Update link to journal and matlab scripts

This commit is contained in:
2021-06-21 11:42:22 +02:00
parent ad04f8a16d
commit b6ff1da85d
4 changed files with 335 additions and 60 deletions

View File

@@ -167,10 +167,10 @@ exportFig('figs/weight_formula.pdf', 'width', 'wide', 'height', 'normal');
[[file:figs/weight_formula.png]]
#+begin_src matlab
n = 2; w0 = 2*pi*10; G0 = 1/10; G1 = 1000; Gc = 0.45;
n = 3; w0 = 2*pi*10; G0 = 1000; G1 = 0.1; Gc = 0.45;
W1 = (((1/w0)*sqrt((1-(G0/Gc)^(2/n))/(1-(Gc/G1)^(2/n)))*s + (G0/Gc)^(1/n))/((1/G1)^(1/n)*(1/w0)*sqrt((1-(G0/Gc)^(2/n))/(1-(Gc/G1)^(2/n)))*s + (1/Gc)^(1/n)))^n;
n = 3; w0 = 2*pi*10; G0 = 1000; G1 = 0.1; Gc = 0.45;
n = 2; w0 = 2*pi*10; G0 = 1/10; G1 = 1000; Gc = 0.45;
W2 = (((1/w0)*sqrt((1-(G0/Gc)^(2/n))/(1-(Gc/G1)^(2/n)))*s + (G0/Gc)^(1/n))/((1/G1)^(1/n)*(1/w0)*sqrt((1-(G0/Gc)^(2/n))/(1-(Gc/G1)^(2/n)))*s + (1/Gc)^(1/n)))^n;
#+end_src
@@ -249,6 +249,28 @@ H1 = 1 - H2;
** Obtained Complementary Filters
The obtained complementary filters are shown on figure [[fig:hinf_filters_results]].
#+begin_src matlab :results output replace :exports results :tangle no
zpk(H1)
zpk(H2)
#+end_src
#+RESULTS:
#+begin_example
zpk(H1)
ans =
(s+1.289e05) (s+153.6) (s+3.842)^3
-------------------------------------------------------
(s+1.29e05) (s^2 + 102.1s + 2733) (s^2 + 69.45s + 3272)
zpk(H2)
ans =
125.61 (s+3358)^2 (s^2 + 46.61s + 813.8)
-------------------------------------------------------
(s+1.29e05) (s^2 + 102.1s + 2733) (s^2 + 69.45s + 3272)
#+end_example
#+begin_src matlab :exports none
figure;
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
@@ -1315,45 +1337,67 @@ exportFig('figs/hinf_comp_H1_H2_syn.pdf', 'width', 'wide', 'height', 'normal');
[[file:figs/hinf_comp_H1_H2_syn.png]]
** Using Feedback architecture
#+begin_src matlab
n = 2; w0 = 2*pi*11; G0 = 1/10; G1 = 1000; Gc = 1/2;
n = 3; w0 = 2*pi*10; G0 = 1000; G1 = 0.1; Gc = 0.45;
W1 = (((1/w0)*sqrt((1-(G0/Gc)^(2/n))/(1-(Gc/G1)^(2/n)))*s + (G0/Gc)^(1/n))/((1/G1)^(1/n)*(1/w0)*sqrt((1-(G0/Gc)^(2/n))/(1-(Gc/G1)^(2/n)))*s + (1/Gc)^(1/n)))^n;
n = 3; w0 = 2*pi*10; G0 = 1000; G1 = 0.1; Gc = 1/2;
n = 2; w0 = 2*pi*10; G0 = 1/10; G1 = 1000; Gc = 0.45;
W2 = (((1/w0)*sqrt((1-(G0/Gc)^(2/n))/(1-(Gc/G1)^(2/n)))*s + (G0/Gc)^(1/n))/((1/G1)^(1/n)*(1/w0)*sqrt((1-(G0/Gc)^(2/n))/(1-(Gc/G1)^(2/n)))*s + (1/Gc)^(1/n)))^n;
#+end_src
Let's first synthesize $H_1(s)$:
#+begin_src matlab
P = [W1 -W1;
0 W2;
1 -1];
P = [ W1 0 1;
-W1 W2 -1];
#+end_src
#+begin_src matlab :results output replace :exports both
[K, ~, gamma, ~] = hinfsyn(P, 1, 1,'TOLGAM', 0.001, 'METHOD', 'lmi', 'DISPLAY', 'on');
[L, ~, gamma, ~] = hinfsyn(P, 1, 1,'TOLGAM', 0.001, 'METHOD', 'lmi', 'DISPLAY', 'on');
#+end_src
#+begin_src matlab
H1 = inv(1 + K);
H1 = inv(1 + L);
H2 = 1 - H1;
#+end_src
#+begin_src matlab :results output replace :exports results :tangle no
zpk(H1)
zpk(H2)
#+end_src
#+RESULTS:
#+begin_example
zpk(H1)
ans =
(s+2.115e07) (s+153.6) (s+4.613) (s^2 + 6.858s + 12.03)
--------------------------------------------------------
(s+2.117e07) (s^2 + 102.1s + 2732) (s^2 + 69.43s + 3271)
zpk(H2)
ans =
20455 (s+3425) (s+3318) (s^2 + 46.58s + 813.2)
--------------------------------------------------------
(s+2.117e07) (s^2 + 102.1s + 2732) (s^2 + 69.43s + 3271)
#+end_example
#+begin_src matlab :exports none
freqs = logspace(-2, 4, 1000);
figure;
hold on;
plot(freqs, abs(squeeze(freqresp(H1, freqs, 'Hz'))), '-', 'DisplayName', '$H_1$');
plot(freqs, abs(squeeze(freqresp(H2, freqs, 'Hz'))), '-', 'DisplayName', '$H_2$');
set(gca,'ColorOrderIndex',1);
plot(freqs, 1./abs(squeeze(freqresp(W1, freqs, 'Hz'))), '--', 'DisplayName', '$|W_1|^{-1}$');
plot(freqs, 1./abs(squeeze(freqresp(W2, freqs, 'Hz'))), '--', 'DisplayName', '$|W_2|^{-1}$');
set(gca,'ColorOrderIndex',1);
plot(freqs, abs(squeeze(freqresp(H1, freqs, 'Hz'))), '-', 'DisplayName', '$|H_1|$');
plot(freqs, abs(squeeze(freqresp(H2, freqs, 'Hz'))), '-', 'DisplayName', '$|H_2|$');
plot(freqs, abs(squeeze(freqresp(L, freqs, 'Hz'))), 'k--', 'DisplayName', '$|L|$');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
xlabel('Frequency [Hz]'); ylabel('Magnitude');
legend('location', 'northeast', 'FontSize', 8, 'NumColumns', 2);
legend('location', 'northeast', 'FontSize', 8, 'NumColumns', 3);
#+end_src
** Adding feature in the filters
@@ -1999,6 +2043,183 @@ There is no difference between " open-loop" shaping and "close-loop" shaping:
- same obtained filter orders
#+end_important
** Integral Action
*** Test
#+begin_src matlab
freqs = logspace(-2, 3, 1000);
#+end_src
\begin{equation}
W_1(s) = \frac{W_{10}(s)}{s}
\end{equation}
with $W_{10}(0) \neq 0$
#+begin_src matlab
W10 = 0.1*(s+125.7)^2/(s+1.257)^2*(s + 0.0001)/(1 + s/1000);
W1 = W10/s;
#+end_src
#+begin_src matlab
n = 2; w0 = 2*pi*10; G0 = 1/10; G1 = 1000; Gc = 0.5;
W2 = (((1/w0)*sqrt((1-(G0/Gc)^(2/n))/(1-(Gc/G1)^(2/n)))*s + (G0/Gc)^(1/n))/((1/G1)^(1/n)*(1/w0)*sqrt((1-(G0/Gc)^(2/n))/(1-(Gc/G1)^(2/n)))*s + (1/Gc)^(1/n)))^n;
#+end_src
#+begin_src matlab :exports none
figure;
hold on;
set(gca,'ColorOrderIndex',1)
plot(freqs, 1./abs(squeeze(freqresp(W1, freqs, 'Hz'))), '--', 'DisplayName', '$|W_1|^{-1}$');
set(gca,'ColorOrderIndex',2)
plot(freqs, 1./abs(squeeze(freqresp(W2, freqs, 'Hz'))), '--', 'DisplayName', '$|W_2|^{-1}$');
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
xlabel('Frequency [Hz]'); ylabel('Magnitude');
hold off;
xlim([freqs(1), freqs(end)]);
ylim([1e-4, 20]);
xticks([0.1, 1, 10, 100, 1000]);
leg = legend('location', 'southeast', 'FontSize', 8);
leg.ItemTokenSize(1) = 18;
#+end_src
#+begin_src matlab
V = 1;
#+end_src
#+begin_src matlab
P = [ V*W10 W10;
0 W2;
-V -1];
#+end_src
And we do the $\mathcal{H}_\infty$ synthesis using the =hinfsyn= command.
#+begin_src matlab :results output replace :exports both
[H2, ~, gamma, ~] = hinfsyn(P, 1, 1,'TOLGAM', 0.001, 'METHOD', 'lmi', 'DISPLAY', 'on');
#+end_src
#+begin_src matlab
H1 = 1 - H2;
#+end_src
#+begin_src matlab :exports none
figure;
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
% Magnitude
ax1 = nexttile([2, 1]);
hold on;
set(gca,'ColorOrderIndex',1)
plot(freqs, 1./abs(squeeze(freqresp(W1, freqs, 'Hz'))), '--', 'DisplayName', '$w_1$');
set(gca,'ColorOrderIndex',2)
plot(freqs, 1./abs(squeeze(freqresp(W2, freqs, 'Hz'))), '--', 'DisplayName', '$w_2$');
set(gca,'ColorOrderIndex',1)
plot(freqs, abs(squeeze(freqresp(H1, freqs, 'Hz'))), '-', 'DisplayName', '$H_1$');
set(gca,'ColorOrderIndex',2)
plot(freqs, abs(squeeze(freqresp(H2, freqs, 'Hz'))), '-', 'DisplayName', '$H_2$');
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Magnitude');
set(gca, 'XTickLabel',[]);
ylim([1e-4, 20]);
yticks([1e-4, 1e-3, 1e-2, 1e-1, 1, 1e1]);
leg = legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 2);
leg.ItemTokenSize(1) = 18;
% Phase
ax2 = nexttile;
hold on;
set(gca,'ColorOrderIndex',1)
plot(freqs, 180/pi*phase(squeeze(freqresp(H1, freqs, 'Hz'))), '-');
set(gca,'ColorOrderIndex',2)
plot(freqs, 180/pi*phase(squeeze(freqresp(H2, freqs, 'Hz'))), '-');
hold off;
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
set(gca, 'XScale', 'log');
yticks([-180:90:180]);
linkaxes([ax1,ax2],'x');
xlim([freqs(1), freqs(end)]);
#+end_src
*** Example 6.7.3
#+begin_src matlab
n = 2; w0 = 2*pi*10; G0 = 1000; G1 = 0.1; Gc = 0.45;
W1 = (((1/w0)*sqrt((1-(G0/Gc)^(2/n))/(1-(Gc/G1)^(2/n)))*s + (G0/Gc)^(1/n))/((1/G1)^(1/n)*(1/w0)*sqrt((1-(G0/Gc)^(2/n))/(1-(Gc/G1)^(2/n)))*s + (1/Gc)^(1/n)))^n;
n = 2; w0 = 2*pi*10; G0 = 1/10; G1 = 1000; Gc = 0.45;
W2 = (((1/w0)*sqrt((1-(G0/Gc)^(2/n))/(1-(Gc/G1)^(2/n)))*s + (G0/Gc)^(1/n))/((1/G1)^(1/n)*(1/w0)*sqrt((1-(G0/Gc)^(2/n))/(1-(Gc/G1)^(2/n)))*s + (1/Gc)^(1/n)))^n;
#+end_src
#+begin_src matlab
V = 1/(1 + s/2/pi/100);
#+end_src
#+begin_src matlab
V = W2;
W2 = tf(1);
#+end_src
#+begin_src matlab
P = [W1 -W1;
0 W2;
V 0];
#+end_src
#+begin_src matlab :results output replace :exports both
[H2, ~, gamma, ~] = hinfsyn(P, 1, 1,'TOLGAM', 0.001, 'METHOD', 'ric', 'DISPLAY', 'on');
#+end_src
#+begin_src matlab
H2 = H2*V;
#+end_src
#+begin_src matlab
H1 = 1 - H2;
#+end_src
#+begin_src matlab :exports none
figure;
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
% Magnitude
ax1 = nexttile([2, 1]);
hold on;
set(gca,'ColorOrderIndex',1)
plot(freqs, 1./abs(squeeze(freqresp(W1, freqs, 'Hz'))), '--', 'DisplayName', '$w_1$');
set(gca,'ColorOrderIndex',2)
plot(freqs, 1./abs(squeeze(freqresp(W2, freqs, 'Hz'))), '--', 'DisplayName', '$w_2$');
set(gca,'ColorOrderIndex',1)
plot(freqs, abs(squeeze(freqresp(H1, freqs, 'Hz'))), '-', 'DisplayName', '$H_1$');
set(gca,'ColorOrderIndex',2)
plot(freqs, abs(squeeze(freqresp(H2, freqs, 'Hz'))), '-', 'DisplayName', '$H_2$');
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Magnitude');
set(gca, 'XTickLabel',[]);
ylim([1e-4, 20]);
yticks([1e-4, 1e-3, 1e-2, 1e-1, 1, 1e1]);
leg = legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 2);
leg.ItemTokenSize(1) = 18;
% Phase
ax2 = nexttile;
hold on;
set(gca,'ColorOrderIndex',1)
plot(freqs, 180/pi*phase(squeeze(freqresp(H1, freqs, 'Hz'))), '-');
set(gca,'ColorOrderIndex',2)
plot(freqs, 180/pi*phase(squeeze(freqresp(H2, freqs, 'Hz'))), '-');
hold off;
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
set(gca, 'XScale', 'log');
yticks([-180:90:180]);
linkaxes([ax1,ax2],'x');
xlim([freqs(1), freqs(end)]);
#+end_src
* Impose a positive slope at DC or a negative slope at infinite frequency
** Introduction :ignore: