ôc0•gt„·ò7ü -,³I¤_5…Jz<4A>¼rf•CÖA<{·4Æ2˜ßS8N‰[òq c,«ƒ;@=èN×8Æ2¢”²æé¢éòà'šÄ<C5A1>Ùö'ËMšE¦M‡}cøžYú'<27>‡çôï11é¾Äºpáñ륟þ=Æ2Ñæºà…åãadëLÁÃÜX„<58>8™#c,£:8­Â†æD aŒe‡ÖX,ÁŠ¸(. Æüµ“â‰EƒÉÝ'…¡‘ã8¦£ËT×wv*ð0' ×…n.F´s¾0fvúP-gX÷þìYÊK&ÔÊ®dçØ c,£1áã]è89Åsa,#8ë`tß³Ö#÷óƺɺºÓZEçö<C3A7>ÖMã…õ:Üþ=D¿N#n5¨ÓjbW™§˜îá“äôEV¿ü?°qå„9ù:Y<>„[‘™Ì:G<> \ÓxþKœ°ÔPÌ-)Pô%P†T6ÅzÌj™ÚåhååÈŽq•"
ÂRi0¢qâ$gŽ£5¹sÈÐÆí}g]˜J“³òü@Æ`ÓÁôຨ$ˆ:”516¤ÄµE'ý<>¥mƒÔøÊSU•€0,Óõ sÞAb¸r<65>UvPû˜$`Œ<11>Z¥‰±ª<C2B1>µÃ/ƒ WBÞX È[¢/F̘û͵‡<C2B5>Ôü¢nC8wì-ÅšE*ɾ£Â[)ÂÐ7ÖH²~«]ódLCiüx ‰¯<E280B0>QýàÌ1º±ÖÇàµ1Æ4ö5ÛG$&Ýàî<üöhƒÓ ÕÄ ®†^¼š´Á/G\¢¡™”<E284A2>EVhƒ‡?ê–J‰IuÀM¾dN²3wœÕZ•ƒ9]ß•˜¥ «A“A<E2809C>A¨§5Ñ,•ètdÃy‰‰Ö£š3 f~º Š-öªÂLôßž†’`Ï+$?Cœgg
½¤WÖ!F4°Ç %nLsÇŒ£<E280BA>„T|ÇB,ê@°ýz\ jòz+7-A¹ÒøŠ”:X(´ð¹ªÌAµ|2œÑ° PŽ™ªÀЃk¥§XžZÌwÐ]îÀ” 3"žÅœ‰F7¾Ä¡I“<49>¡{î3Ìç˜Z(¼,åFñŽ½q{EU² )\ò<©²k<>”Ï€Û„éH‰^ö›ýœ
áÔÃ+}ôµð"ê†ø%MùG„:«ûÖÂý<C382>¾ú€bâl9 <0F>á6©Î¨=
:c—¨ÓƤ†râY[š<>-p&yX1ÆÅ)ˆAŒðpó‰3½š_¢ž d­+sÄþááµ`­R×k$Ò±Ö@´ìÇ{zdMJŒÆëœ*SÏLpv4kã•<14>*LÇíòËr&ÑÐ(ŠTA _(\¥Q<C2A5>Ióå4ÄèÅpsºàa¦óg1™™NP•ÄWÆ5ŠgÈàôÖoa;tÊÄ3t!m$ ™N2ÄÈ~zV
7mŸÙœÁ‚(Ñ°<C391>Y#Û8+ŽˆÁp¨bÓ£pCÙo?3lÑi0i¿§LŸ†ÔªšUeÅøœg8¨ H#Ác=,ãäÍ<C3A4>%]¢4¯ô5.=$ðÏqf˜}œÌNt°8ÂG ž·±Š¸¸¸½°Z'†KYq7<71>æWËl% æ5Fçu ™#ßý…MÆûI+y(óŠ™Í~,®hÃb<14>¢s9Ò `B_%„™Ã2ð©cpù<•ÂÁ<C382><>"ÿÎjK%>±<*Ñ`ò;ÄlõcèŒ@èÖá2S¼]\ßSiAÚÚ¤¢SÖƒ$!e'¢V•¢`sBëüTº å Ô36.D¡Jõ£Ná)­éä‚ò<2¨H9°ØB<C398>B7ù½y×Ì@èØ9§lb<11>c•™†9ŠŒ‡2Ïé†ö(Æ(èé…¶YR£3„¦««-јå2å¹NŒ0X¢á†pF<´hæÍ:ÚN{|Ýé[¦RZs2OUB§,V—
,l †ÔÓV¹S¥=ÍpCñƒ‰·…vž~æ4„1ö‰FefO:
Lˆ/•bB‰yÝS^¶Jc:Ê챎3»A¥-Í.K­k$,îoBj<42>v»c?1ïOåâòJKbGv/Õ'¶¦°¡Ò<C2A1>f d2!,Í ­! iyªFuªD®f"„“ïj#YËŽ´ b\º6 k@µ³ëô –À Ç<!VÜZ"Ô'ãȼKNêQ<C3AA>%
³’
!Š0(Èz®Ê˜ÔÎ5ê¤<C3AA>ëØ)!è“tüiTfŠx÷A®*¯¬ª¶#dkJ<6B>öThM£ðåGõcÉf¡;åÐ ¼Æ+xUÝŸÆ*oúÖ;o­ne0Åæ¼M˜±÷Zå6‡PFAŒ—4J Í,ƒÄ U^T†+5:Ë y™°`žsa° Øb"1WA´Ôâ\Bpò(nû¹*ƒ<Ìo¨M£,ù¼A+Ã
}fAÃeúþ¬ C(Ú=ÑaR¨1
AËýð(H·ì<ÅJ³O¼QB,Feª§ V¯Ev%!j^ÁÆ=c§áE$ëi•æ5[¦•áAŒ@$_AMÉöT\<ŠžÉìë³QP`ÿ³šJÞœ¨%D÷ZQ"P <18>Á…z5ˆ˜x#@œïÄ»„*ë“¿2ˆ)•¥z“L<E2809C>d„/fyýÉ"ìkqqö‡ç7U3ƒÇò(LÙe„\#Æ»„$u-\¥ _¨˜f*K´…õ»º®@ÿF`¤:1Þ* Îh©½³^+¹˜]nìl1No<4E>CÛ%&(…> pz;±¹u ¾‰ÚmSäY+¥Z„pÀÁg<C381>]/V™ÿx1÷ÃHõ¾`ù’%ag¼áì¬,ð¦¶ã[à ÑýDÑ\Ê•æß8º)Éh¢<68>„Ä…š™‚Î §«[8[ 0¹Gc ƒ.ÓX 7ª¡ÁPƒùôBïÅár^‰±ð‰Òh.ì‰!F}QtB@g§wM/sm>D§ÀAUÀMsªD…J̜ɚœ3ì
iHòÎ{Rj!SØ=M†&–„>Xº½!*Ùº@c ƒÖâF¿Ex*‰ èûX®&»¿ñZ±Eú-!,£n\AŒ50<35>!™S“ƽÁ)¢G±¸Iž‚¤…ÉÙÄÆ»¼P©YúpÒßœTø<ØuT;œþf¦2äâ~6Ø4u^äÕ«L‰C M±a\Ó{˜%fÛmÁÄöá„Bãʨ%Ƈ>›ßÜԭƬã$ Z,ãDÆXåÃü µâ:riÇ<69> Œ˜
‰±¹ÌlÍ¿Çxƒt<1B>Ã!Î4¯´ŠY$M<>\+¾ÊôÏ1ÞP<>)d™ë4† ·ŒMjâÖi究;š
½¾q3Ñ2>²S¬„QC/Þ S!8ìœãúd!¯ÑÎwÂuŒ0^³üÖ8*l9Äb<C384>µ" ©4Äè\O”êÂÆì'"Œ¦T×ïáÜX¢´C<C2B4>1¡ÆÔkžØq¹¤Àè[•ãNX‰ŽÄpf&Ð «×Ððõ§ç )5©Ž;åwÂrÀ4^÷w²nª´À\+Ùc ¥œÉæ÷ØÄu€qv4<76>ƒÀLª@3¦Q)¼jÐ0•y"ŒqšAÕÛ“Áýð6âa Þ\'ˆÙÃyH $0Ýé#ö4…¸ÛV´””£Lu<¹i½7„s€½„ÓaŒnA)Å-1æà':@åar…hö(úb³³#¤lf1»{/fð1©Ì;¹Ù
ë9S`£këÇ0X$¸¤üs 9ÌÊö[Æ苲~ŽÛéNoF™5Ʊ<C386>ƒ3;ˆáq´,Æ.ß1z§XBWbs‰-  Ð8YáblÒÙáUÉ 9(½<[±uLRX<52>˜šížNŸœÞómáA£šª]èõ<C3A8>aƒî$I}bƒý fò8¬+«uF²ÊBU?h ªLsÄ¡1´¯òŒÃãx"»½ÙÄ v¡­è;Í=9ð~ñ5Ó<CH3Öç¥fn36<E28093>Óã ;tB…Éˤk<C2A4>[:?s©ìq,<1B>j<EFBFBD>FÏð•<C3B0>ëûb²>C[iÝÊN‰+ˆmf¢æØ`Fæh—"+³2 ÔÒˆ+(1 âJ¼v:cˆ ^Œ18à41<07>¸2zÄiF<16>b©(½j,†=œúˆQEv7ßćŠÎ„á×ÆhNÀ˜=õÆn(§Ò‹}ÁBrØèh,k£y×£$ aþ» óLRŒcF¤å) S˜,Ýk ;³ŠW…1Ú@åõˆaåѹ†Ø̬ /1®¸ôŽƒ LÌ™1 OSì<53>oE=1—3†±ÖØË,m¨¨ìÞ-Hׯc%x¢ž!lBŒ¸·ç<C2B7><46>IM±ðke>”]àG—ú·ã.
±«ªòÄXChXú¼²ÆaD°¢7«<37>³ÚnbC÷føÍ °ÏŽ‡0ÌÀþa%†´‡ñÙhSÓ©Ò†GÑ]™lÁ5Õjßt¶ˆ¾ÐybÑM«úxoþÉüÇ>cà ´r <0A>}¤6šÕ0ÇR «–›,nB¸ëéCiÕz6ÚÕ‡{ß^E=íj¨­ô¥c3ˆîWJË껾Â<>-k\²¸¤|˜<>W“·reŒÛ¾o 64Iöa %9Q»U§2Æ<32>¤¶ïYÕ<10>t/HÓ7Æô,×´J‡j¡*ã軳¯ž*™m «:Mƒ-~/î×ã†[ƃŒÂ³«„›^cô™!Ä&RIvB8³ÍY ø_fI¹œ°,i¦©0b-)À~ª†Cµ<13>Á¾™*ÿFÓÙ©~­Ñ\S|%ÆÑçÔ4è¡lÎv*)Ú=c<>±I¯×¸É@M
Œ×Ž§<C5BD>>W ©_9߆*C”ž
Cj!p ëêàcÈ^®aêV©Ål :00?c­²éK²1ꙂƒpÆŠ1ìY]Æ5êZ²àkÌñ?•Ws 5 ÓT” 0OêÍ<C3AA>1ûc£Ú5tzÍ“<1E>%†ë´šlÃkª<B†ÆÕH¦1•ºÑAT/cýZR@Ь|'1MñI<E28098>ã~g†éP`<60>Ûá9j†%…æ£ÊŸø±ÊÀ™÷SÁq ÖO%w\­%Zgô¡3!ÆEâ¹0ÆÚ©f4Âh}Ø/Ô˜­ÂN[g÷8fêCën<C3AB>±È*Ó-!ìT=¡ŸNAÕÂÆÆ*é5,La_ÛF;¼/Ù¨Ì~|B±Óý
XÄçTŸTqìA¸ êt64A¦Q³í¦GÑ\Ο…vĈqŒžÍîqt<71>&aÄ8¬ª¨ˆ1a_¬1¦r…ÊGW·šFT½^V¬1™çæmY#ï]C³TGÕO6a©· †" Ãðç9¬ž±˜âÄ+ªNcþp<C3BE>]ƒµªkª°È<C2B0>Æpt'EÕÕ„ùê>ãƒñ†¨ÏW<><HŒå '[*<2A> e2÷‡éá=À?>÷m“1 ïFµ=ªŒŽ€:CùÂXËâÌoÆû Än<C384>>âS¬ ¼òcÔh2&¯WòëQnß³í¢4ÔÄÁÙc6´Ÿã¬ÒÔÝâSw²"êĘªây2.Á¬Ì¸}X „ãéßc`‚ùÕ=ÆMwaÆÈD•u(Œ£¶ &Ø´¾ä‰°­„ÔÄN»;©¯HŒbž™;6tÚÝLcH5Æ%:O¥;ŠàÄå
ƒîÝ~¨TUsSaïý(ú!¡åÎØÆ »éÜÄTÌzÄåÃ<³ì|<7C>N»ûPß5…£dýP I²êÂrèø<C3A8>-àè￧º!cNPí€y^ÇN»Ûñ¿3žo^Ù:°"™r°¼ázöDŸp`ÝZ×8šLÃßÉ0ô»9¯qv˜ VÝM<C39D>íkØ£a$1æ‡çcÄØŽ.­NÞ²HÖ ŒUÃr;÷D<C3B7>ªÍq½thåZa9‰j° ]IŽ¸ØA±_§` twOƒ<4F>ŠHå2Æ8­gÏ@ô¸£=¶Ó<>ÏÀØäJU<4A><55>±_ƒ§ÏX…ˆTãp;7OŸÁŠÌÞǸ.³ÊØ°
SáqÆp…ï¦ë®”/HæÛÊGx=8sf`¬£3„0½?Ýýé:óÊ;"×ÑJ|SÒ˜pªîò<>qWBbŒY°YïõRä5c1;[ò^óÈ.Ç5GW<02>N×"OŸ<1E>ì2<C3AC>½eÊ5Œ<35>âG ŒMGÙ9ÕØIÝCfdg¦T*6 ŒmG²§ÂÐ4·Ñc\¡‡»¥ÀXBDÓS©œ% ){oa¡ qZvÀîf-ɸD-õ<>éX3Œ¯ûJ{`¼]s Œ¬j7ƪk+™XI•aÖ¸^YÓ]MÐé<C390>¢ ;®£Åt'´u{BÓWǹãtù®žs'Y£z`C]˜…Iãaö…¡÷ŽH„æÕo@þa³°ítª_Y¨ê-ÅŽÖÙP}o´, ys¬¢³ßÕ9La0븰~õwf<77>ÏÂÈà©9bœK¼<Ž‘ X…½Ä8z€Žzal4[{(wxüPudYŽSÔ1!ÆÍ<>»t)w…¶æ'£<>X”<58>Uc0|¯—PÌPnŒËŒ·È­Ð Ý•=¯cTDè þ=šX…¡XH¸÷X'Þ`gïqc¬S>}—&Ý&Gê„©'MÌ“I©lO1cœK<C593>/ŒMvªæ8v9—Ü@¿F©&ƒ«“ïX­rDH¢~`.™ëyÕtf ã¤MM—Ø«Üuƽ0žW 0¶¥‰½<>ñŽÇp“ö£u[<5B>qÌ^qYc¯ŒhˆU@ˆ<><CB86>Z1«<>1þžå%$Æf³³Æ<C2B3>UÑój•:)¡ÉÁKéTe‰c<Ã=.A3¨ŽÕr©`ŽaxÁ†Öi'ç| ì¨àmDóû€6ÙÒ…u5ÒÆpFgª·XºšÃuÏ„³7™ÝÇp†Ú¡xëO#„Ði~ÒÿG`L+={`tPOc|Tch™i»3] ïß…ÿ<E280A6>ö·»{\ãØÍHÖ+1}¨RÝ[3Óuø¨7†3ð«5Ç8諽ÄhJ53R£wß[ŒÕ¤îfã-<2D>£½0†3Ne&ÆÂ$í‡ÆhÎz=®a•yÏØ7%)nP§"}a*Š)óÆüP©½<C2A9>ÙõêÉ÷b„=<ŽÁ õ5‰qÌ}olÈ,È×8ØN%VŒÁ 5õ9c.…ïßÎ`ƙջИó®ÜX¥]ãÜž\ûH3Ãã¸ÆÕ¤ö˜ÄÐpƒð€Îäþz„wV*¶ët1Y-"»ºitç/ô^îîF8ú5“y<19>åÑA  •D„F<E2809E>˜ñà%*\ñKLÛcSëå×Y<C397>eÑ{-rfH&<06>5•Ú/Gža fàÕžq$±-
ÃÃÂÌh§úõÆ Oö3c-îîäXâô\¥þƘÊ3Ïyí¡G¯>f)*·Ž]ÙèœÆg5²¹Æ¹?0èƒ}4®<34>Îìq¬ùzœ,ºŽ_uæ]1õL1ŽŠ¸,˜PV«S½<53>a38/²+®4u¯ˆÓ
¹îea&“ïÏëde*°Vr˜¼È†8yÎKÈèŒy]ó 1L{ÅþßΤaõŸ×0¼¢Ø{,šRŸëhÁnW{;c8tx ˆÞgª¶ŽìC/¿GÃáØaô5<C3B4>žæd0£<D4ÕôáTLBÔ^Ô•6d挔P˜íEÍ0 hÂGHX'5ðÃÑó‚/þ©æ JEÛøk˜õc,Ã<>7 ¥«„ÚÛ»$…¦}Y°<79>Q=nñØ ^ÉwNˆ¡Œh a¬ÒPÓ2³bÏÙ6qÇ°%žó|ˆÍð7FN˜
cR@b^æáæfã`,£Kð^Wa<57>$EhuÔ”ÔÎ$0l"W†ù±bt{8· ßÍ:¦¢lã¸z£]ø8Ô9«ÌìÏË•nl¬3©nc0ƒ—ÖõÚ•ÁŠ«†[X/: SIC<49>1q¦t VÆ€Fô 5Æ4÷ê©0 ÁDÃPîsç]Ü?×äGyè#W
8.§rwc0À“óz+*û%F œ-Ð<>q<EFBFBD>Ë=:£©HGB`éR^E~uá µé
T× n×Ö¶\±ÉÏq×(‰0¼¸cx <0C>nY­ô ±p-¦ Ï}—bTêÕµr\«[®®e¿ŠíÇTc
Ñ`<60>[{æ»0f½Üv®1CË9MC¶p<C2B6>]Øá€ýÆ5X¨•j, ÉêÕX`5:ðlTc<54>•ìV ÕX`ç‘ꪱÀR°k¬TcÄxÑm§„%É,;+ÕX`£[5Þ¨Æc)Æí‰i, ¨uf¿Z™Æ«¬‡½=1<>&~…'¢±€x®ü• ÑX`i¸¸c# Œ%XóöD4fŒš£i<C2A3>Î…h,°q˜9a# ìjöáxZ<10>†k¹×ÛÑX`%*Ð7¢±ÀÎÃaÝ<61>h,0I¼ÛÑX`2nODcÆäÌ0yÙB4X¯ç=xÆje¿<11>ÍF4•h,0ïžxÆ:DëôÄ3f ºƒ³6ž±À°ðåâ {ðŒV…â Œ[Ðü] ÏX`9;U|ã
Jp‰-<cÆê ¦†<C2A6>g,°®ÐÞÏX`.Êzâ ¬°ÎäöÄ3ž±ÀŽh^º<11>ÃÖq£Ñ<C2A3>h,0*jÆ¢±ÀêE¶¸<12>v2Nx{" ²<11>;´{+ÑX`Ì/=oODc<44>Áìõ~Y‰Æ»bsÑX`
6ÝžˆÆŒ©#¸ÙĦ±Àú;™Øƒh, é%·'¢±Àò<Óm! Ìm~žˆÆŒ¥Ñ¼*+ÏX@-Úÿn<c<>¹ÞÏX`®Éxâ3Fê¯ÊÊ3I»ü<C2BB> ÑX`rŠßžˆÆË)¨àV¢1ç]ÌÙÓi°…h,0g}><11>¦^Ò·'¢±ÀXhoODcÆÜâöD4ØU º<11>v5S݈Æsc‰<63>ˆ,ÜžhÆs%ÃÍX`yT?ÝÊ3ØÁVé·'ž1cŒ`™3qå ¬(Aã‰h,°—ÍÊ3fˆÙ™ñà ÏX`UšïÏX`):m<cÆÔ<C386>Ó<EFBFBD>¾ðŒ¦Ò€ÛÏX`”rfÛZxÆŒQ°™±nå ¬*åè‰g,°¬ä¡'¢1cÊOð¸…h,0ú|  ,å þZxÆ 1 Î;bå ¬$ÍWž±€®nÞÏX¤.=øQßyÆae³æÕ8pã ¬D¬<>g,0Ö ™:ká36Øù™g, ÕôÝžˆÆŒuy=<13>ôà…]‰Æ;.ê²wž1#d6Ô«YiÆÂ<>_øN3f¨úD<ÑŒ–Ù à¶ÓŒÉt—Ø;ÍX@ÆÛ•fÌØ9"<22> Hwáí‰fÌØ#x°ÒŒÏd˜1Çñ…½ÓŒDLó~-4cÆu4
ìA3Ø™l±n<cÂf"»QüÊ3¸¸Ä<cƆòÔ{ðŒªåìÊ3f¨×Ædå L<À<>=xÆŒ=²Ϙ1†Wl! ,SJö 3†{)f% ìªç؈ƌáyì ۈƌá†qg¹<67>h,°tq-<c†ì¶ðŒ#¿³iGVž±ÀØ!Y˲òŒëῶðŒÜž=°ÏX`WvÕÆ3f¬»‰èÛÎ3fŒM˜ÍX·òŒc¹ÒGž±ÀpYœ&âZxÆŒÉwiB­…gÌ-³Æ¬<cÆØÉ´+ÏX`)šϘ±$J´À<cÆY0ÃJ4&Œ=ϬslDcÆXâí¹<12>¢ÙåF4fŒäzE+Ϙ¡¦>³Âž1cmõ¶óŒs=œ°…gÌØÉŒmó~-<cƮҠ<C392>fÌPößhÆŒa\Tbš1aÔËÎú<C38E>f,0ØåÁßµðŒð͘¡~„õ^xÛiÆŒ•ÙG<ÞB3fŒŽ<C592>ø½…fÌXv[ö·<C3B6>˜\hÆŒ‰íÆ߹Ќ c[EWWo4cÆÆÅi¹ÑŒ£zeY¶ÒŒ£$«•ØƒfÌX°½í4cÆÎ]ºñŒcÜú¸¸Ä<cÆÒúÝÆ3fìQQ´1<C2B4> cJÅÑ>0<>yWV¦1cøõØÂ4f Xp¤¬LcƘƌá¥XUؘƌ3™àycq5ã@¯LcÆx¡z­W¦1c̳ñ=µ2<C2B5>SìÈü^ Ó˜1éÁeºR<C2BA>Ë)dàÊ4fèQÓ¼1<C2BC> ;iöÍLcÆ ¹mßF5fŒ•ÇæX[˜Æ ×$¿­LcF° ÁE³2<C2B3>Ã<>íÁBöÎ4&(;-žÐÊ4f câŽZ™ÆŒÕ ðÓ˜1HewÝ٘ƌåøká3òH<C3B2>ÙxÆ„A“»øWž1c<31>ÍE&ö 3Fh^$d¢1c,°`Y‰ÆŒQñòM³<12> ƒ-íàÂDcÆšËsÞv¢1cå²ìW¢1CX''mlDcÆXr<58>Ÿ‰Æ5²L9<´<11>s­Š°w¢1Cî»ЃhÌXºò%W¢1A
N<EFBFBD>j%3†«8ëJ4f gÌÑ<C38C><C391>3,bÜB4&,9…-Dcƺb¼íDcƬxۉƌ1Fì=¶<10> bš`*]‰ÆŒ±ŽUû…hÌPq3Š·<C5A0>3u|~¢1Aâ)ˆÆŒ);ïb»ˆÆ a%»Õ••hÌ>ðŒ Â)ˆ²®<C2B2>sßÇÅ%öà3¦²ó3°Ϙ°Ó¦»°…gÌ$ÑqQ‰=hÆ E7η<C38E>fLØ¢}ÛiÆŒ± ¡| 3¯Æê͘0\™8=hÆŒU ôB¯4cÆÒ•+±ÑŒ ƒph!ûVš1cïüÁ+͘1× [hƈ±dW†·<E280A0>fÌØyå'l4cÂÆ#”´ÑŒÃ}ž؃gÌ´e'ÇlDc ã]âh%3&Sj-DcÂ>ðŒª)Ûs´<11>;˜eÆ°…iLX}X«Ó˜±|ñnLcÂ
©¶Íj²2<EFBFBD>{t¨Ü˜Æ„<C386>Êz7CÙÂ4fì<66>Khe¿¶0<C2B6>;ýíW¦1a,J:M©³2<C2B3>“çíb{0<> Ã9õݵ<11>Â<íÜۈƈ±Çrr+‡<>˜³”61Ã<>?a ˘1æDš0deF… ©V1CL\ R³…fLX+WGÈ<47>fL;8š¼ÑŒ#EkèÁ2&ˆIÿ<11>±`3æXJ`¦1aYF„oa3v\†øÆ4&,=36¦1aÌtõÇÆ4FŒ<46>©K6ª1cLÞ-<17>؃jLØ`s¢˜ËB5&¬«6äÕ˜16ðóÎ\©Æ„5N¤À\cÂÈ”,+Ù˜°Ò]üû¶“<C2B6> Ã{h®XÞÈÆŒ1ûû¸ˆÈdc Ü#‡ic"ûímgƬ3h¼¶1bì}Æ7¶1aŒ•Ò¹°<C2B9>ìÁ6&¬“ðÃÜ-çB7&ŒÒ×­Þ7º1a•ŽuóU¬tc ì[´¬tc°Âú·<E28099>nLóSGP-tc ÅÌ·<C2B7> a'ßæEY¸ÆV<E28099>z¨Y]V®1aál ì"ôž¼<C2BC> c¾‡iÉW²1Alë?.²ט “MÔýÔ+ט°Ìíçûiå²S‡W¦1 ñÜÊ4FŒK˜cE¦1A4Á­MnLcÂØ~÷ð©[™Æ„±»ß ò²…iL…pP­Tc ôàzY©Æ„áwÔÞ¸ÆÔ«aVµaÛ©ÆÉy郼P<C2BC> b<><62> ÷V¦17<37>¥ôÌ4&ˆ $gÿÀ4&,³U³OÀÂ4æV®t´0<C2B4>©EK¯Ü
weÔe ¥€LcîlÑ™ b²…iLYµl®lLcÂpa"oLcî¤Á^†ùÕ˜:p°×úsY¨Æ„¹™™ºª1wî<77>Q:{P<> ã-ïëg¥ÄL0ã¬TcJð™b`ú@5æ䟕ÀB5æÖ#ìê7¾R<C2BE> £¿Å¨wª1w39 èA5¦.(3Ê_Þ6ª1AW2ÑÛÎ5æÆ*
d~às?ÐF5æ6.ïRt¥Ö08¹~;+Õ˜[Ѻeõ<65>˜»Q¤LÑ4Wª1wÅ©ÕÕßÓ˜šé¼7ÄؘƄUþÌrµ2<C2B5>unûÛN5æîWéê´³Q<C2B3>ECï¹>Õ˜[1åÓbc¡”Ø’-¥€\cn>DçtûÀ5&Œ!·Óïuå†F<E280A0>טº щí&ÎÙ˜;$=<odcnàÅÌ%Ëî•lLؽ(TЕlLYpì8ä€ãF6&ì¬d%s¨GòéÆ6¦ÎQ<C38E>ò§`s7ªƒþ8<C3BE>[ØÆÜÝ ïõð=¸²<C2B8> Ã2,laÆ.ØA>¹²<C2B9>kÐhä{zÛÙÆ„9q=ö`Æ|²Œi Û±Z…0û×Â6&Œ%DÁ¸µ<C2B8><C2B5>*W'Ê·<C38A>lLu4ŸÙ•kŒ){ÙÂ4&„ªï laSæ#ËöÜ<C3B6>dcF5.ô³•iL“µãÆ^™ÆˆÑ{9ƒúkaÄþ¨¡Ý¬LcÄöO<C3B6>cò&ì‰<a Õ˜Œù<C592>jÌ-øIã®1a'f.Z¹Æˆa^5È57®1ajÃá¾þ+Ù±ÆþÜÑ4~%F×÷i©•lLÉ©ÚìÉƈ•°W{<7B><> s•I¼²1bg
[Èƈefh\ó\ÈÆ„±˜)hV²1b)ö´°…lŒë²<C3AB><C2B2> #E}ð6­dcLÚÅ=$KÞv²1%ôr§^äY ÙXR„ñ!6²1a‰(7ö_Éƈ±ÛC±Gz##Fý$»šacgC<67>> oÛ¡S<C2A1>÷OÿÜB7&,EñðÛF7F(S¼:H´Ñ<C2B4>)Ë™ ¤ì—ØèƈQ4ŠÜêm§cæôdÃt÷6ÙèƈqߨOÈÛN7FLÙÑÇü@7T7­v))°Ý1ö=í07ØB7¦,î6$O„-tcÄÎæOØ;Ý!nÓâøæF7FŒûˆÝ_…½Ó<C2BD>‰7ã½Øv£c®ù¤Þë.!†KÏ# SŠúQy[éƈTÖmùü¬lc„È/“ÎÓ_Øƈ±sJ;ü} Ù!Ö¤Ð#Hl%Sý¼*6®1&ßc:«émçKzLæå™÷ì\ÈƈñZd·¤À.²1Œ¸ŸÉÁ²1bL)f{da¶1"ИŸR<79> è±Á ´Ò<C2B4>±÷L¿Ã
ÂN7ÕÇ„t?÷B7Ærn­q!ïlcòËã°OygS}Æ®Mc³±<C2B3>eUN]ÙJ;ÛXVq8ôB¯äF7Fc¹Õ˵Ñ<C2B5>±™Ï <>½Ó<C2BD>±iþR<C3BE>·Ò<C2B7>l01Oþ¼(ÅÞéƲºc¹µÐÛݘh´oLæµÒ<C2B5>eµ=sýåÛN7Õ™iÏþÊ•nŒ§<16>vÉâJ7åYP#A+áX¦ù:Y±fê°…pŒŽ:Ö²Çs¯„c$S€€Â(S°­„c™> rÿ™äe#;{ýXÞo„cän`ùëèÆVÂ1`•õ.¦ÿØ ÇÄß>'w'#SDR=@ ì<>pŒ¼<C592>­¸Øf§£Ó“³ó<C2B3>±Ã&t-vì<>MÎd6ÓÚÊ7FùÎ k'í|cì,ÂãxõÙÊ7FÇ-ýí±&+ݘš„²Q¡/¬<>nŒIY ÒÅ ²Ñ<C2B2>ªz²»ûìlc‰õ£•éMf"[ÙÆbùŒTyÜÊ6Æ~+¤ñÉób"{gKÚ¤Ê඲<C2B6>±‡ VqzçÎ6F9S¯Ms²³<C2B2>±/ £,Ó*ÌÆ6t Lš6gcc¡[š—›`gå)Ô·<C394>m,)s5ÜÜÙÆšÒ±Ù¿™ÈV¶±¤£\é“ ì<>m,)€ :fñZÙƨ  épâÎ6XÃÌ^C~¾<>m,©/îŠþvu=Î<>lcÀ دþE;Û˜úŽþÎDöÎ6FÝí pcc
&~ý0_ÂÎ6Æ:KvºL¾_7¶15&;ý#Ûõ_z\²½³<C2BD>)pu@tõ‰ì<E280B0>mŒÙ§\Ü<>\co¼ÓyÂ;Óô÷Âb¬¸J6¦1•³b¾¡„mLc‡JvÖèÎ4v(bÓÙ@ØJ5ƪ[ÆòÅBöÎ4FPö!-~´<>iŒiÓ%V^æ•iŒNö…<å>ÙˆÆh˜±­ª=9ÏÛ„±O¨…ØÊ2ÆÒf:ºu%c`·:¯/èA2ÆþâìlR¬<¯cSÙHÜ„(Ʀh$ToЃal*á€ù[æàZÆøÏØ0¤³råÃïv©Mo«•^L­ß™o™>°1<5F>¾çVr1ÖáS' &Á•\Œ/<2F>~#ø¾n±¡ÂásôàûZ¸ÅØ^Ÿùv+nÜbØDÌÁL¸r 1Mͽ+·{ŠõÛ g µ˜Z+ìsAj1ud  q£ú•[Œ}Y$ÒÛn1úÊ.gæÛÎ-ÆÎŒ&ö6?×Â-ÖIÞAv¸áÿÊ-ÖÕò”if¸Å8ŠÒÖDõ· <0B>ϼ<A ·g˜iê=ÄÜblPÁ?»ûÔÆ-F?7‰Ó
7r1r6@¡ÍÁšµqyσ}ô cÌÉ5j%£û‡6€{öoìbêwßâ~ÝÙÅä[ì©Ð;½˜|þ
6 ZéÅ&œl=lö®•^LÙ´Z@ïôbnCzšŠ|§c»Gúkâ·Vz1Q6ö1ƒÏÃqö<71>^Œ†¹'³œ­üb4EøXf"ØøÅhÜàNu©úÎ/FkÉilV~±ªîò¦½=ñ5z<35>`oÖÊ/&ÈÅ(oOüb4NIdj†<6A>_¬)é²ÌÏùÅÞo‡<6F>`¬‹;äp#¦<>`Œçk± ½=Œuõµî¶ž;ÁXg?>5»´ŒÉû@gÎÅ"öN0Æ{÷„{ÍîcƒM7Z ÞŸ•`ŒÛNÞ^Œ•`l¨ñÕƒ7m!¬i«#^äF06˜-£ê>A+ÁÝWíŠxîc“ÕèW‡À<E280A1>`Œ:ýÙ†Ý4;Áؼ«<C2AB> Õ6~±©Ö}ت) w1µxOܼ1Ñ…@7B+Áo?¶R±#i#Se¹?ƒ±l!chóÃÂF0&ú6H<=j!ã=I7[Ši,c¬ôbçdSVlclÛB²ô`[[ ÆÈg»‡+ ÁsÓHÏÔN+Á ëï ¶­…`L}X3ÝW- Áouþ£âM³Œ±Þ,Ñ{~ Ê;ëPÁ˜XUØ¢ÂË»Œ1AN
D7÷ØB06Oõ c;A Á»Á¾Óð­übôéÓ{3j·r^$b~1v°a†Î
¬…_lª©ãîZŒ•_ŒIzÔÛ<C394>"³ñ°<E28098>üÝ=ø»1õ¤eÒ] ¿ã
™e¦û\ùÅX{Çx×a.<2E>•_ŒmtyŒƒl!» =µf\ ƧàÂWéJ0Æb>ª–ÇzŒ±/Oe¢}<ñB0FE+“8Ø$A+Á“Ô?ÁöŒ©8ðà*šk!³2ÌfAZ•`ŒMxÉ;|ƒ®cTêØ1Ç 7†1ÆXÈbë´Œ1û¶nO°Œ±DÑE<C391>3 Á Â=h{v%c¢£¨ƒ<C692>…`Ì-Šº-†<>`LHe>j!Ó÷I«1´Œqì¼_Qm!ãÔaT7^ÞƸLºXÄ1®-¯™þ<E284A2>`lÒ?Á~j˜´lyø±V1î¦Uoo;ÁØÙ+“ß±mT¥àm±òѤa=_(­üb3¤ÌlçE"öà<53> Bâ©V~1mGè…ý#¿»=Lµ<4C>_LÍq˜½ó‹©+t £¦†³Ùâm­üb“ÁNóÕôN/FË­o¦ï»<C3AF>^Œ·}c:•eáF/FY.¶ÁÞžèņÎîÕ.q£(U/ÿÞÂ/Æú
š?ÌW¶ð±bƒŠ|0]®ôb*ô ñ<>Ë£Vz1Ve´K•yÛéÅX]¡bûiVz1 ³cØ߸Ðq"Ê”õ%°°q5ˆ¬Þvr1bšÒ¶Ø…\Œm&“ª­äb,9ß¹Vr1Ξ-N£ÓÓF.Fì Åüih%㣩_B\Š+¹§‚­:Rh¾+¹˜*fX-?MPºåèx!/ñÛÎ.¦—Cϼs/7v1~'V¼õ ß[ÙÅ8—¥ÙÛÆ.Æg8)z.laã’• (ìÁ.æ7®TØň<C385>Œþ´j6¬…]Lë9É´.}vcÓ+â%xšhesM<73>m€·<E282AC><>ÇÖ­¹—…V*ã®Âr1.çd²¾;ÅläbZê¥ ýJ.fìpä·<C3A4>\LßéŽ&%[ÈÅ´Û'ÓèLX²ñ2ô£ 㣙þ« k[Èňá(³BÉ\Z¹ײºgwàA.æ=mãXØ;¹˜^óÌŽ +[ÈÅ„©—¸Ùkv1}ãe¿íìbšIkÎA{ÛÙÅt”Ñ:ü• ½Ê
ìA/¦ÓEG¾b7z1I7v÷3ýÑÊ.¦ƒ÷h¯°éÅ%¦—5<13>-äbñÂ)Ö½( ¹˜ÕŒVlo;¹˜ÇEZèÛN.¦ßÿT#ø·<C3B8>]Lg¹éÁÛÎ.FŒu!6v1m"÷<>1ÃÖÂ.æû ^µ´»˜ÎÖtK`v1¾=h7ìR+h!óÎËyÛÉňÍ-xßvr1‰[ÈÅaåj#ÓËåqWr1<72>cpþðþ[ÉÅ$ŽHè"ð<>\Le<4C>¬çiÈÅ$áŽG-ÖF.¦½Ië:<3A>ÈÅ´`°Ñy¥³$º°…^,ÅGí¶MK¶ÐñͲF:nôbl{RMÁ³ÒÃý|eÁmôbÜed´ïN®ÝèÅ´;+{à™<C3A0>Ó®f¯ <>_LÝŽ­lübúÎCÌÆt³]—&¿ZÆt| \,b†1<E280A0>ÈŽ³_äc±ì†Íóp(g#Óröçô4W"¿43ÖJ0¦×Ç4$w´ÜÆ$XµZLµ2ŒIÏ™±Ußv1¼#V1íÀ[çmg#Æ;ˆœ,Â10šÙÖÆV1_Í<5F>U3þÊ…eLgÈN}c½³ŒY R5ðE@ö`ó‘%ÉàùÌ2&Ñ?Ü]UÐÂ2¦“7ì­ ìb#ÔT2ÐÂ2&=_fÊÆ2¦S =ÿÒV1«š íx<C3AD>W1½:üy˜´p%û€Ž1Ý3 ˆ¬cRªØ Å<>¢6Š1]Aô£¹=ðF1¦={æµâÊ1¦­$,ÄVŽ1©½ùýõ¬c:æ<>¦-èÎVŽ1_BL(4ÃàÊ1¦£Ì"·¹Ø8ƈßØw¿qŒ c‡D3¬ocw:÷¶“Œ…X ënã³4Š¬—·<E28094>dLƒ²ÇM¡71+\VÕ„-$cÙ¡ywHyÛIƤ
Œê$¡·<C2A1>dL:#V(Õ`ÍZHÆ,¤yÏ$cÖ²ß4[ÐJ2&<26>Ý2»‰ÙJ2¦BxÖFXqßHƤùÁˆËv(,,cRÛÝ*Ô¬_ ˘Ž<CB9C>5c ˘ŽO v ·<C2A0>e,«Á]U
”°…eÌbŠ-õ‚-laÓQæ®Íó˘$@a®õ€•eL"l¨É¢Ï1É°oÎmÊ61aîÐù<C390>fLʉ-fÔZˆÆ„1«æF­…hLØAæïè•hL¿W˜1u˜¼l!³âÛ<10>éùȹkŽ®…fL}ÐŽô]±ÒŒi5S¤¯¼í4cz ê)gãiåÓÛÃÎ #v㳡
Å)®Þ•gŒjÇÊ3FŒì¸3ˆ'Wž1 Ô:¬g¼í<cÚ·Çû-³òŒi¿ã_jÒoϘ¥-ƒûžÊÊ3&Ý–&yò]¸ðŒ©Íóh\-»<11>YÏ«Út%ó1¿8 6¢1©[WÙÌÛN4fÍÔ¦Ù{<10>Ià8GÀ“\ˆÆ,¨ &C¯DcßL<b јìÁ”.ìA5&¡™µ˜"X©Æ,kS;ìÐÛ¨Æ,£¯Þ+Ó˜ Ö”;,·1<C2B7> ;ù¥§Ç-LcÆ­6¦1aE­ˆ¶0<C2B6>ù*a¤`D[˜Æô9„ùÛÎ4&l\R7¢1­JFo;јV“¹ENiۈƬ,ËOÞ{<10>éí½{7¢1¿õÌþ(æÇZ˜Æ´[(4ƒ4gaó tYüјt†¨Û3Ϙ̿Äî;Áj¶<10><69>È,zÛ˜Æâˆ<C3A2>íÕ߸0<C2B8>édù3eØB5¦{4I.ûبÆälSŠÕGª1_j¬;ör­TcʇÊNR<4E>=¨Æ(8Âä÷#,TcºòÞ[<5B>oTcTÔ¨œ{¶Q<C2B6>Y1?|©mDcrž@„ 'ÿlDcRÙÓxp÷¬DcêA£2*“[¬Dcv3¶CÂJ4véú£$çÂ4&cÚv|
ìÁ4¦+<2B>íÓ\o¾1<C2BE>é*qƒ çÂ4¦ËwZrö`ÓåApa Ó˜.µ¢d
³‰-Lc¾˜ñgúÀ4æ²eu«{ۙƄqK8°2<C2B0> ÂA
}kcó½Ìª® êzg3ÄŸ³4:¦1«¬ƒüÀ4®jïå€LcÂx)çÀÞ™Æì3ë
Ž•iLXV ο¶0<C2B6>Ù®7åÓ˜Þ·é5Ë…iÌï5·\eeæî
˜Æ´W9ý<> Ó˜öß%µÞv¦1íÛÁ®^>•+Ó˜T ÜÆÙ%Ó˜ÎBa§ŠãӘγšœBµ1<C2B5>éì]Ålo;Ó˜T-‰ke³<>½·ßv¦1û±¦TºÀLcWGù·<C3B9>iLªLV t3”-Lc¡CˆšÑre“$ÃÍ5L„¹<12>ɦ|o#¼<11>IpÎ<•Þõ¶<13>9l ?EìA4&a 3Dcr+±j9ؽž1Y% …ÊÂ3¦K¡±[—kå<>S"Uïmã³JÅÞɦœZyÆt=eVªš§tᓺÅÆ&l<cºïÒÁõ—؃gLºXº8«7š1»sÙê4=ÙB3æxÈU;°±Œé¾.—b¾ŒÉÈfêÉéw%
0Ó><3E>Œ…÷ø,A?´ŒI­p?zÓi-$c¶lÛpÝõÆ1&ˆž Ónc¶éÙñòøÀ1f<31>p¶(¦ÝHƬ4¹Õ•°…eLžÓEɘ D¾&S¶­$cÒßÆèÚHÆ„Ew€·<E282AC>cÌ*aªQ*¼qŒ ³D/håÆþnÁ[´ …°…cÌÙ¢ý ǘ¡vhocþ¹Çæ[(Æ<ɤôA ÅXèÉÎ~Û(Ƭ^¿³ß­cV…ULdB³wŠ1+ìì¨í[de³–\¦#\ɘm6ƱðZIƸ°à<>Œy±¯™±•eÌÚ5ݲû61Û*qàßv1kÞÑñåmgÓ±}ö`³VÞzøÙ61;µ|ùÀ2f—²È<C2B2>>°ŒÙ—Vrðjl,cÂƃëac³äx¿´V1 Ì~`s@«ÔX+͘„˜;>~ ³ìs{³À4c ÄÖÛiÆ$O™?U?ÐŒI çzõäÜhÆ„YÙ7öN3&ÁNÅ05ÞJ3ætŽï•eL·nÁi×êÆ2¦Û‡¥‚¯,cú|hv+˘î3¶ÇñØï,c6dØÞKÞÓ<C39E>eL7d:¯–˘°÷´<C3B7><C2B4>eLwn?®xèÆ2¦»º`”Id61ÝñY=oÍßµ°ŒÉ8:è®êãöÄ2&Œ$ní½±ŒI§hb65¶ÐŒI±—z£“úÕ}TC Ø ˆ½ßž(Æd‡5WÁßž(Ƥ-ÑñÒ²Ç-cÒ²ÒãþÜ(Æ„]yrOcÒÜ -d£“m—#¯ý‰bL˜šekƒm:Ðœ·'Š1i˜ìFj+Ř°©N2ÏcRZy#§¶°Œ9”Í|<7C>jÖ²w1Ç,H}¤e ˘täúhí1BmNŒÊ˜䟢K·ÿñÇqûO<z7ý͊ľþIoåþñ¯ø¹ó[m2&<26>ýë¿â÷ÉLö÷ç@<40>Rñë$r¯ƒIíEgñ/ÅD8ä/ü :Üþú·Ûû·¬<C2B7>øw·ÿ~ûëþã?üU<C3BC>ú²Ÿbñ3¶ûÇŸ¿è'UÞM×éó/¿ê!e¿òþýø“ÿò~’ý­‡º|X×ù~´C<C2B4>]>þä¿ÿE?Ɉ<C389>ª>.ìö“:,ý×<>A|<7C>ŸÌ!}2ºîp1½vÌj$‡.æᶀùóIü<âí`é•Gy![yçBÌO\ˆ·ÿ¢²Üƒõs'ô/vùblúáÿ¦Ä{|£ZÃn<C383>åé?-à˜,ÊÖ`¼;±€û“ŸúUîO~ò ¸?ùÅ_%àþä'•€û“ŸüUîO~òÛÜŸÌáÛÜŸ<C39C>¢?pù5î~MƱîSGžeÜ-2î+¯-1‡Qhµ™ùš÷O¾®/ü6ãE™Ùžß}ý9//“3&»m0?p¿Œè"={4@ù;—Ñ?ó¢¾t½øEýÙ¹úû/ê—«¯¼«íPíïêáú'6Õ‡™˜…~€˜Ùe‰ým±ÎÞ-¶ËŠ£<C5A0>ÆÙü×?þÔŽ,B
endstream
endobj
68 0 obj
25389
endobj
69 0 obj
[67 0 R]
endobj
70 0 obj
<<
/Resources 71 0 R
/Type /Page
/MediaBox [0 0 307 179]
/CropBox [0 0 307 179]
/BleedBox [0 0 307 179]
/TrimBox [0 0 307 179]
/Parent 72 0 R
/Contents 69 0 R
>>
endobj
73 0 obj
<<
/Type /FontDescriptor
/FontName /EAAAAA+mwb_cmsy10
/FontBBox [11 -215 942 727]
/Flags 33
/CapHeight 0
/Ascent 727
/Descent -215
/ItalicAngle 0
/StemV 0
/MissingWidth 500
/FontFile2 74 0 R
/CIDSet 75 0 R
>>
endobj
74 0 obj
<<
/Length1 1992
/Length 76 0 R
/Filter /FlateDecode
>>
stream
<EFBFBD>Umleÿ=÷ÒŽ­{éÛ`3^wLØz×­s€Ã%ë®[ƒŒ"”AZC²ÝÖ[ÛØ®ueAM”/C¢<06>†D%:_rÛƒÄ4!HBb <12>ñü  ²ù¿Ûmñ õ¹>÷ÿýßÿÏsÏó/^<02>ÐÓ:ºjªüà<1F>ôÐxiZÚí |•æ'…TŽó~­l†æÍTvvâÖÍÆSd˜ôgÒ†ž¼÷Þ7ÏÂ0ñÛÓ$ð\qm#þUâ7§sÓ3žlžx“ø²l~œbá{òßgUÓg
l;Þ"ý9â¥I=g,½“ü‚ø›÷Q!_œ^~u€ûK_˜2
<EFBFBD>â»ß'¾.z<hÄft-/Ë_Âl «Â]ü€Køgq§ðŽcEä0ŠÃˆa/vAÓèÁ6øʪÜE÷F×®>W«JüYüN¼,1qŸð£Pòü¿Îoä~e·Ùev„µ2EÿŸcŸQŽw)þË8fgÃ3¶3즑աú uëk½5ÕU•žŠòuen—(ðƒ²Hß",Í<>ÍÉÚÄ!UYlÂÃ3&üñ†ž„Mzmb·'L®ùHUüô3¹vUYy±1²¶ÀøVMŠHi=iò­D%S˺”\…æ†ã> ð5'öÅ- ´J´énÔMì<4D>ûšL1üD¢IO&Äåù^S‡|‡rû]O>ÔRlÕúîü͹ïž-òÖ6ô¨ÊW´l0ګȹA“ë™Ñ<E284A2>QMU%“—µEƉáRXÏɤ0Yk4+¬µR´ÆÁŒÒ%»n³¿‰°ÍH“¹+0EY£LÖ2&'k¦§½QU¤Áô€ªœ‡âòE<C3B2>ŠXôŠ°¨$-püœ&L×"´a¡á¸MXùT…Tao˜Ê BUªrIUú̺vuåÄaÍ7ÁY—K¤‡n—-¡&™£#*Èĸ9á Oªƒn·®š÷áïôy}Þ-4øh"îÃ'\¸¯Y‡óì†xkC%B5ÍnÀÅ„`9U;îë[ÛÖ½ýq_.—|Í[_ïÞ®Ù°¡†ÝØT]½Éšøã`®
öºU;Íž³6å®c«%Z!â_FΈgïÆh<C386>×Øy»F'îÊŒŸœ©©îý <0A>Ùâ+©¾<C2A9>×hÃRÄ}B¼fõpŽ'½ÅÞ¥.Kd ÷‰µˆ«ƒö<C692>ökæm ‡¬”Èѽw¡žBxð”c[EwqÕ×r”S<E2809D>aŽ—íw0/;æ`<60>l>p°ˆJvÕÁ.ÿBLXGÜÛË uLr0‡*Öï`-,á`<60>l^s°ˆMÌt°ä·FêSÈ …4¦io·´<E28099>h<EFBFBD>:Fº¡Ö SOÉ KxzGIµ;MJ¶¬Ÿ$El-ZÑæ ¢å(Ñ;I<49>»ËŽ9Dù­Hu¨<&«*+<>qdl<64>;“A•¼Ô¡ò…Ù©L*=-m ·IÁžžnEÒôb&+ ¤¨ž<C2A8><>R@êÏf¥˜eV”bFј*É@g°KÓ‡òQ]Šä'IÎg³Æøt&?©H{ŒU5J<35>ÃQê¤#TGŽ*›¥º;Ixtld<Wœ —Â*I§"f¤Ždu«Ë‰Ú4e/çŸÃXy£ùÉ”1µs5Ú¦ Òªƒè°÷O¥Þž§ýPí¯„` ØìR÷æKjO÷ÿeŸ"{,?oý·ýÃEk[Ä檾9ê©cÑ–<1F>n®Ü<C2AE>“çøÞã<C39E>øýÀïû£}¥
endstream
endobj
76 0 obj
1324
endobj
75 0 obj
<< /Length 77 0 R /Filter /FlateDecode >>
stream
xœk
endstream
endobj
77 0 obj
9
endobj
78 0 obj
<<
/Type /Font
/Subtype /Type0
/BaseFont /EAAAAA+mwb_cmsy10
/Encoding /Identity-H
/ToUnicode 79 0 R
/DescendantFonts [80 0 R]
>>
endobj
80 0 obj
<< /Type /Font
/BaseFont /EAAAAA+mwb_cmsy10
/CIDToGIDMap /Identity
/Subtype /CIDFontType2
/CIDSystemInfo << /Registry (Adobe) /Ordering (UCS) /Supplement 0 >>
/FontDescriptor 73 0 R
/DW 0
/W [ 0 [750 776 ] ]
>>
endobj
79 0 obj
<< /Length 81 0 R /Filter /FlateDecode >>
stream
xœ]PËjÃ0¼û+ö˜ Á¡àCÔíÈÒÊÔÿ}¥µq zÌîÌ0¬h»[çlñE^õÁX§ g¿<67>Bp´®¨jÐVÅñ­&
‘Äý:Gœ:g<¼n,½„<C2BD> ¾ÓgŽ´Âéªý€/ Ñäþ'i$ëF8ý¶ýÑí—þpB¡ä:ͯhßeø<65>`Ÿs§ÉÆõœäÆÏjÆÕAy<41>s<EFBFBD>
K™ª<E284A2>Ë[ª&»?ÍëM5u—t°Mª†Q•PYÖkwVvÉÛ8"ª…(¥ãep¬È:<¶|È*>ÿŒÙ}
endstream
endobj
81 0 obj
234
endobj
82 0 obj
<<
/Type /FontDescriptor
/FontName /EAAAAB+mwa_cmmi10
/FontBBox [-34 -250 1047 750]
/Flags 33
/CapHeight 683
/Ascent 750
/Descent -250
/ItalicAngle 0
/StemV 0
/MissingWidth 500
/FontFile2 83 0 R
/CIDSet 84 0 R
>>
endobj
83 0 obj
<<
/Length1 2576
/Length 85 0 R
/Filter /FlateDecode
>>
stream
<EFBFBD>VkL[ç~¾sóðì€c²ç@àc° ¡$4XÖ„6!id4V8c{²1ÁEÉZEUPÕm<C395>Ö*Š¦VʪVݦšÒ*JQ·*Z*µŠ¢þØE<C398>¦jÚH™ÔÝ´^böžƒaëšvûìs¾ç}Þë÷žËwÀTâQðˆ=t¤-Ró@õ õ{lb~NžÝú<C39D>;„ßXÝÔL:Ϲ­þ ¿KçNO½÷½ú,À“žÉ¤´ÉO¶Ý8Jþ?"ŸÝ"ªÞnLz4dòs§œ<Þ%ùC#k®0A±„Qò¿F²+¯<>šÁ_ñé?#YžÖò©[ߌý°ÔSü—f
Źµsð†~f65s¬ Iþ€ä<E282AC><C3A4>`…Û¡âÒh©¸öE¾À/‰ âeæbÞÃM¬âEü—p?ÆÓøžÄãø.ò˜Â$F1Œñö#Žû±]èDl·Ú-Y|Ò;ÒuéøOñŽø[ñxS¼"þR|L<#žáÏ Â8_â?âßçßæWù%þÛ¼<C39B>[àÚ¸&¶Êžf{Ù6ܦ*þDu¼‰ßà:Þ z®á*^Ŭàø.ã¹r<C2B9>ÏšU>EU.áž ZÏã1œÅœÆIq¬|<1C>På‡p<E280A1>*D?Uß»Y@tǶx=5Õn—ÓQUYa·Y-Cp…®{B^<¾¨Ä§Ž©Á• qô”ŽÖdm÷ˆ˜“noÑYÂõ_”l¥¿Îµ¨Áõ;®C‰/3¾1.ÊmRçiu!¡hòär,¶x4 ±Œ@ýÈ¡¤„Fy0£[4‡“¿.&îñk“#GJò±¿M¹M¹[¿<º6ù¥bc¼÷öœ{?6)wum·ü-Œº`¹8 ó -;Þ?²Î+ñƉ‰ù„XTH¡ J¼N¯0ÖJÑê²zL“ͺõ>?aêƒ~}ÿȈ.*q
Á”xV甸^ÙR§å<>L¿¼
7ĵ×ãTÄŠ[„1Ëò2Ç/Æ<15>iñAjXìhR<68><52><EFBFBD>ùÔ ©î ©Áëj°W÷´¨XIzŸ£çc]{šÅ‡éi¶ ´ÌÐÖ³bÎÿ-²,‰ïö¬ðA,ó-ôŠEZú¬‡ÖH8ê¸î@?'—س¥Œøð'/÷ oSFw,.q6(G 1áë¶öÊÚJØF“ÇŽ ‰Þû÷ÜܵSÙØî«qVÙ­ŽILsñ­aôÒhm<68>îèÜÇE#]»»ØîÎŽ&2îÜÇ¢<C387>ˆ×Á);,’…ÔÜ“g×S»%J2S1jüðã&UXφý•Ì'øvæ=k ×äeÝn<C39D>g¸ôYÁ×”óZ¬®iÓ¶ô¾IJ•î»¿÷
Â:yáîÅ%Ñ×D!l5~ÑçtØBBÊcÝÂ[ý[‰¨s9ì¡R ûÇ¿)æíÓK›—ˆ:¯ßép×O0(<75>b3õ1ŒŽX0äÜ’­ž¹j+9ëN&5€NNhU䯭 qLdQ§ÑÀÖ¯êÛìÒ^ÙÇuQGxéÞùV5ou=<13>T>° ®>c¼ÏYí½Â»¾¸No<4E>ÝýôÏãzôùŸóþË<E28099>Ï &¼Â¾ÀEv(<28>®ÏÂ3˜âh¹\…ˆ¯1z³ž/—èý/Ñ­kÞgå¸ëǹ¥.Û˜³çïôþ5é7Ó½/oÌkWK° ÑJÎlÃ<6C>âí7(ÒŸ·ߌ¸1xîú¥pP<A×ÂÐò˜ Ã탺FoÓõá wòFŒ1¼¾™ÇÎv—1 ;\Æ<Üìl dóÓ2QÅÞ*c‰øÉ’ 6VM/3x˜¬¯Œyì`#e,<2C>ÍSe,b+ÓËX"þH ÚfEÌAÆ.bi£›~ŽC£<43>#áÑyˆ˜yÉ+…y“ë#Æ°ÞŒV4¥Í)Ê1OçI²l§ØÊoDi*`ºìaTeDJQŸç(¡1ª8hfJF%ïí<…™Ó³ÙtfNÞ•hÃÝÝA9®³9ù@HÒr§™Ô|HîËåäaì(§Š©ÙùÔd¨=‰k
Cš<X˜&E¢<45>Ë¥&æ²…é |05ŸÊ©qJ<71>ÇU7Fuäé—¥ºÛ‰\ÐÆ&òùl˜°±¸4m«92%1•>™Ól,gÈœÓæò÷|>Œw¨0<C2A8>NÍîÙˆö?Ó…iÕa´™ýS黣@ýPÍ«„p(ÜŽ¨æÕîŽÿ#”y™cíŒñ}t<>­ÞÒÌ7ˆW½ÐœtT9ŸpOWd¢I!™T«:ñä«|ÏãÛZ[<5B>4Þý?
endstream
endobj
85 0 obj
1742
endobj
84 0 obj
<< /Length 86 0 R /Filter /FlateDecode >>
stream
xœk`%(£
endstream
endobj
86 0 obj
12
endobj
87 0 obj
<<
/Type /Font
/Subtype /Type0
/BaseFont /EAAAAB+mwa_cmmi10
/Encoding /Identity-H
/ToUnicode 88 0 R
/DescendantFonts [89 0 R]
>>
endobj
89 0 obj
<< /Type /Font
/BaseFont /EAAAAB+mwa_cmmi10
/CIDToGIDMap /Identity
/Subtype /CIDFontType2
/CIDSystemInfo << /Registry (Adobe) /Ordering (UCS) /Supplement 0 >>
/FontDescriptor 82 0 R
/DW 0
/W [ 0 [365 831 680 ] ]
>>
endobj
88 0 obj
<< /Length 90 0 R /Filter /FlateDecode >>
stream
xœ]PËjÄ0 ¼ç+tÜ=,N²=ô°JJ!‡mKÓ~€cË©¡±<C2A1>âò÷µ•<C2B5>B~Œ43 m÷Ü9A¼“W=F0ÖiÂÙ/¤­´UqG|«I†B$q¿Î§Î×<>¥—°3ÄGúÌV8=i?à4šÜ#<23>§¯¶?ºýÂNè"”ÜC§ùí]†W9!ö¹t:l\/IþÇø\¸Ú2(¯qR!I7bq+S5p{IÕd÷ó릌út°Mª†Q•PY><n¨Þ<C2A8>b§]“=ónŽÀj!JYy52dz<0E>²ŠÏ/à
endstream
endobj
90 0 obj
241
endobj
91 0 obj
<<
/Type /FontDescriptor
/FontName /EAAAAC+mwa_cmr10
/FontBBox [-43 -250 1008 750]
/Flags 33
/CapHeight 683
/Ascent 750
/Descent -250
/ItalicAngle 0
/StemV 0
/MissingWidth 500
/FontFile2 92 0 R
/CIDSet 93 0 R
>>
endobj
92 0 obj
<<
/Length1 6620
/Length 94 0 R
/Filter /FlateDecode
>>
stream
xœ…Y p“ו>÷I¿$ˬ‡eù¡‡%ÙÖÃY¶ü<C2B6>#lð ð?°±Á`[¼<02>Bš¤iiÚdØ”I™”RÁ¤SÚÝa“m“n¦%nšdÒ6ÙngÙͶÛL¶“”XìùÉ„4mWã«{îã¿÷Üs¿sÎ÷Ë@@<>†Ðú<C390>e•ÙÕùÚ±wÓðüS¬dýY”ÿËo¶ÏŽMSª<02>KXÞŠoÿxþÒúCÕK㣃#ÿ'1<00>çûDZ#cçÀvÛEãÓ{'ޖƱ=Ží©©™a\ëƒ*|þ¶g§g 7qüØ6íœ}o] Û¸>õÌìÌÜž{‡@0>»{tö›ž¶ o1p %äƒÂÉÞäܽ%\yŽ>Ï.°Èkð¼o@.ÂópÎÁ“pi˜„qØ
í°¢†:B|à…20Kß³ï³7Ø{žÝÏÆX)ó.#¥“ôÚ@}B}Hýõ5MõRª<>Ü!/“ãä!2Mlð{Üñ]ÜómÜõgp nÀËp~×àE¸
—E-žƒóðexƒÓpµ9q˜ƒÔiõt ¢fˆ°*€<>N«ÉV«²2•
¹Œ—J8¡)®«xM¦SC§¬áíÜ®«¥M<> pvë«{ĪV¬²ÒžiÊú.·Ë‰ ªÔíJ}‘¡XÃWm ZLãƒ# Ú†µ)Á4YM#WB¡S<C2A1>Ýfü\s^OG· 06SËxBbkLÀ†n³1Á6­ê1Žôlì¶Y?6YïàÞο½úàÈßœÉÚ w>÷pÃÇb—J­¯v»^ÆcA+JžjNÐMƒ<>°ÛÕlJÐÖðUB±MóMÖ¦SVH0ÖpNB.œWËižH„M¢Þ‰F#ʘh1&¢== ÖÆ%ˆ5< ¬á„¢4Çí25<32>GÜ®
Ø{/…Q‰«*„ÚdºBѧÂÖ · ÁB<C381>݉Ð@<40>°ŸÛ…CMª&T·Ü.<2E>ÛuËíjHhJÝ<4A>útc¹†~ r¿ø3 Àš°¼À-HP ?JObÁšG_á£2ô1ÙûòÈpaAÈd²Ðg²ðy>«z(À¹ÔÛ…^/ÏeµW%ÌôW^áØ_Õ^¥)á
-t³B÷U ·ó“Z´!Ê^•Ye3«ÌÊ”,"çãlן¿a^Câè­l'¦(”/# ±H8GàUB«yÒÁdgÒNgƒ³Üë3ùTœÕWðVê´*<2A>Y{<7B>ÀäswçK2D¯7zT.¹ÛÚ,DAǽ%ú2®Ÿ &°†òrÀƒ„bº`»òhà( nPÎrÖB©ªÔ~oe¥ÕPœ£Ò¯öUQv«…ÃvEÁÝï6¾|ùÄ¥^sãõïìžÍÍÅ3+/ßá&Ï<>ü«¤æ<C2A4>c·ÿp4|íMß¼óOÉå§w¿úæ“ây7¡>QŸµÐƒ:”œ¦øÂ<Ê`s)©<>©å„£­u¨"ͨU”ί©æ€õö
Ãåe½ÖRL¸Öh#pL`Ô¼´<P@¼•~_•‡rK©ò*뉯JÐ]RO{i8«Åî«Âñ”Dª¬NM„97ÊŸÛ²0¢­ÜÜpR­ÞÝæêßÚ~¶”áO}½Çšüfgý©ÙÖ¶G:zÎxuvàåý¯9PØRñlKä§GjöŒÔf«³ø©¯µ 
Ör»B!W÷ÃM¶æ©æMOLæªF¾Þ»ë{c«ŸØî<C398>®2UFÐ.ÛçÐ.• =%9t†“WgQÚ¤‚ÐÄ© A1%„×ò¤²ÜC¯/âyÖHJ³h:ª%4GU¥m!à¤*@êi4ŽïðôTêœJ*S°WÀðÒÛRííöÖïßÜs6_ªô46zÊmÛûê|û¾ëÿqëñ\Ž¡¶&Àrd }òÔc<1D>_íßÑEÕW”56¹ÛNL¬þn¼çüÑçóÞeÙÜo$ŸÄ35 /¾Ç.€¡J#át|á,R%•ÎÅQL>ð¼€s;É'“y¹k%´Œ”£ŠEÀ{Ä£TúTUVŸ9Ûê¡ñf•D«ò
7ëUYñxN"xAÃÒ3QTõ~åØ?ÚJrŸ²ƒ¶¡‰Ç ‡^1ÚM:<3A><Õeáò ÿˆÝËoã„å?
^B0_u‡~¬à ÙåD« ŒŽL™BJ øÜ5­¡äd‰Õ²Ä&ê&z#âM%ØØgÓ~b«¨§Æ«õµôšë‰Í¼osÝ€Ïa÷;'\?ŽêœTY BÕý¤g&´üö€~ñê†dBЉê{wèýeôÚbð†œyT¦†·Û¥2<C2A5>[2<>Ó<14>褿À"eͤSÅ AKSn,ø±é¤[ÍZ<C38D>N0Z žI¥VIˆ9 <x{aúÆâÖÓ½íòwýZÃŽõJJ.Qkó_JÆÉsdÞ‡ôGßÙ·øÖñ†Ùs}FÝ ®©Ès÷<EYÛž<C39B>x;g"É9&ˆ64"—¨
¹TDC¬6%yv)Ÿ…ȉ‘bÒjè>«åºŠ30…ÑD´¥èTJq<4A>>àU¡ÚZ(U Ú*…D¨í-½åOtô?»·qñv|ó—\«ý½ÍË·ú³h<C2B3>õ·ì\]T³˜œkÍ)%ûCíëþV÷¾7 Å^¼;WšÓJ.ÅûÉøÐ×øb(öò#x÷u÷î0ëÄ»¯ 3QØóyµ„0y¼N&‘å-"³O—¥EÜ÷I€á(áþé»WiR¡çÁ¦õ ‡±ÿZ¸}¿~mlçúFâÃfò¶ýdìÉoHnŠXÞÑÑ㺶—L¥Z~¬ôßn8(`³}HЯ|!§œ(ˆ) Í^§žHŸ:_çÚW„ áo@T´©9Õ/ÇTG]
§%%ÿ°íìc½-IgKoMïÂW{@j÷ìÉ/$5N]ûÈïFŽ\<5C>'§°%èIãµÊCÅÅE%£+àuE^ ŠRÙ¦1Ñ.W©Ø®\oÞõy¨ÞwÀ.:PÊ®<C38A>*Ĭ.Ÿ j“^Ý3÷Ó·ªKJª=ÖÃCåÁ£Ãƒ' YNVxMäÍxü7Ç·î(|÷Ã/mþ~|a@!—pq<70>˜£®Žd?“EÏ!Wõ„Š(‡Uxß%ª\™\f4h,«V¢5<C2A2>tºíÙ,©Hy»Çã,ÏFj D0¦YkÑjôFâC¬Ðä$DI¥´O'3Ž²#±äkÙí<C399>äò.ê·¯qF§t6lËM>·v*´vW•=·DïJ&
o\¢þÇ®<C387>F+¤ÌòÏÉGYÙ&­©þäëá™ÖáÕö*}±Ñ\…º<C2BA>JÆ!¡SÈPHaê†BVÐÔK²X§Sy¶Ê¬µª¼Ú<48>~”D¦ûèB Rq™½ŽqÙ
5¡2KF! ßÈåÕ
©xC6ÚBm5ªxF©à È<06>bMdƒBÊbàC[¤<>
Ëh$8+F„{P¨L<C2A8>.QýKÔÈë¯/}iùÂR*G“Jò<4A>PßýšðM9—ßHÅâj̃>¼B1êeP=¯%{¦Œ`$ÑÛ€'ˆ¤|<7C>6)=ÇòÕ4²#ó
”¼BÞ¤"…5Û,€F#!„¡ÏKwè9ªöÚæ]«ÍA=u™Ï`oÜìY(uäKƒV}–”£¥ºº[I,C¦à¤Ÿ|¬+uLÆE̸“@ZîÛ<C3AE>íND»³„Ã@ü€Ý…Ìä3«Ü?þ11$!&é<>}$®<>”(Ðî6„œf£œÎ.àõ|¦hw]`w[Ž\Æ-ü¦l#°ÁM÷mÞPú©Ñ+õ<ñ{?cq®ã B3º´¤ä:¹.5<EFBFBD>£KKË—<EFBFBD>Ë'•KÑ8ãnŒêïÆ™úó3ÿü;½ž•Ý=<1F>b,<2C>¡/€¾\ õЪ—žáy»]YEŠˆƒ j8W!å·—aX§™~Òf6H\¤ÏÈÒœxÑÑ7ËÁÀÑ¡T › Tù¼):"yÀÏEOâO¥¿c¦ÈÅìŽ# ¤RV<52><56>òc/ŒxÕPðd«Ã[S\Rss~ãÅ"‹¹¶|CYífÖþ¥Îö¯Œ>? O…¶Ü8üʾ¯6tgZ뎚š©‰ÖcÝIoqSÄqô¨gcÅP[Ÿgx}t(¼»á<C2BB>º‡rP<72>ì¥ß£ÏãÛãZØ ˜YJmXÇkH®
ßR7 µÒRb_WœÅѤÌE†ì«0r0L)i¯Å@\˜O WET¬YEõµ®Ó%¥G ׂŠ£{îS3=F7!àÒ\LÿYâ`‘ˆä -àà0icä[i â¡HjE"D*SôVˆ“Õ“«Kœu[C ûKçê]«ì†\»ar<61>Í=ðÌÆÙ-ù­þûn?·ÔÛ÷ss³Ï¶4?;só ËÖ—ãå5##kòÖ<C3B2>_=­/ÜêXÓ¿š<>9[Ý .ƒÝn°g®¶íðm>ÝVW\éßà:ï]ðùz·¸Ý[šw4¸7<C2B8>·>ÚqúôŽÈÎ `|!I¶ß9òÀÊËÍÌÆwŽ™ÒgRY<¡ûe¬†%é4u?KÙÅä)düOɸÅÞÐÒ[×Kí<>ÉsW¾¿_$#bRZ_„é01wܾ+IÅ÷{w¨ÌûÈE!<21><EFBFBD>L^†šX¤2ZšYdDF&µjÂ*pDÌì•/ê#pÎ:0j„onZó_¢óö <0B>
sòÝê5-õÁ²þðþÇþDù|~"y"ºü³®Ã'ÚãC;žLó"ä u!¯žx9)vHeŒ4sŒÉn@ºAa:W+rˆà_
=Û弿|ÅDŸI“úÏ [*Qª<T*oêȇñŸÌÄ~pí#eø•ü©ï‰äo­{»ÎZsV÷yw<\¥Òýåâ<C3A5>75¬"/ˆ)þ®[dGê"¯4u µ“ÿr·Úãÿ4Û'ØußÝ’ìX Í¡Z¿#[Í°e2>—ä2«I¡<49>FH”È,!ñ<^¶šUJø"²µVIX/ÑI QsÔÚO=A%&ö45ƒÃ¶rF}À/Ž©4ˆtq(Ítz¶€^q‡„Ãá95æþ<C3A6>_m]lªÜLþéØ7§¾7ùZ¼““*9¹*'ÛZ_4ü<34>ùén" ïmwmÿþÎÈÙÅŠM¯Pç“ßdɸW~;ÞZ¿w“²Ñúö‰ÉL<>>ÎñÒ¤M­®:°»h¤u_S÷cúƬ<C386>;ODgn-ÔWœàÄ»õ!çu#7Ë7Ô‡ª¤¤ÔŒH““R)Z1Ûu"ñåe éRÛ<52>Í'„'”ŒôØ|Ž*ûôr³?u¥Ý<C2A5>¢;ТÛS+osøJÑÑAÊV=ÕÿátüöÁ§ÆúšÏ^×:½ÆŒoÚxºDä¿ô;«ò¢º‡ê<1B>¾±pà—Å“O#¦:Wo[wøL8öÏG»Vã<56>
¿Kž<EFBFBD>÷@9!<15>.• C Êt> <茗"î<AØãŽìò„ üynÑçRï+·0gdAð;ƒÑÎ é"Íü:34Àvš@ÛïÿÎ ÞôÊ»(qoîv‡€_Nb~ì}_ÓÁçýlqßí}vêlúÖõ¥¡9»][×|ýÀÖË<C396>÷Ðþ¥ƒµ¿¿6v"`ñkü5§æ¾w>ó!ÌvòE`QxšìHö¦jæ9ØN©Q}9 3b/${³>•â<E280A2>éuSåätñ»Û2kÿ
¥b÷+c /¬Ô÷žGꥃ ŒJ?‰ß¸FKiàÞó÷ÎJÕ÷W\ù©÷!Â\ÅÒ<C385>eílh3øè3PÍp|Ô Ûl;¨|€;5ã(»%<25>ÅçbX„vmΞÃâþK˜¸»<>TÔRàAu(Ý„þ´>J¸|_ÇmðÒýsð¤*-Sˆœö´LCYLË Îy&-³<>An¤eûÿg†ÇÖuñ)A& ´L<C2B4>Ô§eLdSZfpΣi™…\òÍ´Ìaÿmh˜…8ì† ƒqØ#¾E7A ÖxÚj¨Êa„9œ3…òZŒÏ&hÞ)ñåq…y±¯{„±û«Í‰­Q¬Gq<47>Á™å¸¸æZÜ_XÉ-(íL?!h%¬4
ÃØ3!ŽwÅ7>íhš™<C5A1>ïžßc*n*1UTWW¹LáÁ¹‰)ÓZ<C393>©mp*>7>:ï15NM™b´9Sltnt÷ü舧¼¢2<¸v¦mÐÔ2³šf¦¦F‡÷LÌìt™Ö<E284A2>Î<EFBFBD>N¹Ã¸Á4, vÛP<C39B>iÔ¿5‡é…ÁmÃÓ»+PN6{QŸA…ØèØÞ©AVÎÒ&ÖcâÙk\CزmfçØèîšôR#LµXÊD³¹¡<>ÇZ¸¨ðT”UTºÛgæÝÕUÿß:"rÄϽýÂÿ:þŠH´E^(Íd[”I»Áº†Ý²Å™áƒ3×èÚãùNçÿN>
endstream
endobj
94 0 obj
4925
endobj
93 0 obj
<< /Length 95 0 R /Filter /FlateDecode >>
stream
xœk`ØÃÀ°<C380>…U<à·Va
endstream
endobj
95 0 obj
20
endobj
96 0 obj
<<
/Type /Font
/Subtype /Type0
/BaseFont /EAAAAC+mwa_cmr10
/Encoding /Identity-H
/ToUnicode 97 0 R
/DescendantFonts [98 0 R]
>>
endobj
98 0 obj
<< /Type /Font
/BaseFont /EAAAAC+mwa_cmr10
/CIDToGIDMap /Identity
/Subtype /CIDFontType2
/CIDSystemInfo << /Registry (Adobe) /Ordering (UCS) /Supplement 0 >>
/FontDescriptor 91 0 R
/DW 0
/W [ 0 [365 500 500 500 500 651 391 443 526 555 555 443 526 276 750 443 276 916 500 500 276 388 555 555 555 276 500 ] ]
>>
endobj
97 0 obj
<< /Length 99 0 R /Filter /FlateDecode >>
stream
xœ]Ûj„0†ï÷)r¹½X4waÊ–‚=Pۈɸj Q/|ûÆüÁB¾Ì?N~g¢[ýTë~fÑ»eC3ëz­,Mãb%±–î½>ð„©^Î<>ü]Â"—ܬÓLC­»¥P©Å%cч{™f»²ã£[z`ŠºmÿÍ*²½¾³ã×­ÙwŘHÏ,ö{¤•a^Å@,òß9Õʉúy=¹ô?Åçjˆ%ž9Î GE“¬Ðw:\c·*v}v«Ú¾þ/ž”Hk;ù-ì.ïܪ<qGqœrPŠA)(e ”{Ê
Pá© ±ÒSƒÎˆ
Pˆ ( ÔB= å¤<å-ˆ ê žx ¥Á_þ
œ…Ã_Qà¯@=e‚¿"üå8'þðÏ8ü%pă¿Î·&ô`kÒ6lûÈÅZ×|?k¾ë[¿{MûКÑlYþúçݸ
endstream
endobj
99 0 obj
347
endobj
72 0 obj
<< /Type /Pages
/Count 1
/Kids [70 0 R ] >>
endobj
100 0 obj
<<
/Type /Catalog
/Pages 72 0 R
/Lang (x-unknown)
>>
endobj
71 0 obj
<<
/Font <<
/F1358 78 0 R
/F1357 87 0 R
/F1359 96 0 R
>>
/ProcSet [/PDF /ImageB /ImageC /Text]
/ExtGState <<
/GS1 2 0 R
/GS2 3 0 R
/GS3 4 0 R
/GS4 5 0 R
/GS5 6 0 R
/GS6 7 0 R
/GS7 8 0 R
/GS8 9 0 R
/GS9 10 0 R
/GS10 11 0 R
/GS11 12 0 R
/GS12 13 0 R
/GS13 14 0 R
/GS14 15 0 R
/GS15 16 0 R
/GS16 17 0 R
/GS17 18 0 R
/GS18 19 0 R
/GS19 20 0 R
/GS20 21 0 R
/GS21 22 0 R
/GS22 23 0 R
/GS23 24 0 R
/GS24 25 0 R
/GS25 26 0 R
/GS26 27 0 R
/GS27 28 0 R
/GS28 29 0 R
/GS29 30 0 R
/GS30 31 0 R
/GS31 32 0 R
/GS32 33 0 R
/GS33 34 0 R
/GS34 35 0 R
/GS35 36 0 R
/GS36 37 0 R
/GS37 38 0 R
/GS38 39 0 R
/GS39 40 0 R
/GS40 41 0 R
/GS41 42 0 R
/GS42 43 0 R
/GS43 44 0 R
/GS44 45 0 R
/GS45 46 0 R
/GS46 47 0 R
/GS47 48 0 R
/GS48 49 0 R
/GS49 50 0 R
/GS50 51 0 R
/GS51 52 0 R
/GS52 53 0 R
/GS53 54 0 R
/GS54 55 0 R
/GS55 56 0 R
/GS56 57 0 R
/GS57 58 0 R
/GS58 59 0 R
/GS59 60 0 R
/GS60 61 0 R
/GS61 62 0 R
/GS62 63 0 R
/GS63 64 0 R
/GS64 65 0 R
/GS65 66 0 R
>>
>>
endobj
xref
0 101
0000000000 65535 f
0000000015 00000 n
0000000145 00000 n
0000000197 00000 n
0000000249 00000 n
0000000301 00000 n
0000000353 00000 n
0000000405 00000 n
0000000457 00000 n
0000000509 00000 n
0000000561 00000 n
0000000614 00000 n
0000000667 00000 n
0000000720 00000 n
0000000773 00000 n
0000000826 00000 n
0000000879 00000 n
0000000932 00000 n
0000000985 00000 n
0000001038 00000 n
0000001091 00000 n
0000001144 00000 n
0000001197 00000 n
0000001250 00000 n
0000001303 00000 n
0000001356 00000 n
0000001409 00000 n
0000001463 00000 n
0000001517 00000 n
0000001571 00000 n
0000001625 00000 n
0000001678 00000 n
0000001731 00000 n
0000001784 00000 n
0000001837 00000 n
0000001890 00000 n
0000001943 00000 n
0000001996 00000 n
0000002049 00000 n
0000002102 00000 n
0000002155 00000 n
0000002208 00000 n
0000002261 00000 n
0000002314 00000 n
0000002367 00000 n
0000002420 00000 n
0000002473 00000 n
0000002526 00000 n
0000002579 00000 n
0000002632 00000 n
0000002685 00000 n
0000002738 00000 n
0000002791 00000 n
0000002844 00000 n
0000002897 00000 n
0000002950 00000 n
0000003003 00000 n
0000003056 00000 n
0000003109 00000 n
0000003162 00000 n
0000003215 00000 n
0000003268 00000 n
0000003321 00000 n
0000003375 00000 n
0000003429 00000 n
0000003483 00000 n
0000003537 00000 n
0000003591 00000 n
0000029056 00000 n
0000029078 00000 n
0000029103 00000 n
0000041224 00000 n
0000041088 00000 n
0000029297 00000 n
0000029546 00000 n
0000030987 00000 n
0000030966 00000 n
0000031072 00000 n
0000031090 00000 n
0000031476 00000 n
0000031247 00000 n
0000031786 00000 n
0000031806 00000 n
0000032059 00000 n
0000033918 00000 n
0000033897 00000 n
0000034006 00000 n
0000034025 00000 n
0000034415 00000 n
0000034182 00000 n
0000034732 00000 n
0000034752 00000 n
0000035004 00000 n
0000040046 00000 n
0000040025 00000 n
0000040142 00000 n
0000040161 00000 n
0000040645 00000 n
0000040317 00000 n
0000041068 00000 n
0000041148 00000 n
trailer
<<
/Root 100 0 R
/Info 1 0 R
/ID [<CDBB56CCC4D40BBD9722C91F724A5CC3> <CDBB56CCC4D40BBD9722C91F724A5CC3>]
/Size 101
>>
startxref
42325
%%EOF

Binary file not shown.

Before

Width:  |  Height:  |  Size: 198 KiB

Binary file not shown.

Binary file not shown.

File diff suppressed because it is too large Load Diff

Binary file not shown.

Binary file not shown.

View File

@ -1,637 +0,0 @@
Sensor fusion , Optimal filters , $\mathcal{H}_\infty$ synthesis ,
Vibration isolation , Precision
* Introduction
The sensors used for measuring physical quantity often works well within
a limited frequency range called as the bandwidth of the sensor. The
signals recorded by the sensor beyond its bandwidth are often corrupt
with noise and are not reliable. Many dynamical systems require
measurements over a wide frequency range. Very often a variety of
sensors are utilized to sense the same quantity. These sensors have
different operational bandwidth and are reliable only in a particular
frequency range. The signals from the different sensors are fused
together in order to get the reliable measurement of the physical
quantity over wider frequency band. The combining of signals from
various sensor is called sensor
fusion \cite{hua04_polyp_fir_compl_filter_contr_system}. The resulting
sensor is referred as "super sensor" since it can have better noise
characteristics and can operate over a wider frequency band as compared
to the individual sensor used for
merging \cite{shaw90_bandw_enhan_posit_measur_using_measur_accel}.
Sensor fusion is most commonly employed in the navigation systems to
accurately measure the position of a vehicle. The GPS sensors, which are
accurate in low frequency band, are merged with the high-frequency
accelerometers. Zimmermann and
Sulzer \cite{zimmermann92_high_bandw_orien_measur_contr} used sensor
fusion to measure the orientation of a robot. They merged inclinometer
and accelerometers for accurate angular measurements over large
frequency band.
Corke \cite{corke04_inert_visual_sensin_system_small_auton_helic} merged
inertial measurement unit with the stereo vision system for measurement
of attitude, height and velocity of an unmanned helicopter. Min and
Jeung \cite{min15_compl_filter_desig_angle_estim} used accelerometer and
gyroscope for angle estimations. Baerveldt and Klang \cite{baerveldt97}
used an inclinometer and a gyroscope to measure the orientation of the
autonomous helicopter. The measurement of the 3D orientation using a
gyroscope and an accelerometer was demonstrated by Roberts et
al. \cite{roberts03_low}. Cao et
al. \cite{cao20_adapt_compl_filter_based_post} used sensor fusion to
obtain the lateral and longitudinal velocities of the autonomous
vehicle.
Sensor fusion is also used for enhancing the working range of the active
isolation system. For example, the active vibration isolation system at
the Laser Interferometer Gravitational-Wave Observatory
(LIGO) \cite{matichard15_seism_isolat_advan_ligo} utilizes sensor
fusion. The position sensors, seismometer and geophones are used for
measuring the motion of the LIGO platform in different frequency
bands \cite{hua05_low_ligo}. Tjepkema et
al. \cite{tjepkema12_sensor_fusion_activ_vibrat_isolat_precis_equip}
used sensor fusion to isolate precision equipment from the ground
motion. The feedback from the accelerometer was used for active
isolation at low frequency while force sensor was used at high
frequency. Various configurations of sensor fusion for active vibration
isolation systems are discussed by Collette and
Matichard \cite{collette15_sensor_fusion_method_high_perfor}. Ma and
Ghasemi-Nejhad \cite{ma04_frequen_weigh_adapt_contr_simul} used laser
sensor and piezoelectric patches for simultaneous tracking and vibration
control in smart structures. Recently, Verma et
al. \cite{verma21_virtual_sensor_fusion_high_precis_contr} presented
virtual sensor fusion for high precision control where the signals from
a physical sensor are fused with a sensor simulated virtually.
Fusing signals from different sensors can typically be done using Kalman
filtering \cite{odry18_kalman_filter_mobil_robot_attit_estim, ren19_integ_gnss_hub_motion_estim, faria19_sensor_fusion_rotat_motion_recon, liu18_innov_infor_fusion_method_with, abdel15_const_low_cost_gps_filter, biondi17_attit_recov_from_featur_track}
or complementary
filters \cite{brown72_integ_navig_system_kalman_filter}. A set of
filters is said to be complementary if the sum of their transfer
functions is equal to one at all frequencies. When two filters are
complementary, usually one is a low pass filter while the other is an
high pass filter. The complementary filters are designed in such a way
that their magnitude is close to one in the bandwidth of the sensor they
are combined with. This enables to measure the physical quantity over
larger bandwidth. There are two different categories of complementary
filters --- frequency domain complementary filters and state space
complementary filters. Earliest application of the the frequency domain
complementary filters was seen in Anderson and
Fritze \cite{anderson53_instr_approac_system_steer_comput}. A simple RC
circuit was used to physically realize the complementary filters.
Frequency domain complementary filters were also used
in \cite{shaw90_bandw_enhan_posit_measur_using_measur_accel, zimmermann92_high_bandw_orien_measur_contr, baerveldt97, roberts03_low}.
State space complementary filter finds application in tracking
orientation of the flexible links in a
robot \cite{bachmann03_desig_marg_dof, salcudean91_global_conver_angul_veloc_obser, mahony08_nonlin_compl_filter_special_orthog_group}
and are particularly useful for multi-input multi-output systems.
Pascoal et al. \cite{pascoal00_navig_system_desig_using_time} presented
complementary filters which can adapt with time for navigation system
capable of estimating position and velocity using GPS and SONAR sensors.
The noise characteristics of the super sensor are governed by the norms
of the complementary filters. Therefore, the proper design of the
complementary filters for sensor fusion is of immense importance. The
design of complementary filters is a complex task as they need to tuned
as per the specification of the sensor. In many applications, analytical
formulas of first and second order complementary filters are
used \cite{corke04_inert_visual_sensin_system_small_auton_helic,jensen13_basic_uas}.
These filters are easy to tune and simple to implement using an analog
circuit \cite{moore19_capac_instr_sensor_fusion_high_bandw_nanop,cite:yong16_high_speed_vertic_posit_stage}.
However, these low order complementary filters are not optimal, and high
order complementary filters can lead to better
fusion \cite{jensen13_basic_uas,shaw90_bandw_enhan_posit_measur_using_measur_accel}.
Several design techniques have been proposed to design higher order
complementary filters.
Pascoal \cite{pascoal00_navig_system_desig_using_time} used linear
matrix inequalities (LMIs) \cite{boyd94_linear} for the design of time
varying complementary filters. LMIs were also used by Hua et
al. \cite{hua04_polyp_fir_compl_filter_contr_system} to design finite
impulse response (FIR) filters for the active vibration isolation system
at LIGO.
Plummer \cite{plummer06_optim_compl_filter_their_applic_motion_measur}
proposed an optimal design method using the $\mathcal{H}_{\infty}$
synthesis and weighting functions representing the measurement noise of
the sensors.
Although various methods have been presented in the literature for the
design of complementary filters, there is a lack of general and simple
framework that allows to shape the norm of complementary filters. Such a
method would prove to be very useful as the noise of the "supper sensor"
and its dynamical characteristics depend on the norm of the filters.
This paper presents such a framework based on the $\mathcal{H}_\infty$
norm minimization. The proposed method is quite general and can be
easily extended to a case where more than two complementary filters
needs to be designed. The organization of this paper is as follows.
Section [[*Complementary filters requirements][2]] presents the design
requirements of ideal complementary filters. It also demonstrates how
the noise and robustness characteristics of the "super sensor" can be
transformed into upper bounds on the norm of the complementary filters.
The framework for the design of complementary filters is detailed in
Section [[*Design formulation using $\mathcal{H}_\infty$ synthesis][3]].
This is followed by the application of the design method to
complementary filter design for the active vibration isolation at LIGO
in Section [[*Application: Complementary Filter Design for Active
Vibration Isolation of LIGO][4]]. Finally, concluding remarks are
presented in Section [[*Concluding remarks][5]].
* Complementary filters requirements
** Introduction :ignore:
Complementary filters provides a framework for fusing signals from different
sensors. As the effectiveness of the fusion depends on the proper design of the
complementary filters, they are expected to fulfill certain requirements. These
requirements are discussed in this section.
** Complementary characteristics
Consider a case where two different sensors are used for measuring the
same quantity, $x$ in different frequency range. The inherent dynamics
of the sensors is represented by transfer functions $G_1(s)$ and
$G_2(s)$. The two sensor also have uncorrelated noise characteristics
given by $n_1$ and $n_2$. The signals from these two sensors are fused
using complementary filters $H_1(s)$ and $H_2(s)$. The architecture of
sensor fusion using complementary filters is shown in
Figure [[#fig:fusion_super_sensor][1]]. The resulting sensor, termed as
"super sensor", can have larger bandwidth and better noise
characteristics in comparison to the individual sensor. This means that
the super sensor provides an estimate $\hat{x}$ of $x$ which can be more
accurate over a larger frequency band than the outputs of the individual
sensors. Based on Figure [[#fig:fusion_super_sensor][1]], the estimate
of the physical quantity as measured by the super sensor can be written
as $$\label{eq:comp_filter_estimate}
\hat{x} = \left(G_1 H_1 + G_2 H_2\right) x + H_1 n_1 + H_2 n_2$$
#+caption: [fig:fusion_super_sensor]Block diagram of sensor fusion with
complementary filters
[[file:figs/fusion_super_sensor.pdf]]
The complementary property of filters $H_1(s)$ and $H_2(s)$ simply
implies that the summation of their transfer functions is equal to
unity. That is, unity magnitude and zero phase at all frequencies
(filters which satisfies only the magnitude condition are referred as
"magnitude complementary filter pair"). Therefore, a pair of strict
complementary filter needs to satisfy the following condition.
$$\label{eq:comp_filter}
H_1(s) + H_2(s) = 1$$
** Noise characterization
In order to compute the noise characteristics associated with the
estimate $\hat{x}$, it is first assumed that the dynamics of the
individual sensors are perfect: $$\label{eq:perfect_dynamics}
G_1(s) = G_2(s) = 1$$
The output of the super sensor, $\hat{x}$, based on the block diagram
shown in Figure [[#fig:fusion_super_sensor][1]] can be written as
$$\label{eq:estimate_perfect_dyn}
\hat{x} = x + H_1 n_1 + H_2 n_2$$
The complementary are operating only on the noise component of the
individual sensor. Thus, this sensor fusion architecture permits to
filter the noise of both sensors without introducing any distortion in
the physical quantity to be measured. The estimation error, $\delta x$,
of the super sensor can be written as $$\label{eq:estimate_error}
\delta x \triangleq \hat{x} - x = H_1 n_1 + H_2 n_2$$
The power spectral density (PSD) of the super sensor's estimation error
is given by $$\label{eq:noise_filtering_psd}
\Phi_{\delta x} = \left|H_1\right|^2 \Phi_{n_1} + \left|H_2\right|^2 \Phi_{n_2}$$
where, $\Phi_{\delta x}$ is the PSD of estimation error, $\Phi_{n_1}$
and $\Phi_{n_2}$ are the PSDs of the noise associated with the
individual sensor.
It can be seen that the estimation error's PSD
depends on the PSD of the noise in individual sensor as well as the norm
of the complementary filters.
Therefore, by properly shaping the norm of
the complementary filters, it is possible to minimize the noise of the
super sensor noise.
** Robustness requirements
In the previous subsection, the inherent sensor dynamics were ignored.
However in the real system, the sensor dynamics is not equal to unity.
In such cases, the output of the sensor is normalized using a filter
whose transfer function is equal to the inverse of the sensor dynamics.
There are two major concerns in using inversion. First being the sensors
may not have been calibrated properly and the actual sensor dynamics is
not exactly compensated by the inverse filter. The second problem is
that the inversion of sensor dynamics can result in an improper transfer
function and hence may not be physically realizable. We here suppose
that the sensor dynamics can be inverted using a proper and stable
transfer function $\hat{G}_i(s)$. However, we suppose there exists a
normalization error since $\hat{G}_i^{-1}(s) G_i(s) \neq 1$. This
normalization error can be represented using frequency dependent
multiplicative uncertainty
(Figure [[#fig:sensor_fusion_dynamic_uncertainty][2]]). In
Figure [[#fig:sensor_fusion_dynamic_uncertainty][2]], $\Delta_i(s)$
satisfies $\|\Delta_i(s)\|_\infty \le 1$ and $|w_i(s)|$ is a frequency
dependent weighting function that represents the uncertainty
corresponding to the normalization error.
#+caption: [fig:sensor_fusion_dynamic_uncertainty] Representation of
normalization error in sensor fusion using multiplicative uncertainty
[[file:figs/sensor_fusion_dynamic_uncertainty.pdf]]
Based on Figure [[#fig:sensor_fusion_dynamic_uncertainty][2]], the super
sensor dynamics can be written as
$$\label{eq:super_sensor_dyn_uncertainty}
\frac{\hat{x}}{x} = 1 + w_1(s) H_1(s) \Delta_1(s) + w_2(s) H_2(s) \Delta_2(s)$$
The dynamics of the super sensor now depends on the weighting functions
($w_1(s),w_2(s)$) and the complementary filters ($H_1(s),H_2(s)$).
The robust stability of the fusion can be studied graphically (refer
Figure [[#fig:uncertainty_set_super_sensor][3]]). The frequency response of the fusion output is plotted in a complex plane. The unity transfer function leads to a point $(1,0)$ located on the real axis. The uncertainty associated with first sensor at a particular frequency is represented by a circle with the center at (1,0) and radius $|w_1H_1|$. The uncertainty associated with the second is also represented using a circle centered at any point on the circle representing uncertainty associated with the first sensor and radius equal to $|w_2H_2|$. Therefore, the overall uncertainty of the fusion is represented with a circle centered at (1,0) and radius equal to $|w_1H_1|+|w_2H_2|$.
Mathematically, the maximum phase difference at frequency
$\omega$ that can result from fusion is given by
$$\label{eq:max_phase_uncertainty}
\Delta\phi(\omega) = \arcsin\left( |w_1(j\omega) H_1(j\omega)| + |w_2(j\omega) H_2(j\omega)| \right)$$
#+caption: [fig:uncertainty_set_super_sensor]Robustness analysis of
sensor fusion in the complex plane. The uncertainty associated with the
super sensor dynamics are represented with a solid circle while those
associated with individual sensors are represented with dashed circles.
[[file:figs/uncertainty_set_super_sensor.pdf]]
A constraint on the maximum phase difference at a given frequency can be
incorporated in the design problem using the following equation:
$$\label{eq:max_uncertainty_super_sensor}
\max_\omega \big( \left|w_1 H_1\right| + \left|w_2 H_2\right|\big) < \sin\left( \Delta \phi_\text{max} \right)$$
where $\Delta \phi_\text{max}$ is the maximum allowable phase
difference. It can also be inferred from the above equation that the
magnitude of the complementary filter ($|H_i|$) should be tuned to a
smaller value at the frequencies where the magnitude of weighing
transfer functions ($|w_i|$) representing sensor uncertainty is large.
* Design formulation using $\mathcal{H}_\infty$ synthesis
** Introduction :ignore:
In this section, the shaping of complementary filters is expressed as an optimal $\mathcal{H}_{\infty}$ synthesis problem.
The synthesis goal is to shape the frequency response of the filters such that they satisfy the design requirements presented in Section [[*Complementary filters
requirements][2]].
** Synthesis problem formulation
The first step is to formulate the filter design problem as a
generalized plant-controller structure \cite{boyd91_linear}. The
generalized plant and controller structure for complementary filters
design is shown in Figure [[#fig:h_infinity_robust_fusion][4]]. In the
figure, $P(s)$ is the generalized plant, $u$ is the "control input", $v$
is the "measured output" and $H_2(s)$ is the controller (filter) to be
designed. The regulated outputs of the generalized plant, $z_1$ and
$z_2$, are given by $$\begin{split}
z_1 &= W_1(s)(1-H_2(s)) w = W_1(s) H_1(s) w \text{ by defining } H_{1}(s) \triangleq 1 - H_{2}(s)\\
z_2 &= W_2(s) H_2(s) w
\end{split}$$ where $w$ is the "exogenous input" to the plant,
$W_1(s), W_2(s)$ are the weighting functions for shaping the
complementary filters.
The dynamics of the generalized plant can be written as
$$\label{eq:generalized_plant}
\begin{bmatrix} z_1 \\ z_2 \\ v \end{bmatrix} = P(s) \begin{bmatrix} w\\u \end{bmatrix}; \quad P(s) = \begin{bmatrix}W_1(s) & -W_1(s) \\ 0 & W_2(s) \\ 1 & 0 \end{bmatrix}$$
The weighting functions are chosen based on the specifications and
requirements set for the complementary filters (discussed in
Section [[*Design of weighting functions][3.2]]). The objective of the
optimization is to design a filter $H_2(s)$ such that the following
conditions are satisfied $$\label{eq:comp_filter_problem_form}
\begin{split}
\left| \frac{z_{1}}{w} \right| &= |1-H_2(s)| \le \frac{1}{|W_1(s)|} \\
\left| \frac{z_{1}}{w} \right| &= |H_2(s)| \le \frac{1}{|W_2(s)|}
\end{split}, \quad \forall \omega \in \mathbb{R}^{+}$$
#+caption: [fig:h_infinity_robust_fusion]Generalized plant controller
structure for the design of complementary filters
[[file:figs/h_infinity_robust_fusion.pdf]]
Based on Figure [[#fig:h_infinity_robust_fusion][4]], the
$\mathcal{H}_{\infty}$ synthesis problem for the complementary filters
can be stated as
#+begin_quote
Find a stable transfer function, $H_2(s)$, which takes measured
output, $v$, as input and generates a control input, $u$, such that
the $\mathcal{H}_\infty$ norm of the generalized plant from exogenous
input, $w$, to the regulated output, ${[z_1,z_2]}^T$ is less than
unity.
#+end_quote
Mathematically, the synthesis objective can be written as
$$\begin{split}
&\left\|\begin{matrix} \left[1 - H_2(s)\right] W_1(s) \\ H_2(s) W_2(s) \end{matrix}\right\|_\infty \le 1 \\
\Longleftrightarrow & \left\|\begin{matrix} H_1(s) W_1(s) \\ H_2(s) W_2(s) \end{matrix}\right\|_\infty \le 1; \quad H_1(s) \triangleq 1 - H_2(s)
\end{split}
\label{eq:hinf_syn_obj}$$ The above optimization problem can be
efficiently solved in Matlab \cite{MATLAB2009} using Riccati formulae,
linear matrix inequality based method or maximum entropy method.
** Design of weighting functions
The choice of weighting function governs the shape of the designed
complementary filters. Therefore, it is very important that the design
specifications are appropriately transformed into the weighting
functions. The choice of weighting functions is also constrained by the
following factors
1. Only proper and stable transfer functions can be used as weighting
functions
2. As the order of the designed filter is equal to the sum of the orders
of the weighting functions, the order of the weighting function needs
to be reasonably small to ensure the physical implementation of the
designed complementary filters. This also reduces the computational
cost of the optimization problem.
3. The complementary property of the filter imposes a fundamental
limitations on the weighting functions. The imposes a restriction
that the magnitude of the filters $H_1(s)$ and $H_2(s)$ cannot be
made small simultaneously at the same frequency.
The specifications of the complementary filters are typically expressed
using the following parameters --- low frequency gain, high frequency
gain, slope (order of the filter) and the crossover frequency. We
propose a weighting function that allows to translate the above
requirements by setting simple parameters: $$\label{eq:weight_formula}
W(s) = \displaystyle\left( \frac{
\hfill{} \displaystyle\frac{1}{\omega_0} \sqrt{\frac{1 - \left(\displaystyle\frac{G_0}{G_c}\right)^{\displaystyle\frac{2}{n}}}{1 - {\left(\displaystyle\frac{G_c}{G_\infty}\right)}^{\displaystyle\frac{2}{n}}}} s + \left(\frac{G_0}{G_c}\right)^{\displaystyle\frac{1}{n}}
}{
\left(\displaystyle\frac{1}{G_\infty}\right)^{\displaystyle\frac{1}{n}}\displaystyle \frac{1}{\omega_0} \sqrt{\displaystyle\frac{1 - \left(\displaystyle\frac{G_0}{G_c}\right)^{\displaystyle\frac{2}{n}}}{1 - \left(\displaystyle\frac{G_c}{G_\infty}\right)^{\displaystyle\frac{2}{n}}}} s + \left(\displaystyle\frac{1}{G_c}\right)^{\displaystyle\frac{1}{n}}
}\right)^n$$ where, $G_0 = \lim_{\omega \to 0} |W(j\omega)|$ is the
low frequency gain, $G_\infty = \lim_{\omega \to \infty} |W(j\omega)|$
is the high frequency gain, $\omega_c$ is the crossover frequency,
$G_c = |W(j\omega_c)|$ is the absolute gain at the crossover frequency
and $n$ is the order of the filter. As an illustration, the magnitude of
the frequency response of the weighting function with the parameters
$G_0 = 0.001$, $G_\infty = 10$, $\omega_c = \SI{10}{Hz}$, $G_c = 2$,
$n = 3$ and having high pass characteristics is shown in
Figure [[#fig:weight_formula][5]].
#+caption: [fig:weight_formula]Magnitude of the frequency response of
the weighting function obtained using
equation [[#eq:weight_formula][[eq:weight_formula]]] with the parameters
$G_0 = 0.001$, $G_\infty = 10$, $\omega_c = \SI{10}{Hz}$, $G_c = 2$,
$n = 3$
[[file:figs/weight_formula.pdf]]
** Verification
The proposed methodology for the design of complementary filters is now
applied on the following example.
*Example.* Design complementary filters with the merging frequency
around 10 Hz. The low pass filter should have DC gain of 0.001 and slope
-2 above the merging frequency. The high pass filter should have a slope
of 3 below the merging frequency and 0.001 high frequency gain.
The first step is to design the weighting functions that translate the
above requirements. To do so,
equation [[#eq:weight_formula][[eq:weight_formula]]] is used. The
parameters corresponding to $W_1(s)$ and $W_2(s)$ are listed in
Table [[#tab:weights_params][1]]. The obtained transfer functions of the
weighting functions are $$\begin{split}
W_1(s) &= \dfrac{1000 (s+34.55)^2}{(s+3455)^2}\\
W_2(s) &= \dfrac{0.1 (s+87.43)^3}{(s+4.058)^3}
\end{split}$$
Using these weighting functions, the generalized plant is evaluated
using equation [[#eq:generalized_plant][[eq:generalized_plant]]]. The
optimal complementary filters are obtained by solving the optimization
problem given by equation [[#eq:hinf_syn_obj][[eq:hinf_syn_obj]]]. The
complementary filters obtained after optimization are $$\begin{split}
H_1(s) &= \frac{10^{-8} (s+6.6\times 10^9) (s+3450)^2 (s^2 + 49s + 895)}{(s+6.6e^4) (s^2 + 106 s + 3\times 10^3) (s^2 + 72s + 3580)}\\
H_2(s) &= \frac{(s+6.6\times 10^4) (s+160) (s+4)^3}{(s+6.6\times 10^4) (s^2 + 106 s + 3\times 10^3) (s^2 + 72s + 3580)}
\end{split}$$
The obtained complementary filters are of order 5 which corresponds to
the sum of the orders of the weighting functions used. The frequency
responses of the designed complementary filters are shown in
Figure [[#fig:hinf_filters_results][6]]. It can be seen that the
designed filters fulfills all the design specifications and hence
demonstrates the effectiveness of the designed methodology (more complex
real life example is taken up in Section [[*Application: Complementary
Filter Design for Active Vibration Isolation of LIGO][4]]).
<<tab:weights_params>>
| Parameter | $W_1(s)$ | $W_2(s)$ |
|------------------------+----------+----------|
| $n$ | $2$ | $3$ |
| $G_c$ | $0.5$ | $0.5$ |
| $G_\infty$ | $1000$ | $0.1$ |
| $G_0$ | $0.1$ | $1000$ |
| $\omega_c$ [$\si{Hz}$] | $11$ | $10$ |
#+caption: [tab:weights_params]Parameters used for $W_1(s)$ and $W_2(s)$
#+caption: [fig:hinf_filters_results]Bode plot of the weighting
functions and designed complementary filters
[[file:figs/hinf_filters_results.pdf]]
** TODO Extension to set of three complementary filters
In certain applications, more than two sensors are used to measure the
same quantity and can be merged together to form a "super sensor". In
such case, a set of three (or more) complementary filters is required.
It is here shown that the proposed method can be generalized for the
design of a set of arbitrary number of complementary filters. The
control objective is now to design of a set of $n$ complementary filters
($H_i(s), i=1,\cdots,n$) which satisfy the following conditions
$$\label{eq:hinf_problem_gen}
\begin{split}
&\sum_{i=0}^n H_i(s) = 1 \\
&\left| H_i(s) \right| < \frac{1}{\left| W_i(s) \right|}
\end{split}$$ Here, we extend the method to a case of three
complementary filters. The generalized plant controller setup for this
case is shown in Figure [[#fig:comp_filter_three_hinf][7]]. The
synthesis objective is to design filters $H_2(s)$ and $H_3(s)$ such that
the $\mathcal{H}_\infty$ norm from exogenous input $w$ to regulated
output vector $[z_1,z_2,z_3]^T$ is less than unity. That is,
$$\label{eq:hinf_syn_obj_three}
\begin{split}
&\left\| \begin{matrix} \left[1 - H_2(s) - H_3(s)\right] W_1(s) \\ H_2(s) W_2(s) \\ H_3(s) W_3(s) \end{matrix} \right\|_\infty \le 1\\
\equiv &\left\| \begin{matrix} H_1(s) W_1(s) \\ H_2(s) W_2(s) \\ H_3(s) W_3(s) \end{matrix} \right\|_\infty \le 1; \quad H_1(s) \triangleq 1 - H_2(s) - H_3(s)
\end{split}$$
#+caption: [fig:comp_filter_three_hinf]Generalized plant controller
setup for designing a set of three complementary filters using
$\mathcal{H}_\infty$ synthesis
[[file:figs/comp_filter_three_hinf.pdf]]
To validate this synthesis method, let's take an example where 3 sensors
are merged together. The three sensors are working in the following
three frequency range --- below 1 Hz, between 1Hz to 10Hz and above
10Hz. The weighting functions used for the synthesis are $$\begin{split}
W_1(s) &= \dfrac{1000 (s+3.141)^2}{(s+314.1)^2}\\
W_2(s) &= \dfrac{2200 (s+62.83)^2 (s+6.283)^2}{(s+6283)^2 (s+0.06283)^2}\\
W_3(s) &= \dfrac{0.1 (s+87.43)^3}{(s+4.058)^3}
\end{split}$$ The complementary filters are obtained by solving the
optimization problem given by
equation [[#eq:hinf_syn_obj_three][[eq:hinf_syn_obj_three]]]. The
frequency response of the designed filters and the weighting functions
are shown in Figure [[#fig:three_complementary_filters_results][8]].
#+caption: [fig:three_complementary_filters_results]Bode plot of the
weighting functions and designed set of three complementary filters
[[file:figs/three_complementary_filters_results.pdf]]
* Application: Complementary Filter Design for Active Vibration
** Introduction :ignore:
Isolation of LIGO Gravitational waves can help in detection various astrophysical events occurring in our universe. This can also pave a path to validate theories built around the existence of gravitational waves. However, the detection of these waves is an arduous task owing to the extraordinary small strain experienced by the earth due to gravitational waves. Various methods have been proposed for their detection, out of which laser interferometers are the most popular ones. Laser interferometers offers large projection range and high displacement sensitivity. Among the existing detector, Laser interferometer gravitation-wave observatory (LIGO) is the most sensitive operational detector. LIGO consists of two longs arms, referred as beam tubes, that are placed orthogonal to each other. The arms of the LIGO accommodates a Michleson interferometer with a cavity (Fabry-Perot). The mirrors at the extremity of the cavity serve
as inertial test masses which responds to the strain induced due to the
gravitational waves. The optics of the LIGO are suspended like a
pendulum. The schematics of the LIGO are shown in
Figure [[#ligo_schematics][9]].
#+caption: [ligo_schematics]Schematics of LIGO
[[file:figs/ligo.png]]
The isolation of the terrestrial interferometers is necessary in order
to isolate the motion of the suspended inertial masses from the seismic
ground motion. The vibration isolation system attenuates the effect of
disturbances on the motion of the suspended masses in the gravitational
wave band. The other sources that can affect the sensitivity of the LIGO
are thermal noise, human activities, tidal motion etc. The suspensions
of the LIGO needs to serve two purpose --- isolation and alignment. The
alignment is also important in order to ensure that the interferometer
beam is targeted at the center of the suspended mass. The current
vibration isolation system for LIGO has seven different stages. In the
first stage, hydraulically actuated external pre-isolators are used for
attenuating large ground motions. Two stages of active electromagnetic
isolation system are placed next to pre-isolators. This is followed by
four stages of pendulum based passive isolation system.
In the active isolation stage of LIGO, different sensors are used to
sense the same physical signal in different frequency range. For
example, seismometers are used to sense the position of the platform in
the frequency band 0.5--10 Hz while geophones are employed above 10 Hz.
The signals recorded from different sensor are fused using complementary
filters \cite{hua05_low_ligo,hua04_polyp_fir_compl_filter_contr_system}.
The stringent requirements on these filters complicate their design.
Hua \cite{hua05_low_ligo} proposed complementary FIR filters which were
synthesized using convex optimization. The designed FIR filters were
found to be compliant with the design specifications. However, the order
of the designed filter was very high, which limits its application to a
practical system. In this section, we demonstrate the design of
complementary filters with the same specification using the proposed
method based on $\mathcal{H}_\infty$- synthesis.
** Design specifications
The design specification of the complementary filters (as listed out
in \cite{hua05_low_ligo}) are as follows:
1. In the frequency range $0$-$\SI{0.008}{Hz}$: the high pass filter's
magnitude should be less than $8 \times 10^{-4}$.
2. For frequency range $\SI{0.008}{Hz}$-$\SI{0.04}{Hz}$: slope of the
high pass filter is equal to three.
3. Between $\SI{0.04}{Hz}$-$\SI{0.1}{Hz}$ frequency range: the high pass
filter's magnitude should be less than $3$.
4. For frequencies above $\SI{0.1}{Hz}$: the low pass filter's magnitude
should be less than $0.045$.
The specification of the complementary filters are shown graphically by
dashed black lines in Figure [[#fig:ligo_weights][10]].
** Weighting Functions Design
As the synthesis objective of the complementary filters is described by
Eq. [[#eq:hinf_problem_gen][[eq:hinf_problem_gen]]], it is clear that
the weighting functions should be chosen such that their inverse
magnitude represent the maximum allowed norm of the complementary
filters. This can be done manually using by combining poles and zeros or
using useful formulas such as
Eq. [[#eq:weight_formula][[eq:weight_formula]]]. It is important to note
that the order of the filters should be kept reasonable small in order
to keep the computational cost of the optimization reasonable. This will
also ensure that the designed filters are realizable in the physical
world. The transfer function representing weights should also be stable
and minimum phase.
The weighting function corresponding to the low pass filter, $w_L(s)$,
is here taken as Type I Chebyshev filter. The order of the weighting
function for low pass filter is set as 20.
The weighting function for the high pass filter, $w_H(s)$, is designed
in such a way that its magnitude response is as close as possible to the
design specifications. This was achieved using a combination of high-,
low- and band-pass filters in the particular frequency band. The overall
order of the weighting function for high pass filter is 7.
The magnitude responses of the inverse of the designed weighting
functions and their comparison with the specifications are shown in
Figure [[#fig:ligo_weights][10]]. It can be seen that the inverse of the
designed weights, shown in solid blue line for high pass filter and
solid red line for low pass filter, are close to the specifications
shown in black dotted line.
#+caption: [fig:ligo_weights]Specifications and weighting functions
magnitudes
[[file:figs/ligo_weights.pdf]]
** $\mathcal{H}_\infty$ synthesis of complementary filters
The complementary filters are designed using $\mathcal{H}_\infty$
synthesis based on the architecture shown in
Figure [[#fig:h_infinity_robust_fusion][4]]. The generalized plant is
obtained by substituting the transfer functions of the designed
weighting functions in
equation [[#eq:generalized_plant][[eq:generalized_plant]]], i.e.,
$W_1(s)=w_H(s)$ and $W_2(s)=w_L(s)$. The objective of the
$\mathcal{H}_\infty$ synthesis is given by
equation [[#eq:hinf_syn_obj][[eq:hinf_syn_obj]]]. The optimization
problem in solved in Matlab \cite{MATLAB2009} using Ricatti method. The
frequency responses of the designed optimal complementary filters are
shown in Figure [[#fig:comp_fir_ligo_hinf][11]]. The order of the
filters obtained using $\mathcal{H}_\infty$ optimization is $27$.
Now, we compare the designed complementary filters with the FIR filters
designed by Hua \cite{hua05_low_ligo}. The transfer function of the FIR
filter, $G(\omega)$, is the Fourier transform of its coefficients,
$g(n)$. That is, $$G(\omega) = \sum_n g(n)e^{-j2n\pi\omega}$$ The FIR
filter synthesis was formulated as a convex optimization problem. The
objective of the optimization problem was to find the filter's
coefficients such that their norm are below the specified upper bounds.
The optimization problem was solved using
SeDuMi \cite{sturm99_using_sedum} and the obtained order for the FIR
filters is $512$. The bode plot of the FIR filters are shown with dotted
lines in Figure [[#fig:comp_fir_ligo_hinf][11]]. It can be seen that
frequency responses of the designed complementary filters matches quite
well with those of the FIR filters. The designed complementary filters
are of much lower order and can be implemented with less computational
cost can the FIR filters. The proposed methodology for the design of
complementary filters can be effectively employed to obtain physically
realizable filters.
#+caption: [fig:comp_fir_ligo_hinf]Bode plot of the filters designed
using $\mathcal{H}_\infty$ synthesis and FIR
filters \cite{hua05_low_ligo}
[[file:figs/comp_fir_ligo_hinf.pdf]]
* Concluding remarks
The measurements from the sensors are reliable only within its
bandwidth. The signals from different sensors are usually fused in order
to measure a physical quantity over larger bandwidth. The sensor
obtained after fusion is called as super sensor as it has superior noise
characteristics and wider bandwidth. Complementary filters are used for
the combining the signals from different sensors. A new framework based
on $\mathcal{H}_\infty$ synthesis has been presented in this paper to
aid the design of complementary filters. The method presented allows to
shape the complementary filters based on the design specifications. The
task of filter design is posed as an $\mathcal{H}_{\infty}$ synthesis
problem. The design specifications of the systems are transformed in the
form of weighting functions. These weighting functions are used in the
optimization problem to constraint the filter response in a frequency
band. The method has also been demonstrated for designing a set of three
complementary filters. The design frame is general, simple to implement
and can easily be extended to difference scenarios of sensor fusion. The
effectiveness of the method is demonstrated for a real life application
where complementary filters are designed for active vibration isolation
of Laser Interferometer Gravitational-Wave Observatory (LIGO). The
filters designed with the proposed method have been with compared with
the finite impulse response (FIR) filters. It was found that the filters
designed using $\mathcal{H}_\infty$ have lower order compared to FIR
filters. The designed filters are physically realizable and have lesser
computational cost compared to FIR filters. The proposed method can be
effectively used to shape complementary filters based on design
specifications. The method can be further be extended for the design of
robust complementary filters with desired noise characteristics
considering uncertainties in the sensor dynamics. This is the focus of
our future research.
* Acknowledgment
:PROPERTIES:
:CLASS: unnumbered
:END:
The authors would like to acknowledge the help received from the French
Community of Belgium for funding the FRIA Grant of Thomas Dehaeze (Grant
No. FC 31597).

Binary file not shown.

View File

@ -1,560 +0,0 @@
\documentclass[sort&compress, review,12pt,times]{elsarticle}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\usepackage{graphicx}
\usepackage{grffile}
\usepackage{rotating}
\usepackage[normalem]{ulem}
\usepackage{capt-of}
\usepackage{hyperref}
\usepackage{bm}
\usepackage{array}
\usepackage{amsmath,amssymb,amsfonts}
\usepackage{algorithmic}
\usepackage{textcomp}
\usepackage{xcolor}
\usepackage{cases}
\usepackage{tabularx,siunitx,booktabs}
\usepackage{algorithmic}
\newcounter{example}[section]
\newenvironment{example}[1][]{\refstepcounter{example}\par\medskip
\noindent \textbf{Example. #1} \rmfamily}{\medskip}
\usepackage[top=3cm, bottom=3cm, left=3cm, right=3cm]{geometry}
\journal{Mechanical Systems and Signal Processing}
\author[a1,a2]{Thomas Dehaeze\corref{cor1}}
\author[a3,a4]{Mohit Verma}
\author[a2,a4]{Christophe Collette}
\cortext[cor1]{Corresponding author. Email Address: dehaeze.thomas@gmail.com}
\address[a1]{European Synchrotron Radiation Facility, Grenoble, France}
\address[a2]{University of Li\`{e}ge, Department of Aerospace and Mechanical Engineering, 4000 Li\`{e}ge, Belgium.}
\address[a3]{CSIR --- Structural Engineering Research Centre, Taramani, Chennai --- 600113, India.}
\address[a4]{Universit\'{e} Libre de Bruxelles, Precision Mechatronics Laboratory, BEAMS Department, 1050 Brussels, Belgium.}
\date{}
\title{A new method of designing complementary filters for sensor fusion using \(\mathcal{H}_\infty\) synthesis}
\begin{document}
\begin{frontmatter}
\begin{abstract}
Sensor have limited bandwidth and are accurate only in a certain frequency band.
In many applications, the signals of different sensor are fused together in order to either enhance the stability or improve the operational bandwidth of the system.
The sensor signals can be fused using complementary filters.
The tuning of complementary filters is a complex task and is the subject of this paper.
The filters needs to meet design specifications while satisfying the complementary property.
This paper presents a framework to shape the norm of complementary filters using the $\mathcal{H}_\infty$ norm minimization.
The design specifications are imposed as constraints in the optimization problem by appropriate selection of weighting functions.
The proposed method is quite general and easily extendable to cases where more than two sensors are fused.
Finally, the proposed method is applied to the design of complementary filter design for active vibration isolation of the Laser Interferometer Gravitation-wave Observatory (LIGO).
\end{abstract}
\begin{keyword}
Sensor fusion \sep{} Optimal filters \sep{} $\mathcal{H}_\infty$ synthesis \sep{} Vibration isolation \sep{} Precision
\end{keyword}
\end{frontmatter}
\section{Introduction}\label{sec:introduction}
The sensors used for measuring physical quantity often works well within a limited frequency range called as the bandwidth of the sensor.
The signals recorded by the sensor beyond its bandwidth are often corrupt with noise and are not reliable.
Many dynamical systems require measurements over a wide frequency range.
Very often a variety of sensors are utilized to sense the same quantity.
These sensors have different operational bandwidth and are reliable only in a particular frequency range.
The signals from the different sensors are fused together in order to get the reliable measurement of the physical quantity over wider frequency band.
The combining of signals from various sensor is called sensor fusion~\cite{hua04_polyp_fir_compl_filter_contr_system}.
The resulting sensor is referred as ``super sensor'' since it can have better noise characteristics and can operate over a wider frequency band as compared to the individual sensor used for merging~\cite{shaw90_bandw_enhan_posit_measur_using_measur_accel}.
Sensor fusion is most commonly employed in the navigation systems to accurately measure the position of a vehicle.
The GPS sensors, which are accurate in low frequency band, are merged with the high-frequency accelerometers.
Zimmermann and Sulzer~\cite{zimmermann92_high_bandw_orien_measur_contr} used sensor fusion to measure the orientation of a robot.
They merged inclinometer and accelerometers for accurate angular measurements over large frequency band.
Corke~\cite{corke04_inert_visual_sensin_system_small_auton_helic} merged inertial measurement unit with the stereo vision system for measurement of attitude, height and velocity of an unmanned helicopter.
Min and Jeung~\cite{min15_compl_filter_desig_angle_estim} used accelerometer and gyroscope for angle estimations.
Baerveldt and Klang~\cite{baerveldt97} used an inclinometer and a gyroscope to measure the orientation of the autonomous helicopter.
The measurement of the 3D orientation using a gyroscope and an accelerometer was demonstrated by Roberts et al.~\cite{roberts03_low}.
Cao et al.~\cite{cao20_adapt_compl_filter_based_post} used sensor fusion to obtain the lateral and longitudinal velocities of the autonomous vehicle.
Sensor fusion is also used for enhancing the working range of the active isolation system.
For example, the active vibration isolation system at the Laser Interferometer Gravitational-Wave Observatory (LIGO)~\cite{matichard15_seism_isolat_advan_ligo} utilizes sensor fusion.
The position sensors, seismometer and geophones are used for measuring the motion of the LIGO platform in different frequency bands~\cite{hua05_low_ligo}.
Tjepkema et al.~\cite{tjepkema12_sensor_fusion_activ_vibrat_isolat_precis_equip} used sensor fusion to isolate precision equipment from the ground motion.
The feedback from the accelerometer was used for active isolation at low frequency while force sensor was used at high frequency.
Various configurations of sensor fusion for active vibration isolation systems are discussed by Collette and Matichard~\cite{collette15_sensor_fusion_method_high_perfor}.
Ma and Ghasemi-Nejhad~\cite{ma04_frequen_weigh_adapt_contr_simul} used laser sensor and piezoelectric patches for simultaneous tracking and vibration control in smart structures.
Recently, Verma et al.~\cite{verma21_virtual_sensor_fusion_high_precis_contr} presented virtual sensor fusion for high precision control where the signals from a physical sensor are fused with a sensor simulated virtually.
Fusing signals from different sensors can typically be done using Kalman filtering~\cite{odry18_kalman_filter_mobil_robot_attit_estim, ren19_integ_gnss_hub_motion_estim, faria19_sensor_fusion_rotat_motion_recon, liu18_innov_infor_fusion_method_with, abdel15_const_low_cost_gps_filter, biondi17_attit_recov_from_featur_track} or complementary filters~\cite{brown72_integ_navig_system_kalman_filter}.
A set of filters is said to be complementary if the sum of their transfer functions is equal to one at all frequencies.
When two filters are complementary, usually one is a low pass filter while the other is an high pass filter.
The complementary filters are designed in such a way that their magnitude is close to one in the bandwidth of the sensor they are combined with.
This enables to measure the physical quantity over larger bandwidth.
There are two different categories of complementary filters --- frequency domain complementary filters and state space complementary filters.
Earliest application of the the frequency domain complementary filters was seen in Anderson and Fritze~\cite{anderson53_instr_approac_system_steer_comput}.
A simple RC circuit was used to physically realize the complementary filters.
Frequency domain complementary filters were also used in~\cite{shaw90_bandw_enhan_posit_measur_using_measur_accel, zimmermann92_high_bandw_orien_measur_contr, baerveldt97, roberts03_low}.
State space complementary filter finds application in tracking orientation of the flexible links in a robot~\cite{bachmann03_desig_marg_dof, salcudean91_global_conver_angul_veloc_obser, mahony08_nonlin_compl_filter_special_orthog_group} and are particularly useful for multi-input multi-output systems.
Pascoal et al.~\cite{pascoal00_navig_system_desig_using_time} presented complementary filters which can adapt with time for navigation system capable of estimating position and velocity using GPS and SONAR sensors.
The noise characteristics of the super sensor are governed by the norms of the complementary filters.
Therefore, the proper design of the complementary filters for sensor fusion is of immense importance.
The design of complementary filters is a complex task as they need to tuned as per the specification of the sensor.
In many applications, analytical formulas of first and second order complementary filters are used~\cite{corke04_inert_visual_sensin_system_small_auton_helic,jensen13_basic_uas}.
These filters are easy to tune and simple to implement using an analog circuit~\cite{moore19_capac_instr_sensor_fusion_high_bandw_nanop,cite:yong16_high_speed_vertic_posit_stage}.
However, these low order complementary filters are not optimal, and high order complementary filters can lead to better fusion~\cite{jensen13_basic_uas,shaw90_bandw_enhan_posit_measur_using_measur_accel}.
Several design techniques have been proposed to design higher order complementary filters.
Pascoal~\cite{pascoal00_navig_system_desig_using_time} used linear matrix inequalities (LMIs)~\cite{boyd94_linear} for the design of time varying complementary filters.
LMIs were also used by Hua et al.~\cite{hua04_polyp_fir_compl_filter_contr_system} to design finite impulse response (FIR) filters for the active vibration isolation system at LIGO.
Plummer~\cite{plummer06_optim_compl_filter_their_applic_motion_measur} proposed an optimal design method using the $\mathcal{H}_{\infty}$ synthesis and weighting functions representing the measurement noise of the sensors.
Although various methods have been presented in the literature for the design of complementary filters, there is a lack of general and simple framework that allows to shape the norm of complementary filters.
Such a method would prove to be very useful as the noise of the ``supper sensor'' and its dynamical characteristics depend on the norm of the filters.
This paper presents such a framework based on the $\mathcal{H}_\infty$ norm minimization.
The proposed method is quite general and can be easily extended to a case where more than two complementary filters needs to be designed.
The organization of this paper is as follows.
Section~\ref{sec:requirements} presents the design requirements of ideal complementary filters.
It also demonstrates how the noise and robustness characteristics of the ``super sensor'' can be transformed into upper bounds on the norm of the complementary filters.
The framework for the design of complementary filters is detailed in Section~\ref{sec:hinf_method}.
This is followed by the application of the design method to complementary filter design for the active vibration isolation at LIGO in Section~\ref{sec:application_ligo}.
Finally, concluding remarks are presented in Section~\ref{sec:conclusion}.
\section{Complementary filters requirements}\label{sec:requirements}
Complementary filters provides a framework for fusing signals from different sensors.
As the effectiveness of the fusion depends on the proper design of the complementary filters, they are expected to fulfill certain requirements.
These requirements are discussed in this section.
\subsection{Complementary characteristics}\label{sec:sensor_fusion}
Consider a case where two different sensors are used for measuring the same quantity, $x$ in different frequency range.
The inherent dynamics of the sensors is represented by transfer functions \(G_1(s)\) and \(G_2(s)\).
The two sensor also have uncorrelated noise characteristics given by \(n_1\) and \(n_2\).
The signals from these two sensors are fused using complementary filters \(H_1(s)\) and \(H_2(s)\).
The architecture of sensor fusion using complementary filters is shown in Figure~\ref{fig:fusion_super_sensor}.
The resulting sensor, termed as ``super sensor'', can have larger bandwidth and better noise characteristics in comparison to the individual sensor.
This means that the super sensor provides an estimate \(\hat{x}\) of \(x\) which can be more accurate over a larger frequency band than the outputs of the individual sensors.
Based on Figure~\ref{fig:fusion_super_sensor}, the estimate of the physical quantity as measured by the super sensor can be written as
\begin{equation}
\label{eq:comp_filter_estimate}
\hat{x} = \left(G_1 H_1 + G_2 H_2\right) x + H_1 n_1 + H_2 n_2
\end{equation}
\begin{figure}
\centering
\includegraphics[scale=1]{figs/fusion_super_sensor.pdf}
\caption{\label{fig:fusion_super_sensor}Block diagram of sensor fusion with complementary filters}
\end{figure}
The complementary property of filters \(H_1(s)\) and \(H_2(s)\) simply implies that the summation of their transfer functions is equal to unity.
That is, unity magnitude and zero phase at all frequencies (filters which satisfies only the magnitude condition are referred as ``magnitude complementary filter pair'').
Therefore, a pair of strict complementary filter needs to satisfy the following condition.
\begin{equation}
\label{eq:comp_filter}
H_1(s) + H_2(s) = 1
\end{equation}
\subsection{Noise characterization}\label{sec:noise_filtering}
In order to compute the noise characteristics associated with the estimate $\hat{x}$, it is first assumed that the dynamics of the individual sensors are perfect:
\begin{equation}
\label{eq:perfect_dynamics}
G_1(s) = G_2(s) = 1
\end{equation}
The output of the super sensor, \(\hat{x}\), based on the block diagram shown in Figure~\ref{fig:fusion_super_sensor} can be written as
\begin{equation}
\label{eq:estimate_perfect_dyn}
\hat{x} = x + H_1 n_1 + H_2 n_2
\end{equation}
The complementary are operating only on the noise component of the individual sensor.
Thus, this sensor fusion architecture permits to filter the noise of both sensors without introducing any distortion in the physical quantity to be measured.
The estimation error, \(\delta x\), of the super sensor can be written as
\begin{equation}
\label{eq:estimate_error}
\delta x \triangleq \hat{x} - x = H_1 n_1 + H_2 n_2
\end{equation}
The power spectral density (PSD) of the super sensor's estimation error is given by
\begin{equation}
\label{eq:noise_filtering_psd}
\Phi_{\delta x} = \left|H_1\right|^2 \Phi_{n_1} + \left|H_2\right|^2 \Phi_{n_2}
\end{equation}
where, $\Phi_{\delta x}$ is the PSD of estimation error, $\Phi_{n_1}$ and $\Phi_{n_2}$ are the PSDs of the noise associated with the individual sensor.
It can be seen that the estimation error's PSD depends on the PSD of the noise in individual sensor as well as the norm of the complementary filters.
Therefore, by properly shaping the norm of the complementary filters, it is possible to minimize the noise of the super sensor noise.
\subsection{Robustness requirements}\label{sec:fusion_robustness}
In the previous subsection, the inherent sensor dynamics were ignored.
However in the real system, the sensor dynamics is not equal to unity.
In such cases, the output of the sensor is normalized using a filter whose transfer function is equal to the inverse of the sensor dynamics.
There are two major concerns in using inversion.
First being the sensors may not have been calibrated properly and the actual sensor dynamics is not exactly compensated by the inverse filter.
The second problem is that the inversion of sensor dynamics can result in an improper transfer function and hence may not be physically realizable.
We here suppose that the sensor dynamics can be inverted using a proper and stable transfer function \(\hat{G}_i(s)\).
However, we suppose there exists a normalization error since \(\hat{G}_i^{-1}(s) G_i(s) \neq 1\).
This normalization error can be represented using frequency dependent multiplicative uncertainty (Figure~\ref{fig:sensor_fusion_dynamic_uncertainty}).
In Figure~\ref{fig:sensor_fusion_dynamic_uncertainty}, \(\Delta_i(s)\) satisfies \(\|\Delta_i(s)\|_\infty \le 1\) and \(|w_i(s)|\) is a frequency dependent weighting function that represents the uncertainty corresponding to the normalization error.
\begin{figure}
\centering
\includegraphics[scale=1]{figs/sensor_fusion_dynamic_uncertainty.pdf}
\caption{\label{fig:sensor_fusion_dynamic_uncertainty} Representation of normalization error in sensor fusion using multiplicative uncertainty}
\end{figure}
Based on Figure~\ref{fig:sensor_fusion_dynamic_uncertainty}, the super sensor dynamics can be written as
\begin{equation}
\label{eq:super_sensor_dyn_uncertainty}
\frac{\hat{x}}{x} = 1 + w_1(s) H_1(s) \Delta_1(s) + w_2(s) H_2(s) \Delta_2(s)
\end{equation}
The dynamics of the super sensor now depends on the weighting functions ($w_1(s),w_2(s)$) and the complementary filters ($H_1(s),H_2(s)$).
The robust stability of the fusion can be studied graphically (refer Figure~\ref{fig:uncertainty_set_super_sensor}).
The frequency response of the fusion output is plotted in a complex plane.
The unity transfer function leads to a point $(1,0)$ located on the real axis.
The uncertainty associated with first sensor at a particular frequency is represented by a circle with the center at (1,0) and radius $|w_1H_1|$.
The uncertainty associated with the second is also represented using a circle centered at any point on the circle representing uncertainty associated with the first sensor and radius equal to $|w_2H_2|$.
Therefore, the overall uncertainty of the fusion is represented with a circle centered at (1,0) and radius equal to $|w_1H_1|+|w_2H_2|$.
The maximum phase difference that can result from the fusion is found by drawing a tangent from the origin to the uncertainty circle of super sensor.
Mathematically, the maximum phase difference at frequency $\omega$ that can result from fusion is given by
\begin{equation}
\label{eq:max_phase_uncertainty}
\Delta\phi(\omega) = \arcsin\left( |w_1(j\omega) H_1(j\omega)| + |w_2(j\omega) H_2(j\omega)| \right)
\end{equation}
\begin{figure}
\centering
\includegraphics[scale=1]{figs/uncertainty_set_super_sensor.pdf}
\caption{\label{fig:uncertainty_set_super_sensor}Robustness analysis of sensor fusion in the complex plane. The uncertainty associated with the super sensor dynamics are represented with a solid circle while those associated with individual sensors are represented with dashed circles.}
\end{figure}
A constraint on the maximum phase difference at a given frequency can be incorporated in the design problem using the following equation:
\begin{equation}
\label{eq:max_uncertainty_super_sensor}
\max_\omega \big( \left|w_1 H_1\right| + \left|w_2 H_2\right|\big) < \sin\left( \Delta \phi_\text{max} \right)
\end{equation}
where \(\Delta \phi_\text{max}\) is the maximum allowable phase difference.
It can also be inferred from the above equation that the magnitude of the complementary filter (\(|H_i|\)) should be tuned to a smaller value at the frequencies where the magnitude of weighing transfer functions (\(|w_i|\)) representing sensor uncertainty is large.
\section{Design formulation using \(\mathcal{H}_\infty\) synthesis}\label{sec:hinf_method}
In this section, the shaping of complementary filters is expressed as an optimal $\mathcal{H}_{\infty}$ synthesis problem.
The synthesis goal is to shape the frequency response of the filters such that they satisfy the design requirements presented in Section~\ref{sec:requirements}.
\subsection{Synthesis problem formulation}\label{sec:hinf_synthesis}
The first step is to formulate the filter design problem as a generalized plant-controller structure~\cite{boyd91_linear}.
The generalized plant and controller structure for complementary filters design is shown in Figure~\ref{fig:h_infinity_robust_fusion}.
In the figure, $P(s)$ is the generalized plant, $u$ is the ``control input'', $v$ is the ``measured output'' and $H_2(s)$ is the controller (filter) to be designed.
The regulated outputs of the generalized plant, $z_1$ and $z_2$, are given by
\begin{equation}
\begin{split}
z_1 &= W_1(s)(1-H_2(s)) w = W_1(s) H_1(s) w \text{ by defining } H_{1}(s) \triangleq 1 - H_{2}(s)\\
z_2 &= W_2(s) H_2(s) w
\end{split}
\end{equation}
where $w$ is the ``exogenous input'' to the plant, $W_1(s), W_2(s)$ are the weighting functions for shaping the complementary filters.
The dynamics of the generalized plant can be written as
\begin{equation}
\label{eq:generalized_plant}
\begin{bmatrix} z_1 \\ z_2 \\ v \end{bmatrix} = P(s) \begin{bmatrix} w\\u \end{bmatrix}; \quad P(s) = \begin{bmatrix}W_1(s) & -W_1(s) \\ 0 & W_2(s) \\ 1 & 0 \end{bmatrix}
\end{equation}
The weighting functions are chosen based on the specifications and requirements set for the complementary filters (discussed in Section~\ref{sec:hinf_weighting_func}).
The objective of the optimization is to design a filter $H_2(s)$ such that the following conditions are satisfied
\begin{equation}
\label{eq:comp_filter_problem_form}
\begin{split}
\left| \frac{z_{1}}{w} \right| &= |1-H_2(s)| \le \frac{1}{|W_1(s)|} \\
\left| \frac{z_{1}}{w} \right| &= |H_2(s)| \le \frac{1}{|W_2(s)|}
\end{split}, \quad \forall \omega \in \mathbb{R}^{+}
\end{equation}
\begin{figure}
\centering
\includegraphics[scale=1]{figs/h_infinity_robust_fusion.pdf}
\caption{\label{fig:h_infinity_robust_fusion}Generalized plant controller structure for the design of complementary filters}
\end{figure}
Based on Figure~\ref{fig:h_infinity_robust_fusion}, the $\mathcal{H}_{\infty}$ synthesis problem for the complementary filters can be stated as
\begin{quote}
Find a stable transfer function, $H_2(s)$, which takes measured output, $v$, as input and generates a control input, $u$, such that the $\mathcal{H}_\infty$ norm of the generalized plant from exogenous input, $w$, to the regulated output, ${[z_1,z_2]}^T$ is less than unity.
\end{quote}
Mathematically, the synthesis objective can be written as
\begin{equation}
\begin{split}
&\left\|\begin{matrix} \left[1 - H_2(s)\right] W_1(s) \\ H_2(s) W_2(s) \end{matrix}\right\|_\infty \le 1 \\
\Longleftrightarrow & \left\|\begin{matrix} H_1(s) W_1(s) \\ H_2(s) W_2(s) \end{matrix}\right\|_\infty \le 1; \quad H_1(s) \triangleq 1 - H_2(s)
\end{split}
\label{eq:hinf_syn_obj}
\end{equation}
The above optimization problem can be efficiently solved in \textsc{Matlab}~\cite{MATLAB2009} using Riccati formulae, linear matrix inequality based method or maximum entropy method.
\subsection{Design of weighting functions}\label{sec:hinf_weighting_func}
The choice of weighting function governs the shape of the designed complementary filters.
Therefore, it is very important that the design specifications are appropriately transformed into the weighting functions.
The choice of weighting functions is also constrained by the following factors
\begin{enumerate}
\item[(a)] Only proper and stable transfer functions can be used as weighting functions
\item[(b)] As the order of the designed filter is equal to the sum of the orders of the weighting functions, the order of the weighting function needs to be reasonably small to ensure the physical implementation of the designed complementary filters.
This also reduces the computational cost of the optimization problem.
\item[(c)] The complementary property of the filter imposes a fundamental limitations on the weighting functions.
The imposes a restriction that the magnitude of the filters $H_1(s)$ and $H_2(s)$ cannot be made small simultaneously at the same frequency.
\end{enumerate}
The specifications of the complementary filters are typically expressed using the following parameters --- low frequency gain, high frequency gain, slope (order of the filter) and the crossover frequency.
We propose a weighting function that allows to translate the above requirements by setting simple parameters:
\begin{equation}
\label{eq:weight_formula}
W(s) = \displaystyle\left( \frac{
\hfill{} \displaystyle\frac{1}{\omega_0} \sqrt{\frac{1 - \left(\displaystyle\frac{G_0}{G_c}\right)^{\displaystyle\frac{2}{n}}}{1 - {\left(\displaystyle\frac{G_c}{G_\infty}\right)}^{\displaystyle\frac{2}{n}}}} s + \left(\frac{G_0}{G_c}\right)^{\displaystyle\frac{1}{n}}
}{
\left(\displaystyle\frac{1}{G_\infty}\right)^{\displaystyle\frac{1}{n}}\displaystyle \frac{1}{\omega_0} \sqrt{\displaystyle\frac{1 - \left(\displaystyle\frac{G_0}{G_c}\right)^{\displaystyle\frac{2}{n}}}{1 - \left(\displaystyle\frac{G_c}{G_\infty}\right)^{\displaystyle\frac{2}{n}}}} s + \left(\displaystyle\frac{1}{G_c}\right)^{\displaystyle\frac{1}{n}}
}\right)^n
\end{equation}
where, \(G_0 = \lim_{\omega \to 0} |W(j\omega)|\) is the low frequency gain, \(G_\infty = \lim_{\omega \to \infty} |W(j\omega)|\) is the high frequency gain, $\omega_c$ is the crossover frequency, \(G_c = |W(j\omega_c)|\) is the absolute gain at the crossover frequency and $n$ is the order of the filter.
As an illustration, the magnitude of the frequency response of the weighting function with the parameters \(G_0 = 0.001\), \(G_\infty = 10\), \(\omega_c = \SI{10}{Hz}\), \(G_c = 2\), \(n = 3\) and having high pass characteristics is shown in Figure~\ref{fig:weight_formula}.
\begin{figure}
\centering
\includegraphics[scale=1]{figs/weight_formula.pdf}
\caption{\label{fig:weight_formula}Magnitude of the frequency response of the weighting function obtained using equation~\eqref{eq:weight_formula} with the parameters \(G_0 = 0.001\), \(G_\infty = 10\), \(\omega_c = \SI{10}{Hz}\), \(G_c = 2\), \(n = 3\)}
\end{figure}
\subsection{Verification}\label{sec:hinf_example}
The proposed methodology for the design of complementary filters is now applied on the following example.
\begin{example}
Design complementary filters with the merging frequency around 10~Hz.
The low pass filter should have DC gain of 0.001 and slope -2 above the merging frequency.
The high pass filter should have a slope of 3 below the merging frequency and 0.001 high frequency gain.
\end{example}
\noindent The first step is to design the weighting functions that translate the above requirements.
To do so, equation~\eqref{eq:weight_formula} is used.
The parameters corresponding to $W_1(s)$ and $W_2(s)$ are listed in Table~\ref{tab:weights_params}.
The obtained transfer functions of the weighting functions are
\begin{equation}
\begin{split}
W_1(s) &= \dfrac{1000 (s+34.55)^2}{(s+3455)^2}\\
W_2(s) &= \dfrac{0.1 (s+87.43)^3}{(s+4.058)^3}
\end{split}
\end{equation}
Using these weighting functions, the generalized plant is evaluated using equation~\eqref{eq:generalized_plant}.
The optimal complementary filters are obtained by solving the optimization problem given by equation~\eqref{eq:hinf_syn_obj}.
The complementary filters obtained after optimization are
\begin{equation}
\begin{split}
H_1(s) &= \frac{10^{-8} (s+6.6\times 10^9) (s+3450)^2 (s^2 + 49s + 895)}{(s+6.6e^4) (s^2 + 106 s + 3\times 10^3) (s^2 + 72s + 3580)}\\
H_2(s) &= \frac{(s+6.6\times 10^4) (s+160) (s+4)^3}{(s+6.6\times 10^4) (s^2 + 106 s + 3\times 10^3) (s^2 + 72s + 3580)}
\end{split}
\end{equation}
The obtained complementary filters are of order 5 which corresponds to the sum of the orders of the weighting functions used.
The frequency responses of the designed complementary filters are shown in Figure~\ref{fig:hinf_filters_results}.
It can be seen that the designed filters fulfills all the design specifications and hence demonstrates the effectiveness of the designed methodology (more complex real life example is taken up in Section~\ref{sec:application_ligo}).
\begin{table}
\caption{\label{tab:weights_params}Parameters used for \(W_1(s)\) and \(W_2(s)\)}
\centering
\begin{tabularx}{0.5\linewidth}{Xcc}
\toprule
Parameter & \(W_1(s)\) & \(W_2(s)\)\\
\midrule
\(n\) & \(2\) & \(3\)\\
\(G_c\) & \(0.5\) & \(0.5\)\\
\(G_\infty\) & \(1000\) & \(0.1\)\\
\(G_0\) & \(0.1\) & \(1000\)\\
\(\omega_c\) [\(\si{Hz}\)] & \(11\) & \(10\)\\
\bottomrule
\end{tabularx}
\end{table}
\begin{figure}
\centering
\includegraphics[scale=1]{figs/hinf_filters_results.pdf}
\caption{\label{fig:hinf_filters_results}Bode plot of the weighting functions and designed complementary filters}
\end{figure}
\subsection{Extension to set of three complementary filters}\label{sec:hinf_three_comp_filters}
In certain applications, more than two sensors are used to measure the same quantity and can be merged together to form a ``super sensor''.
In such case, a set of three (or more) complementary filters is required.
It is here shown that the proposed method can be generalized for the design of a set of arbitrary number of complementary filters.
The control objective is now to design of a set of $n$ complementary filters ($H_i(s), i=1,\cdots,n$) which satisfy the following conditions
\begin{equation}
\label{eq:hinf_problem_gen}
\begin{split}
&\sum_{i=0}^n H_i(s) = 1 \\
&\left| H_i(s) \right| < \frac{1}{\left| W_i(s) \right|}
\end{split}
\end{equation}
Here, we extend the method to a case of three complementary filters.
The generalized plant controller setup for this case is shown in Figure~\ref{fig:comp_filter_three_hinf}.
The synthesis objective is to design filters $H_2(s)$ and $H_3(s)$ such that the $\mathcal{H}_\infty$ norm from exogenous input $w$ to regulated output vector $[z_1,z_2,z_3]^T$ is less than unity.
That is,
\begin{equation}
\label{eq:hinf_syn_obj_three}
\begin{split}
&\left\| \begin{matrix} \left[1 - H_2(s) - H_3(s)\right] W_1(s) \\ H_2(s) W_2(s) \\ H_3(s) W_3(s) \end{matrix} \right\|_\infty \le 1\\
\equiv &\left\| \begin{matrix} H_1(s) W_1(s) \\ H_2(s) W_2(s) \\ H_3(s) W_3(s) \end{matrix} \right\|_\infty \le 1; \quad H_1(s) \triangleq 1 - H_2(s) - H_3(s)
\end{split}
\end{equation}
\begin{figure}
\centering
\includegraphics[scale=1]{figs/comp_filter_three_hinf.pdf}
\caption{\label{fig:comp_filter_three_hinf}Generalized plant controller setup for designing a set of three complementary filters using \(\mathcal{H}_\infty\) synthesis}
\end{figure}
To validate this synthesis method, let's take an example where 3 sensors are merged together.
The three sensors are working in the following three frequency range --- below 1~Hz, between 1Hz to 10Hz and above 10Hz.
The weighting functions used for the synthesis are
\begin{equation}
\begin{split}
W_1(s) &= \dfrac{1000 (s+3.141)^2}{(s+314.1)^2}\\
W_2(s) &= \dfrac{2200 (s+62.83)^2 (s+6.283)^2}{(s+6283)^2 (s+0.06283)^2}\\
W_3(s) &= \dfrac{0.1 (s+87.43)^3}{(s+4.058)^3}
\end{split}
\end{equation}
The complementary filters are obtained by solving the optimization problem given by equation~\eqref{eq:hinf_syn_obj_three}.
The frequency response of the designed filters and the weighting functions are shown in Figure~\ref{fig:three_complementary_filters_results}.
\begin{figure}
\centering
\includegraphics[scale=1]{figs/three_complementary_filters_results.pdf}
\caption{\label{fig:three_complementary_filters_results}Bode plot of the weighting functions and designed set of three complementary filters}
\end{figure}
\section{Application: Complementary Filter Design for Active Vibration Isolation of LIGO}\label{sec:application_ligo}
Gravitational waves can help in detection various astrophysical events occurring in our universe.
This can also pave a path to validate theories built around the existence of gravitational waves.
However, the detection of these waves is an arduous task owing to the extraordinary small strain experienced by the earth due to gravitational waves.
Various methods have been proposed for their detection, out of which laser interferometers are the most popular ones.
Laser interferometers offers large projection range and high displacement sensitivity.
Among the existing detector, Laser interferometer gravitation-wave observatory (LIGO) is the most sensitive operational detector.
LIGO consists of two longs arms, referred as beam tubes, that are placed orthogonal to each other.
The arms of the LIGO accommodates a Michleson interferometer with a cavity (Fabry-Perot).
The mirrors at the extremity of the cavity serve as inertial test masses which responds to the strain induced due to the gravitational waves.
The optics of the LIGO are suspended like a pendulum.
The schematics of the LIGO are shown in Figure~\ref{ligo_schematics}.
\begin{figure}
\centering
\includegraphics[width=0.8\linewidth]{figs/ligo.png}
\caption{\label{ligo_schematics}Schematics of LIGO}
\end{figure}
The isolation of the terrestrial interferometers is necessary in order to isolate the motion of the suspended inertial masses from the seismic ground motion.
The vibration isolation system attenuates the effect of disturbances on the motion of the suspended masses in the gravitational wave band.
The other sources that can affect the sensitivity of the LIGO are thermal noise, human activities, tidal motion etc.
The suspensions of the LIGO needs to serve two purpose --- isolation and alignment.
The alignment is also important in order to ensure that the interferometer beam is targeted at the center of the suspended mass.
The current vibration isolation system for LIGO has seven different stages.
In the first stage, hydraulically actuated external pre-isolators are used for attenuating large ground motions.
Two stages of active electromagnetic isolation system are placed next to pre-isolators.
This is followed by four stages of pendulum based passive isolation system.
In the active isolation stage of LIGO, different sensors are used to sense the same physical signal in different frequency range.
For example, seismometers are used to sense the position of the platform in the frequency band 0.5--10~Hz while geophones are employed above 10~Hz.
The signals recorded from different sensor are fused using complementary filters~\cite{hua05_low_ligo,hua04_polyp_fir_compl_filter_contr_system}.
The stringent requirements on these filters complicate their design.
Hua~\cite{hua05_low_ligo} proposed complementary FIR filters which were synthesized using convex optimization.
The designed FIR filters were found to be compliant with the design specifications.
However, the order of the designed filter was very high, which limits its application to a practical system.
In this section, we demonstrate the design of complementary filters with the same specification using the proposed method based on $\mathcal{H}_\infty$- synthesis.
\subsection{Design specifications}\label{sec:ligo_specifications}
The design specification of the complementary filters (as listed out in~\cite{hua05_low_ligo}) are as follows:
\begin{enumerate}
\item[(a)] In the frequency range \(0\)-\(\SI{0.008}{Hz}\): the high pass filter's magnitude should be less than \(8 \times 10^{-4}\).
\item[(b)] For frequency range \(\SI{0.008}{Hz}\)-\(\SI{0.04}{Hz}\): slope of the high pass filter is equal to three.
\item[(c)] Between \(\SI{0.04}{Hz}\)-\(\SI{0.1}{Hz}\) frequency range: the high pass filter's magnitude should be less than \(3\).
\item[(d)] For frequencies above \(\SI{0.1}{Hz}\): the low pass filter's magnitude should be less than \(0.045\).
\end{enumerate}
The specification of the complementary filters are shown graphically by dashed black lines in Figure~\ref{fig:ligo_weights}.
\subsection{Weighting Functions Design}\label{sec:ligo_weights}
As the synthesis objective of the complementary filters is described by Eq.~\eqref{eq:hinf_problem_gen}, it is clear that the weighting functions should be chosen such that their inverse magnitude represent the maximum allowed norm of the complementary filters.
This can be done manually using by combining poles and zeros or using useful formulas such as Eq.~\eqref{eq:weight_formula}.
It is important to note that the order of the filters should be kept reasonable small in order to keep the computational cost of the optimization reasonable.
This will also ensure that the designed filters are realizable in the physical world.
The transfer function representing weights should also be stable and minimum phase.
The weighting function corresponding to the low pass filter, \(w_L(s)\), is here taken as Type I Chebyshev filter.
The order of the weighting function for low pass filter is set as 20.
The weighting function for the high pass filter, \(w_H(s)\), is designed in such a way that its magnitude response is as close as possible to the design specifications.
This was achieved using a combination of high-, low- and band-pass filters in the particular frequency band.
The overall order of the weighting function for high pass filter is 7.
The magnitude responses of the inverse of the designed weighting functions and their comparison with the specifications are shown in Figure~\ref{fig:ligo_weights}.
It can be seen that the inverse of the designed weights, shown in solid blue line for high pass filter and solid red line for low pass filter, are close to the specifications shown in black dotted line.
\begin{figure}
\centering
\includegraphics[scale=1]{figs/ligo_weights.pdf}
\caption{\label{fig:ligo_weights}Specifications and weighting functions magnitudes}
\end{figure}
\subsection{\(\mathcal{H}_\infty\) synthesis of complementary filters}\label{sec:ligo_results}
The complementary filters are designed using \(\mathcal{H}_\infty\) synthesis based on the architecture shown in Figure~\ref{fig:h_infinity_robust_fusion}.
The generalized plant is obtained by substituting the transfer functions of the designed weighting functions in equation~\eqref{eq:generalized_plant}, i.e., $W_1(s)=w_H(s)$ and $W_2(s)=w_L(s)$.
The objective of the \(\mathcal{H}_\infty\) synthesis is given by equation~\eqref{eq:hinf_syn_obj}.
The optimization problem in solved in \textsc{Matlab}~\cite{MATLAB2009} using Ricatti method.
The frequency responses of the designed optimal complementary filters are shown in Figure~\ref{fig:comp_fir_ligo_hinf}.
The order of the filters obtained using \(\mathcal{H}_\infty\) optimization is \(27\).
Now, we compare the designed complementary filters with the FIR filters designed by Hua~\cite{hua05_low_ligo}.
The transfer function of the FIR filter, $G(\omega)$, is the Fourier transform of its coefficients, $g(n)$.
That is,
\begin{equation}
G(\omega) = \sum_n g(n)e^{-j2n\pi\omega}
\end{equation}
The FIR filter synthesis was formulated as a convex optimization problem.
The objective of the optimization problem was to find the filter's coefficients such that their norm are below the specified upper bounds.
The optimization problem was solved using SeDuMi~\cite{sturm99_using_sedum} and the obtained order for the FIR filters is \(512\).
The bode plot of the FIR filters are shown with dotted lines in Figure~\ref{fig:comp_fir_ligo_hinf}.
It can be seen that frequency responses of the designed complementary filters matches quite well with those of the FIR filters.
The designed complementary filters are of much lower order and can be implemented with less computational cost can the FIR filters.
The proposed methodology for the design of complementary filters can be effectively employed to obtain physically realizable filters.
\begin{figure}
\centering
\includegraphics[scale=1]{figs/comp_fir_ligo_hinf.pdf}
\caption{\label{fig:comp_fir_ligo_hinf}Bode plot of the filters designed using $\mathcal{H}_\infty$ synthesis and FIR filters~\cite{hua05_low_ligo}}
\end{figure}
\section{Concluding remarks}\label{sec:conclusion}
The measurements from the sensors are reliable only within its bandwidth.
The signals from different sensors are usually fused in order to measure a physical quantity over larger bandwidth.
The sensor obtained after fusion is called as super sensor as it has superior noise characteristics and wider bandwidth.
Complementary filters are used for the combining the signals from different sensors.
A new framework based on $\mathcal{H}_\infty$ synthesis has been presented in this paper to aid the design of complementary filters.
The method presented allows to shape the complementary filters based on the design specifications.
The task of filter design is posed as an $\mathcal{H}_{\infty}$ synthesis problem.
The design specifications of the systems are transformed in the form of weighting functions.
These weighting functions are used in the optimization problem to constraint the filter response in a frequency band.
The method has also been demonstrated for designing a set of three complementary filters.
The design frame is general, simple to implement and can easily be extended to difference scenarios of sensor fusion.
The effectiveness of the method is demonstrated for a real life application where complementary filters are designed for active vibration isolation of Laser Interferometer Gravitational-Wave Observatory (LIGO).
The filters designed with the proposed method have been with compared with the finite impulse response (FIR) filters.
It was found that the filters designed using $\mathcal{H}_\infty$ have lower order compared to FIR filters.
The designed filters are physically realizable and have lesser computational cost compared to FIR filters.
The proposed method can be effectively used to shape complementary filters based on design specifications.
The method can be further be extended for the design of robust complementary filters with desired noise characteristics considering uncertainties in the sensor dynamics.
This is the focus of our future research.
\section*{Acknowledgment}
The authors would like to acknowledge the help received from the French Community of Belgium for funding the FRIA Grant of Thomas Dehaeze (Grant No.~FC 31597).
\bibliographystyle{elsarticle-num}
\bibliography{ref}
\end{document}

View File

@ -1,436 +0,0 @@
@article{collette15_sensor_fusion_method_high_perfor,
author = {Collette, Christophe and Matichard, Fabrice},
title = {Sensor Fusion Methods for High Performance Active Vibration
Isolation Systems},
journal = {Journal of Sound and Vibration},
volume = 342,
pages = {1-21},
year = 2015,
doi = {10.1016/j.jsv.2015.01.006},
url = {https://doi.org/10.1016/j.jsv.2015.01.006},
}
@phdthesis{hua05_low_ligo,
author = {Hua, Wensheng},
school = {stanford university},
title = {Low frequency vibration isolation and alignment system for
advanced LIGO},
year = 2005,
}
@inproceedings{hua04_polyp_fir_compl_filter_contr_system,
author = {Hua, Wensheng and Debra, B. and Hardham, T. and Lantz, T.
and Giaime, A.},
title = {Polyphase FIR Complementary Filters for Control Systems},
booktitle = {Proceedings of ASPE Spring Topical Meeting on Control of
Precision Systems},
year = 2004,
pages = {109--114},
}
@article{matichard15_seism_isolat_advan_ligo,
author = {Matichard, F and Lantz, B and Mittleman, R and Mason, K and
Kissel, J and others},
title = {Seismic Isolation of Advanced Ligo: Review of Strategy,
Instrumentation and Performance},
journal = {Classical and Quantum Gravity},
volume = 32,
number = 18,
pages = 185003,
year = 2015,
publisher = {IOP Publishing},
}
@article{min15_compl_filter_desig_angle_estim,
author = {Min, Hyung Gi and Jeung, Eun Tae},
title = {Complementary Filter Design for Angle Estimation Using Mems
Accelerometer and Gyroscope},
journal = {Department of Control and Instrumentation, Changwon
National University, Changwon, Korea},
pages = {641--773},
year = 2015,
}
@article{corke04_inert_visual_sensin_system_small_auton_helic,
author = {Corke, Peter},
title = {An Inertial and Visual Sensing System for a Small
Autonomous Helicopter},
journal = {Journal of Robotic Systems},
volume = 21,
number = 2,
pages = {43-51},
year = 2004,
}
@inproceedings{jensen13_basic_uas,
author = {Austin Jensen and Cal Coopmans and YangQuan Chen},
title = {Basics and guidelines of complementary filters for small
UAS navigation},
booktitle = {2013 International Conference on Unmanned Aircraft Systems
(ICUAS)},
year = 2013,
month = 5,
}
@inproceedings{pascoal99_navig_system_desig_using_time,
author = {A. Pascoal and I. Kaminer and P. Oliveira},
title = {Navigation System Design Using Time-Varying Complementary
Filters},
booktitle = {Guidance, Navigation, and Control Conference and Exhibit},
year = 1999,
}
@article{zimmermann92_high_bandw_orien_measur_contr,
author = {M. Zimmermann and W. Sulzer},
title = {High Bandwidth Orientation Measurement and Control Based on
Complementary Filtering},
journal = {Robot Control 1991},
pages = {525-530},
year = 1992,
publisher = {Elsevier},
series = {Robot Control 1991},
}
@inproceedings{baerveldt97_low_cost_low_weigh_attit,
author = {A.-J. Baerveldt and R. Klang},
title = {A Low-Cost and Low-Weight Attitude Estimation System for an
Autonomous Helicopter},
booktitle = {Proceedings of IEEE International Conference on Intelligent
Engineering Systems},
year = 1997,
month = {-},
}
@article{shaw90_bandw_enhan_posit_measur_using_measur_accel,
author = {F.R. Shaw and K. Srinivasan},
title = {Bandwidth Enhancement of Position Measurements Using
Measured Acceleration},
journal = {Mechanical Systems and Signal Processing},
volume = 4,
number = 1,
pages = {23-38},
year = 1990,
}
@article{brown72_integ_navig_system_kalman_filter,
author = {R. G. Brown},
title = {Integrated Navigation Systems and Kalman Filtering: a
Perspective},
journal = {Navigation},
volume = 19,
number = 4,
pages = {355-362},
year = 1972,
}
@article{mahony08_nonlin_compl_filter_special_orthog_group,
author = {Robert Mahony and Tarek Hamel and Jean-Michel Pflimlin},
title = {Nonlinear Complementary Filters on the Special Orthogonal
Group},
journal = {IEEE Transactions on Automatic Control},
volume = 53,
number = 5,
pages = {1203-1218},
year = 2008,
}
@article{sturm99_using_sedum,
author = {Sturm, Jos F},
title = {Using Sedumi 1.02, a Matlab Toolbox for Optimization Over
Symmetric Cones},
journal = {Optimization methods and software},
volume = 11,
number = {1-4},
pages = {625--653},
year = 1999,
publisher = {Taylor \& Francis},
}
@article{cao20_adapt_compl_filter_based_post,
author = {Cao, Mingcong and Hu, Chuan and Wang, Jinxiang and Wang,
Rongrong and Chen, Nan},
title = {Adaptive Complementary Filter-Based Post-Impact Control for
Independently-Actuated and Differentially-Steered Autonomous
Vehicles},
journal = {Mechanical Systems and Signal Processing},
volume = 144,
pages = 106852,
year = 2020,
publisher = {Elsevier},
}
@article{tjepkema12_sensor_fusion_activ_vibrat_isolat_precis_equip,
author = {Tjepkema, D and van Dijk, Johannes and Soemers, HMJR},
title = {Sensor Fusion for Active Vibration Isolation in Precision
Equipment},
journal = {Journal of Sound and Vibration},
volume = 331,
number = 4,
pages = {735--749},
year = 2012,
publisher = {Elsevier},
}
@article{verma21_virtual_sensor_fusion_high_precis_contr,
author = {Verma, Mohit and Dehaeze, Thomas and Zhao, Guoying and
Watchi, Jennifer and Collette, Christophe},
title = {Virtual Sensor Fusion for High Precision Control},
journal = {Mechanical Systems and Signal Processing},
volume = 150,
pages = 107241,
year = 2021,
publisher = {Elsevier},
}
@article{ma04_frequen_weigh_adapt_contr_simul,
author = {Ma, Kougen and Ghasemi-Nejhad, Mehrdad N},
title = {Frequency-Weighted Adaptive Control for Simultaneous
Precision Positioning and Vibration Suppression of Smart
Structures},
journal = {Smart materials and structures},
volume = 13,
number = 5,
pages = 1143,
year = 2004,
publisher = {IOP Publishing},
}
@article{anderson53_instr_approac_system_steer_comput,
author = {Anderson, WG and Fritze, EH},
title = {Instrument Approach System Steering Computer},
journal = {Proceedings of the IRE},
volume = 41,
number = 2,
pages = {219--228},
year = 1953,
publisher = {IEEE},
}
@article{shaw90_bandw_enhan_posit_measur_using_measur_accel,
author = {Shaw, FR and Srinivasan, K},
title = {Bandwidth Enhancement of Position Measurements Using
Measured Acceleration},
journal = {Mechanical Systems and Signal Processing},
volume = 4,
number = 1,
pages = {23--38},
year = 1990,
publisher = {Elsevier},
}
@inproceedings{baerveldt97,
author = {Baerveldt, A-J and Klang, Robert},
title = {A low-cost and low-weight attitude estimation system for an
autonomous helicopter},
booktitle = {Proceedings of IEEE International Conference on Intelligent
Engineering Systems},
year = 1997,
pages = {391--395},
organization = {IEEE},
}
@inproceedings{roberts03_low,
author = {Roberts, Jonathan M and Corke, Peter I and Buskey, Gregg},
title = {Low-cost flight control system for a small autonomous
helicopter},
booktitle = {2003 IEEE International Conference on Robotics and
Automation (Cat. No. 03CH37422)},
year = 2003,
volume = 1,
pages = {546--551},
organization = {IEEE},
}
@inproceedings{bachmann03_desig_marg_dof,
author = {Bachmann, Eric R and Yun, Xiaoping and McKinney, Doug and
McGhee, Robert B and Zyda, Michael J},
title = {Design and implementation of MARG sensors for 3-DOF
orientation measurement of rigid bodies},
booktitle = {2003 IEEE International Conference on Robotics and
Automation (Cat. No. 03CH37422)},
year = 2003,
volume = 1,
pages = {1171--1178},
organization = {IEEE},
}
@article{salcudean91_global_conver_angul_veloc_obser,
author = {Salcudean, S},
title = {A Globally Convergent Angular Velocity Observer for Rigid
Body Motion},
journal = {IEEE transactions on Automatic Control},
volume = 36,
number = 12,
pages = {1493--1497},
year = 1991,
publisher = {IEEE},
}
@article{mahony08_nonlin_compl_filter_special_orthog_group,
author = {Mahony, Robert and Hamel, Tarek and Pflimlin, Jean-Michel},
title = {Nonlinear Complementary Filters on the Special Orthogonal
Group},
journal = {IEEE Transactions on automatic control},
volume = 53,
number = 5,
pages = {1203--1218},
year = 2008,
publisher = {IEEE},
}
@article{pascoal00_navig_system_desig_using_time,
author = {Pascoal, Antonio and Kaminer, Isaac and Oliveira, Paulo},
title = {Navigation System Design Using Time-Varying Complementary
Filters},
journal = {IEEE Transactions on Aerospace and Electronic Systems},
volume = 36,
number = 4,
pages = {1099--1114},
year = 2000,
publisher = {IEEE},
}
@inproceedings{ryzhkov18_compl,
author = {Ryzhkov, L},
title = {Complementary filter design for attitude determination},
booktitle = {2018 IEEE 5th International Conference on Methods and
Systems of Navigation and Motion Control (MSNMC)},
year = 2018,
pages = {214--217},
organization = {IEEE},
}
@article{plummer06_optim_compl_filter_their_applic_motion_measur,
author = {Plummer, AR},
title = {Optimal Complementary Filters and Their Application in
Motion Measurement},
journal = {Proceedings of the Institution of Mechanical Engineers,
Part I: Journal of Systems and Control Engineering},
volume = 220,
number = 6,
pages = {489--507},
year = 2006,
publisher = {Sage Publications Sage UK: London, England},
}
@article{odry18_kalman_filter_mobil_robot_attit_estim,
author = {Odry, {\'A}kos and Fuller, Robert and Rudas, Imre J and
Odry, P{\'e}ter},
title = {Kalman Filter for Mobile-Robot Attitude Estimation: Novel
Optimized and Adaptive Solutions},
journal = {Mechanical systems and signal processing},
volume = 110,
pages = {569--589},
year = 2018,
publisher = {Elsevier},
}
@article{ren19_integ_gnss_hub_motion_estim,
author = {Ren, Zhengru and Skjetne, Roger and Jiang, Zhiyu and Gao,
Zhen and Verma, Amrit Shankar},
title = {Integrated Gnss/imu Hub Motion Estimator for Offshore Wind
Turbine Blade Installation},
journal = {Mechanical Systems and Signal Processing},
volume = 123,
pages = {222--243},
year = 2019,
publisher = {Elsevier},
}
@article{faria19_sensor_fusion_rotat_motion_recon,
author = {Faria, CT},
title = {Sensor Fusion and Rotational Motion Reconstruction Via
Nonlinear State-Observers},
journal = {Mechanical Systems and Signal Processing},
volume = 114,
pages = {571--578},
year = 2019,
publisher = {Elsevier},
}
@article{liu18_innov_infor_fusion_method_with,
author = {Liu, Yahui and Fan, Xiaoqian and Lv, Chen and Wu, Jian and
Li, Liang and Ding, Dawei},
title = {An Innovative Information Fusion Method With Adaptive
Kalman Filter for Integrated Ins/gps Navigation of Autonomous
Vehicles},
journal = {Mechanical Systems and Signal Processing},
volume = 100,
pages = {605--616},
year = 2018,
publisher = {Elsevier},
}
@book{boyd94_linear,
author = {Boyd, Stephen P and El Ghaoui, Laurent and Feron, Eric and
Balakrishnan, Venkataramanan},
title = {Linear matrix inequalities in system and control theory},
year = 1994,
publisher = {SIAM},
volume = 15,
}
@book{boyd91_linear,
author = {Boyd, Stephen P and Barratt, Craig H},
title = {Linear controller design: limits of performance},
year = 1991,
publisher = {Prentice Hall Englewood Cliffs, NJ},
}
@book{MATLAB2009,
year = {2020},
author = {MATLAB},
title = {version 9.9.0 (R2020b)},
publisher = {The MathWorks Inc.},
address = {Natick, Massachusetts}
}
@article{abdel15_const_low_cost_gps_filter,
author = {Abdel Hafez, Mamoun F and Saadeddin, Kamal and Jarrah,
Mohammad Amin},
title = {Constrained Low-Cost Gps/ins Filter With Encoder Bias
Estimation for Ground Vehicles Applications},
journal = {Mechanical Systems and Signal Processing},
volume = 58,
pages = {285--297},
year = 2015,
publisher = {Elsevier},
}
@article{biondi17_attit_recov_from_featur_track,
author = {Biondi, Gabriele and Mauro, S and Mohtar, T and Pastorelli,
S and Sorli, M},
title = {Attitude Recovery From Feature Tracking for Estimating
Angular Rate of Non-Cooperative Spacecraft},
journal = {Mechanical Systems and Signal Processing},
volume = 83,
pages = {321--336},
year = 2017,
publisher = {Elsevier},
}
@article{brown72_integ_navig_system_kalman_filter,
author = {R. G. Brown},
title = {Integrated Navigation Systems and Kalman Filtering: a
Perspective},
journal = {Navigation},
volume = 19,
number = 4,
pages = {355-362},
year = 1972,
doi = {10.1002/j.2161-4296.1972.tb01706.x},
url = {https://doi.org/10.1002/j.2161-4296.1972.tb01706.x},
}
@article{moore19_capac_instr_sensor_fusion_high_bandw_nanop,
author = {Steven Ian Moore and Andrew J. Fleming and Yuen Kuan Yong},
title = {Capacitive Instrumentation and Sensor Fusion for
High-Bandwidth Nanopositioning},
journal = {IEEE Sensors Letters},
volume = 3,
number = 8,
pages = {1-3},
year = 2019,
doi = {10.1109/lsens.2019.2933065},
url = {https://doi.org/10.1109/lsens.2019.2933065},
}