Update robustness analysis. Remove zip, add link directly to matlab

This commit is contained in:
Thomas Dehaeze 2019-08-30 09:17:18 +02:00
parent 8a901b0e87
commit d4a2695e7c
12 changed files with 1504 additions and 303 deletions

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 65 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 104 KiB

After

Width:  |  Height:  |  Size: 85 KiB

File diff suppressed because it is too large Load Diff

View File

@ -645,17 +645,8 @@ To do so, we model the uncertainty that we have on the sensor dynamics by multip
The objective here is to design complementary filters $H_1(s)$ and $H_2(s)$ in order to minimize the dynamical uncertainty of the super sensor. The objective here is to design complementary filters $H_1(s)$ and $H_2(s)$ in order to minimize the dynamical uncertainty of the super sensor.
** ZIP file containing the data and matlab files :ignore: ** ZIP file containing the data and matlab files :ignore:
#+begin_src bash :exports none :results none
if [ matlab/comp_filter_robustness.m -nt data/comp_filter_robustness.zip ]; then
cp matlab/comp_filter_robustness.m comp_filter_robustness.m;
zip data/comp_filter_robustness \
comp_filter_robustness.m
rm comp_filter_robustness.m;
fi
#+end_src
#+begin_note #+begin_note
All the files (data and Matlab scripts) are accessible [[file:data/comp_filter_robustness.zip][here]]. All the files (data and Matlab scripts) are accessible [[file:matlab/comp_filter_robustness.m][here]].
#+end_note #+end_note
** Matlab Init :noexport:ignore: ** Matlab Init :noexport:ignore:
@ -667,10 +658,6 @@ The objective here is to design complementary filters $H_1(s)$ and $H_2(s)$ in o
<<matlab-init>> <<matlab-init>>
#+end_src #+end_src
#+begin_src matlab
freqs = logspace(-1, 3, 1000);
#+end_src
** Unknown sensor dynamics dynamics ** Unknown sensor dynamics dynamics
In practical systems, the sensor dynamics has always some level of uncertainty. In practical systems, the sensor dynamics has always some level of uncertainty.
Let's represent that with multiplicative input uncertainty as shown on figure [[fig:sensor_fusion_dynamic_uncertainty]]. Let's represent that with multiplicative input uncertainty as shown on figure [[fig:sensor_fusion_dynamic_uncertainty]].
@ -746,6 +733,10 @@ Let's consider two ideal sensors except one sensor has not an expected unity gai
Two pairs of complementary filters are designed and shown on figure [[fig:comp_filters_robustness_test]]. Two pairs of complementary filters are designed and shown on figure [[fig:comp_filters_robustness_test]].
The complementary filters shown in blue does not present a bump as the red ones but provides less sensor separation at high and low frequencies. The complementary filters shown in blue does not present a bump as the red ones but provides less sensor separation at high and low frequencies.
#+begin_src matlab :exports none
freqs = logspace(-1, 1, 1000);
#+end_src
#+begin_src matlab :exports none #+begin_src matlab :exports none
w0 = 2*pi; w0 = 2*pi;
alpha = 2; alpha = 2;
@ -761,8 +752,6 @@ The complementary filters shown in blue does not present a bump as the red ones
#+end_src #+end_src
#+begin_src matlab :exports none #+begin_src matlab :exports none
freqs = logspace(-1, 1, 1000);
figure; figure;
% Magnitude % Magnitude
ax1 = subaxis(2,1,1); ax1 = subaxis(2,1,1);
@ -805,8 +794,6 @@ We then compute the bode plot of the super sensor transfer function $H_1(s)G_1(s
We see that the blue complementary filters with a lower maximum norm permits to limit the phase lag introduced by the gain mismatch. We see that the blue complementary filters with a lower maximum norm permits to limit the phase lag introduced by the gain mismatch.
#+begin_src matlab :exports none #+begin_src matlab :exports none
freqs = logspace(-1, 1, 1000);
figure; figure;
% Magnitude % Magnitude
ax1 = subaxis(2,1,1); ax1 = subaxis(2,1,1);
@ -848,6 +835,11 @@ We want to merge two sensors:
*** Dynamical uncertainty of the individual sensors *** Dynamical uncertainty of the individual sensors
We define the weights that are used to characterize the dynamic uncertainty of the sensors. We define the weights that are used to characterize the dynamic uncertainty of the sensors.
#+begin_src matlab :exports none
freqs = logspace(-1, 3, 1000);
#+end_src
#+begin_src matlab #+begin_src matlab
omegac = 100*2*pi; G0 = 0.1; Ginf = 10; omegac = 100*2*pi; G0 = 0.1; Ginf = 10;
w1 = (Ginf*s/omegac + G0)/(s/omegac + 1); w1 = (Ginf*s/omegac + G0)/(s/omegac + 1);
@ -963,7 +955,7 @@ Then:
\Longleftrightarrow & \left| w_1(j\omega) H_1(j\omega) w_\phi(j\omega) \right| + \left| w_2(j\omega) H_2(j\omega) w_\phi(j\omega) \right| < 1, \quad \forall\omega \Longleftrightarrow & \left| w_1(j\omega) H_1(j\omega) w_\phi(j\omega) \right| + \left| w_2(j\omega) H_2(j\omega) w_\phi(j\omega) \right| < 1, \quad \forall\omega
\end{align*} \end{align*}
Which is approximately equivalent to (with an approximation of maximum $\sqrt{2}$): Which is approximately equivalent to (with an error of maximum $\sqrt{2}$):
#+name: eq:hinf_conf_phase_uncertainty #+name: eq:hinf_conf_phase_uncertainty
\begin{equation} \begin{equation}
\left\| \begin{matrix} w_1(s) w_\phi(s) H_1(s) \\ w_2(s) w_\phi(s) H_2(s) \end{matrix} \right\|_\infty < 1 \left\| \begin{matrix} w_1(s) w_\phi(s) H_1(s) \\ w_2(s) w_\phi(s) H_2(s) \end{matrix} \right\|_\infty < 1
@ -973,7 +965,7 @@ On should not forget that at frequency where both sensors has unknown dynamics (
Thus, at these frequencies, $|w_\phi|$ should be smaller than $1$. Thus, at these frequencies, $|w_\phi|$ should be smaller than $1$.
*** H-Infinity Synthesis *** H-Infinity Synthesis
Let's define $w_\phi(s)$ such that the maximum allowed phase uncertainty $\Delta\phi_\text{max}$ of the super sensor dynamics is $30\text{ deg}$ until frequency $\omega_0 = 500\text{ Hz}$ Let's define $w_\phi(s)$ in order to bound the maximum allowed phase uncertainty $\Delta\phi_\text{max}$ of the super sensor dynamics.
#+begin_src matlab #+begin_src matlab
Dphi = 20; % [deg] Dphi = 20; % [deg]
@ -985,6 +977,26 @@ Let's define $w_\phi(s)$ such that the maximum allowed phase uncertainty $\Delta
W2 = w2*wphi; W2 = w2*wphi;
#+end_src #+end_src
#+begin_src matlab :exports none
figure;
hold on;
plot(freqs, abs(squeeze(freqresp(wphi, freqs, 'Hz'))), '-', 'DisplayName', '$w_\phi(s)$');
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
xlabel('Frequency [Hz]'); ylabel('Magnitude');
hold off;
xlim([freqs(1), freqs(end)]);
legend('location', 'northeast');
#+end_src
#+HEADER: :tangle no :exports results :results none :noweb yes
#+begin_src matlab :var filepath="figs/magnitude_wphi.pdf" :var figsize="full-normal" :post pdf2svg(file=*this*, ext="png")
<<plt-matlab>>
#+end_src
#+NAME: fig:magnitude_wphi
#+CAPTION: Magnitude of the weght $w_\phi(s)$ that is used to bound the uncertainty of the super sensor ([[./figs/magnitude_wphi.png][png]], [[./figs/magnitude_wphi.pdf][pdf]])
[[file:figs/magnitude_wphi.png]]
#+begin_src matlab :exports none #+begin_src matlab :exports none
% We here compute the wanted maximum and minimum phase of the super sensor % We here compute the wanted maximum and minimum phase of the super sensor
Dphimax = 180/pi*asin(1./abs(squeeze(freqresp(wphi, freqs, 'Hz')))); Dphimax = 180/pi*asin(1./abs(squeeze(freqresp(wphi, freqs, 'Hz'))));
@ -1028,7 +1040,7 @@ The obtained upper bounds on the complementary filters in order to limit the pha
#+end_src #+end_src
#+HEADER: :tangle no :exports results :results none :noweb yes #+HEADER: :tangle no :exports results :results none :noweb yes
#+begin_src matlab :var filepath="figs/upper_bounds_comp_filter_max_phase_uncertainty.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") #+begin_src matlab :var filepath="figs/upper_bounds_comp_filter_max_phase_uncertainty.pdf" :var figsize="full-normal" :post pdf2svg(file=*this*, ext="png")
<<plt-matlab>> <<plt-matlab>>
#+end_src #+end_src

View File

@ -0,0 +1,378 @@
%% Clear Workspace and Close figures
clear; close all; clc;
%% Intialize Laplace variable
s = zpk('s');
% First Basic Example with gain mismatch
% Let's consider two ideal sensors except one sensor has not an expected unity gain but a gain equal to $0.6$:
% \begin{align*}
% G_1(s) &= 1 \\
% G_2(s) &= 0.6
% \end{align*}
G1 = 1;
G2 = 0.6;
% Two pairs of complementary filters are designed and shown on figure [[fig:comp_filters_robustness_test]].
% The complementary filters shown in blue does not present a bump as the red ones but provides less sensor separation at high and low frequencies.
freqs = logspace(-1, 1, 1000);
w0 = 2*pi;
alpha = 2;
H1a = ((1+alpha)*(s/w0)+1)/(((s/w0)+1)*((s/w0)^2 + alpha*(s/w0) + 1));
H2a = (s/w0)^2*((s/w0)+1+alpha)/(((s/w0)+1)*((s/w0)^2 + alpha*(s/w0) + 1));
w0 = 2*pi;
alpha = 0.1;
H1b = ((1+alpha)*(s/w0)+1)/(((s/w0)+1)*((s/w0)^2 + alpha*(s/w0) + 1));
H2b = (s/w0)^2*((s/w0)+1+alpha)/(((s/w0)+1)*((s/w0)^2 + alpha*(s/w0) + 1));
figure;
% Magnitude
ax1 = subaxis(2,1,1);
hold on;
set(gca,'ColorOrderIndex',1); plot(freqs, abs(squeeze(freqresp(H1a, freqs, 'Hz'))));
set(gca,'ColorOrderIndex',1); plot(freqs, abs(squeeze(freqresp(H2a, freqs, 'Hz'))));
set(gca,'ColorOrderIndex',2); plot(freqs, abs(squeeze(freqresp(H1b, freqs, 'Hz'))));
set(gca,'ColorOrderIndex',2); plot(freqs, abs(squeeze(freqresp(H2b, freqs, 'Hz'))));
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
set(gca, 'XTickLabel',[]);
ylabel('Magnitude');
hold off;
% Phase
ax2 = subaxis(2,1,2);
hold on;
set(gca,'ColorOrderIndex',1); plot(freqs, 180/pi*angle(squeeze(freqresp(H1a, freqs, 'Hz'))));
set(gca,'ColorOrderIndex',1); plot(freqs, 180/pi*angle(squeeze(freqresp(H2a, freqs, 'Hz'))));
set(gca,'ColorOrderIndex',2); plot(freqs, 180/pi*angle(squeeze(freqresp(H1b, freqs, 'Hz'))));
set(gca,'ColorOrderIndex',2); plot(freqs, 180/pi*angle(squeeze(freqresp(H2b, freqs, 'Hz'))));
set(gca,'xscale','log');
yticks(-180:90:180);
ylim([-180 180]);
xlabel('Relative Frequency $\frac{\omega}{\omega_0}$'); ylabel('Phase [deg]');
hold off;
linkaxes([ax1,ax2],'x');
xlim([freqs(1), freqs(end)]);
% #+NAME: fig:comp_filters_robustness_test
% #+CAPTION: The two complementary filters designed for the robustness test ([[./figs/comp_filters_robustness_test.png][png]], [[./figs/comp_filters_robustness_test.pdf][pdf]])
% [[file:figs/comp_filters_robustness_test.png]]
% We then compute the bode plot of the super sensor transfer function $H_1(s)G_1(s) + H_2(s)G_2(s)$ for both complementary filters pair (figure [[fig:tf_super_sensor_comp]]).
% We see that the blue complementary filters with a lower maximum norm permits to limit the phase lag introduced by the gain mismatch.
figure;
% Magnitude
ax1 = subaxis(2,1,1);
hold on;
set(gca,'ColorOrderIndex',1); plot(freqs, abs(squeeze(freqresp(H1a*G1 + H2a*G2, freqs, 'Hz'))));
set(gca,'ColorOrderIndex',2); plot(freqs, abs(squeeze(freqresp(H1b*G1 + H2b*G2, freqs, 'Hz'))));
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
set(gca, 'XTickLabel',[]);
ylabel('Magnitude');
ylim([1e-1, 1e1]);
hold off;
% Phase
ax2 = subaxis(2,1,2);
hold on;
set(gca,'ColorOrderIndex',1); plot(freqs, 180/pi*angle(squeeze(freqresp(H1a*G1 + H2a*G2, freqs, 'Hz'))));
set(gca,'ColorOrderIndex',2); plot(freqs, 180/pi*angle(squeeze(freqresp(H1b*G1 + H2b*G2, freqs, 'Hz'))));
set(gca,'xscale','log');
yticks(-180:90:180);
ylim([-180 180]);
xlabel('Relative Frequency $\frac{\omega}{\omega_0}$'); ylabel('Phase [deg]');
hold off;
linkaxes([ax1,ax2],'x');
xlim([freqs(1), freqs(end)]);
% Dynamical uncertainty of the individual sensors
% We define the weights that are used to characterize the dynamic uncertainty of the sensors.
freqs = logspace(-1, 3, 1000);
omegac = 100*2*pi; G0 = 0.1; Ginf = 10;
w1 = (Ginf*s/omegac + G0)/(s/omegac + 1);
omegac = 0.2*2*pi; G0 = 5; Ginf = 0.1;
w2 = (Ginf*s/omegac + G0)/(s/omegac + 1);
omegac = 5000*2*pi; G0 = 1; Ginf = 50;
w2 = w2*(Ginf*s/omegac + G0)/(s/omegac + 1);
% From the weights, we define the uncertain transfer functions of the sensors. Some of the uncertain dynamics of both sensors are shown on Fig. [[fig:uncertainty_dynamics_sensors]] with the upper and lower bounds on the magnitude and on the phase.
G1 = 1 + w1*ultidyn('Delta',[1 1]);
G2 = 1 + w2*ultidyn('Delta',[1 1]);
% Few random samples of the sensor dynamics are computed
G1s = usample(G1, 10);
G2s = usample(G2, 10);
% We here compute the maximum and minimum phase of both sensors
Dphi1 = 180/pi*asin(abs(squeeze(freqresp(w1, freqs, 'Hz'))));
Dphi2 = 180/pi*asin(abs(squeeze(freqresp(w2, freqs, 'Hz'))));
Dphi1(abs(squeeze(freqresp(w1, freqs, 'Hz'))) > 1) = 190;
Dphi2(abs(squeeze(freqresp(w2, freqs, 'Hz'))) > 1) = 190;
figure;
% Magnitude
ax1 = subaxis(2,1,1);
hold on;
set(gca,'ColorOrderIndex',1);
plot(freqs, 1 + abs(squeeze(freqresp(w1, freqs, 'Hz'))), '--');
set(gca,'ColorOrderIndex',1);
plot(freqs, max(1 - abs(squeeze(freqresp(w1, freqs, 'Hz'))), 0), '--');
set(gca,'ColorOrderIndex',2);
plot(freqs, 1 + abs(squeeze(freqresp(w2, freqs, 'Hz'))), '--');
set(gca,'ColorOrderIndex',2);
plot(freqs, max(1 - abs(squeeze(freqresp(w2, freqs, 'Hz'))), 0), '--');
for i = 1:length(G1s)
plot(freqs, abs(squeeze(freqresp(G1s(:, :, i, 1), freqs, 'Hz'))), '-', 'color', [0 0.4470 0.7410 0.4]);
plot(freqs, abs(squeeze(freqresp(G2s(:, :, i, 1), freqs, 'Hz'))), '-', 'color', [0.8500 0.3250 0.0980 0.4]);
end
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
set(gca, 'XTickLabel',[]);
ylabel('Magnitude');
ylim([1e-1, 10]);
hold off;
% Phase
ax2 = subaxis(2,1,2);
hold on;
set(gca,'ColorOrderIndex',1);
plot(freqs, Dphi1, '--');
set(gca,'ColorOrderIndex',1);
plot(freqs, -Dphi1, '--');
set(gca,'ColorOrderIndex',2);
plot(freqs, Dphi2, '--');
set(gca,'ColorOrderIndex',2);
plot(freqs, -Dphi2, '--');
for i = 1:length(G1s)
plot(freqs, 180/pi*angle(squeeze(freqresp(G1s(:, :, i, 1), freqs, 'Hz'))), '-', 'color', [0 0.4470 0.7410 0.4]);
plot(freqs, 180/pi*angle(squeeze(freqresp(G2s(:, :, i, 1), freqs, 'Hz'))), '-', 'color', [0.8500 0.3250 0.0980 0.4]);
end
set(gca,'xscale','log');
yticks(-180:90:180);
ylim([-180 180]);
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
hold off;
linkaxes([ax1,ax2],'x');
% H-Infinity Synthesis
% Let's define $w_\phi(s)$ in order to bound the maximum allowed phase uncertainty $\Delta\phi_\text{max}$ of the super sensor dynamics.
Dphi = 20; % [deg]
n = 4; w0 = 2*pi*900; G0 = 1/sin(Dphi*pi/180); Ginf = 1/100; Gc = 1;
wphi = (((1/w0)*sqrt((1-(G0/Gc)^(2/n))/(1-(Gc/Ginf)^(2/n)))*s + (G0/Gc)^(1/n))/((1/Ginf)^(1/n)*(1/w0)*sqrt((1-(G0/Gc)^(2/n))/(1-(Gc/Ginf)^(2/n)))*s + (1/Gc)^(1/n)))^n;
W1 = w1*wphi;
W2 = w2*wphi;
figure;
hold on;
plot(freqs, abs(squeeze(freqresp(wphi, freqs, 'Hz'))), '-', 'DisplayName', '$w_\phi(s)$');
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
xlabel('Frequency [Hz]'); ylabel('Magnitude');
hold off;
xlim([freqs(1), freqs(end)]);
legend('location', 'northeast');
% #+NAME: fig:magnitude_wphi
% #+CAPTION: Magnitude of the weght $w_\phi(s)$ that is used to bound the uncertainty of the super sensor ([[./figs/magnitude_wphi.png][png]], [[./figs/magnitude_wphi.pdf][pdf]])
% [[file:figs/magnitude_wphi.png]]
% We here compute the wanted maximum and minimum phase of the super sensor
Dphimax = 180/pi*asin(1./abs(squeeze(freqresp(wphi, freqs, 'Hz'))));
Dphimax(1./abs(squeeze(freqresp(wphi, freqs, 'Hz'))) > 1) = 190;
figure;
hold on;
plot(freqs, Dphimax, 'k--');
plot(freqs, -Dphimax, 'k--');
set(gca, 'XScale', 'log');
xlabel('Frequency [Hz]'); ylabel('Magnitude');
hold off;
xlim([freqs(1), freqs(end)]);
ylim([-180 180]);
yticks(-180:45:180);
% #+NAME: fig:maximum_wanted_phase_uncertainty
% #+CAPTION: Maximum wanted phase uncertainty using this weight ([[./figs/maximum_wanted_phase_uncertainty.png][png]], [[./figs/maximum_wanted_phase_uncertainty.pdf][pdf]])
% [[file:figs/maximum_wanted_phase_uncertainty.png]]
% The obtained upper bounds on the complementary filters in order to limit the phase uncertainty of the super sensor are represented in Fig. [[fig:upper_bounds_comp_filter_max_phase_uncertainty]].
figure;
hold on;
plot(freqs, 1./abs(squeeze(freqresp(W1, freqs, 'Hz'))), '-', 'DisplayName', '$1/|w_1w_\phi|$');
plot(freqs, 1./abs(squeeze(freqresp(W2, freqs, 'Hz'))), '-', 'DisplayName', '$1/|w_2w_\phi|$');
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
xlabel('Frequency [Hz]'); ylabel('Magnitude');
hold off;
xlim([freqs(1), freqs(end)]);
legend('location', 'northeast');
% #+NAME: fig:upper_bounds_comp_filter_max_phase_uncertainty
% #+CAPTION: Upper bounds on the complementary filters set in order to limit the maximum phase uncertainty of the super sensor to 30 degrees until 500Hz ([[./figs/upper_bounds_comp_filter_max_phase_uncertainty.png][png]], [[./figs/upper_bounds_comp_filter_max_phase_uncertainty.pdf][pdf]])
% [[file:figs/upper_bounds_comp_filter_max_phase_uncertainty.png]]
% The $\mathcal{H}_\infty$ synthesis is performed using the defined weights and the obtained complementary filters are shown in Fig. [[fig:comp_filter_hinf_uncertainty]].
P = [W1 -W1;
0 W2;
1 0];
% And we do the $\mathcal{H}_\infty$ synthesis using the =hinfsyn= command.
[H2, ~, gamma, ~] = hinfsyn(P, 1, 1,'TOLGAM', 0.001, 'METHOD', 'ric', 'DISPLAY', 'on');
% #+RESULTS:
% #+begin_example
% [H2, ~, gamma, ~] = hinfsyn(P, 1, 1,'TOLGAM', 0.001, 'METHOD', 'ric', 'DISPLAY', 'on');
% Resetting value of Gamma min based on D_11, D_12, D_21 terms
% Test bounds: 0.0447 < gamma <= 1.3318
% gamma hamx_eig xinf_eig hamy_eig yinf_eig nrho_xy p/f
% 1.332 1.3e+01 -1.0e-14 1.3e+00 -2.6e-18 0.0000 p
% 0.688 1.3e-11# ******** 1.3e+00 -6.7e-15 ******** f
% 1.010 1.1e+01 -1.5e-14 1.3e+00 -2.5e-14 0.0000 p
% 0.849 6.9e-11# ******** 1.3e+00 -2.3e-14 ******** f
% 0.930 5.2e-12# ******** 1.3e+00 -6.1e-18 ******** f
% 0.970 5.6e-11# ******** 1.3e+00 -2.3e-14 ******** f
% 0.990 5.0e-11# ******** 1.3e+00 -1.7e-17 ******** f
% 1.000 2.1e-10# ******** 1.3e+00 0.0e+00 ******** f
% 1.005 1.9e-10# ******** 1.3e+00 -3.7e-14 ******** f
% 1.008 1.1e+01 -9.1e-15 1.3e+00 0.0e+00 0.0000 p
% 1.006 1.2e-09# ******** 1.3e+00 -6.9e-16 ******** f
% 1.007 1.1e+01 -4.6e-15 1.3e+00 -1.8e-16 0.0000 p
% Gamma value achieved: 1.0069
% #+end_example
H1 = 1 - H2;
figure;
ax1 = subplot(2,1,1);
hold on;
set(gca,'ColorOrderIndex',1)
plot(freqs, 1./abs(squeeze(freqresp(W1, freqs, 'Hz'))), '--', 'DisplayName', '$W_1$');
set(gca,'ColorOrderIndex',2)
plot(freqs, 1./abs(squeeze(freqresp(W2, freqs, 'Hz'))), '--', 'DisplayName', '$W_2$');
set(gca,'ColorOrderIndex',1)
plot(freqs, abs(squeeze(freqresp(H1, freqs, 'Hz'))), '-', 'DisplayName', '$H_1$');
set(gca,'ColorOrderIndex',2)
plot(freqs, abs(squeeze(freqresp(H2, freqs, 'Hz'))), '-', 'DisplayName', '$H_2$');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Magnitude');
set(gca, 'XTickLabel',[]);
legend('location', 'northeast');
ax2 = subplot(2,1,2);
hold on;
set(gca,'ColorOrderIndex',1)
plot(freqs, 180/pi*phase(squeeze(freqresp(H1, freqs, 'Hz'))), '-');
set(gca,'ColorOrderIndex',2)
plot(freqs, 180/pi*phase(squeeze(freqresp(H2, freqs, 'Hz'))), '-');
hold off;
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
set(gca, 'XScale', 'log');
yticks([-360:90:360]);
linkaxes([ax1,ax2],'x');
xlim([freqs(1), freqs(end)]);
xticks([0.1, 1, 10, 100, 1000]);
% Super sensor uncertainty
% We can now compute the uncertainty of the super sensor. The result is shown in Fig. [[fig:super_sensor_uncertainty_bode_plot]].
Gss = G1*H1 + G2*H2;
Gsss = usample(Gss, 20);
% We here compute the maximum and minimum phase of the super sensor
Dphiss = 180/pi*asin(abs(squeeze(freqresp(w1*H1, freqs, 'Hz')))+abs(squeeze(freqresp(w2*H2, freqs, 'Hz'))));
Dphiss(abs(squeeze(freqresp(w1*H1, freqs, 'Hz')))+abs(squeeze(freqresp(w2*H2, freqs, 'Hz'))) > 1) = 190;
figure;
% Magnitude
ax1 = subaxis(2,1,1);
hold on;
set(gca,'ColorOrderIndex',1);
plot(freqs, 1 + abs(squeeze(freqresp(w1, freqs, 'Hz'))), '--');
set(gca,'ColorOrderIndex',1);
plot(freqs, max(1 - abs(squeeze(freqresp(w1, freqs, 'Hz'))), 0), '--');
set(gca,'ColorOrderIndex',2);
plot(freqs, 1 + abs(squeeze(freqresp(w2, freqs, 'Hz'))), '--');
set(gca,'ColorOrderIndex',2);
plot(freqs, max(1 - abs(squeeze(freqresp(w2, freqs, 'Hz'))), 0), '--');
plot(freqs, 1 + abs(squeeze(freqresp(w1*H1+w2*H2, freqs, 'Hz'))), 'k--');
plot(freqs, max(1 - abs(squeeze(freqresp(w1*H1+w2*H2, freqs, 'Hz'))), 0), 'k--');
for i = 1:length(Gsss)
plot(freqs, abs(squeeze(freqresp(Gsss(:, :, i, 1), freqs, 'Hz'))), '-', 'color', [0 0 0 0.2]);
end
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
set(gca, 'XTickLabel',[]);
ylabel('Magnitude');
ylim([1e-1, 10]);
hold off;
% Phase
ax2 = subaxis(2,1,2);
hold on;
% plot(freqs, Dphimax, 'r-');
% plot(freqs, -Dphimax, 'r-');
set(gca,'ColorOrderIndex',1);
plot(freqs, Dphi1, '--');
set(gca,'ColorOrderIndex',1);
plot(freqs, -Dphi1, '--');
set(gca,'ColorOrderIndex',2);
plot(freqs, Dphi2, '--');
set(gca,'ColorOrderIndex',2);
plot(freqs, -Dphi2, '--');
plot(freqs, Dphiss, 'k--');
plot(freqs, -Dphiss, 'k--');
for i = 1:length(Gsss)
plot(freqs, 180/pi*angle(squeeze(freqresp(Gsss(:, :, i, 1), freqs, 'Hz'))), '-', 'color', [0 0 0 0.2]);
end
set(gca,'xscale','log');
yticks(-180:90:180);
ylim([-180 180]);
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
hold off;
linkaxes([ax1,ax2],'x');

View File

@ -0,0 +1,166 @@
%% Clear Workspace and Close figures
clear; close all; clc;
%% Intialize Laplace variable
s = zpk('s');
freqs = logspace(-1, 3, 1000);
% Analytical 1st order complementary filters
% First order complementary filters are defined with following equations:
% \begin{align}
% H_L(s) = \frac{1}{1 + \frac{s}{\omega_0}}\\
% H_H(s) = \frac{\frac{s}{\omega_0}}{1 + \frac{s}{\omega_0}}
% \end{align}
% Their bode plot is shown figure [[fig:comp_filter_1st_order]].
w0 = 2*pi; % [rad/s]
Hh1 = (s/w0)/((s/w0)+1);
Hl1 = 1/((s/w0)+1);
freqs = logspace(-2, 2, 1000);
figure;
% Magnitude
ax1 = subaxis(2,1,1);
hold on;
set(gca,'ColorOrderIndex',1); plot(freqs, abs(squeeze(freqresp(Hh1, freqs, 'Hz'))));
set(gca,'ColorOrderIndex',1); plot(freqs, abs(squeeze(freqresp(Hl1, freqs, 'Hz'))));
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
set(gca, 'XTickLabel',[]);
ylabel('Magnitude');
hold off;
% Phase
ax2 = subaxis(2,1,2);
hold on;
set(gca,'ColorOrderIndex',1); plot(freqs, 180/pi*angle(squeeze(freqresp(Hh1, freqs, 'Hz'))));
set(gca,'ColorOrderIndex',1); plot(freqs, 180/pi*angle(squeeze(freqresp(Hl1, freqs, 'Hz'))));
set(gca,'xscale','log');
yticks(-180:90:180);
ylim([-180 180]);
xlabel('Relative Frequency $\frac{\omega}{\omega_0}$'); ylabel('Phase [deg]');
hold off;
linkaxes([ax1,ax2],'x');
xlim([freqs(1), freqs(end)]);
% Second Order Complementary Filters
% We here use analytical formula for the complementary filters $H_L$ and $H_H$.
% The first two formulas that are used to generate complementary filters are:
% \begin{align*}
% H_L(s) &= \frac{(1+\alpha) (\frac{s}{\omega_0})+1}{\left((\frac{s}{\omega_0})+1\right) \left((\frac{s}{\omega_0})^2 + \alpha (\frac{s}{\omega_0}) + 1\right)}\\
% H_H(s) &= \frac{(\frac{s}{\omega_0})^2 \left((\frac{s}{\omega_0})+1+\alpha\right)}{\left((\frac{s}{\omega_0})+1\right) \left((\frac{s}{\omega_0})^2 + \alpha (\frac{s}{\omega_0}) + 1\right)}
% \end{align*}
% where:
% - $\omega_0$ is the blending frequency in rad/s.
% - $\alpha$ is used to change the shape of the filters:
% - Small values for $\alpha$ will produce high magnitude of the filters $|H_L(j\omega)|$ and $|H_H(j\omega)|$ near $\omega_0$ but smaller value for $|H_L(j\omega)|$ above $\approx 1.5 \omega_0$ and for $|H_H(j\omega)|$ below $\approx 0.7 \omega_0$
% - A large $\alpha$ will do the opposite
% This is illustrated on figure [[fig:comp_filters_param_alpha]].
% The slope of those filters at high and low frequencies is $-2$ and $2$ respectively for $H_L$ and $H_H$.
freqs_study = logspace(-2, 2, 10000);
alphas = [0.1, 1, 10];
w0 = 2*pi*1;
figure;
ax1 = subaxis(2,1,1);
hold on;
for i = 1:length(alphas)
alpha = alphas(i);
Hh2 = (s/w0)^2*((s/w0)+1+alpha)/(((s/w0)+1)*((s/w0)^2 + alpha*(s/w0) + 1));
Hl2 = ((1+alpha)*(s/w0)+1)/(((s/w0)+1)*((s/w0)^2 + alpha*(s/w0) + 1));
set(gca,'ColorOrderIndex',i);
plot(freqs_study, abs(squeeze(freqresp(Hh2, freqs_study, 'Hz'))));
set(gca,'ColorOrderIndex',i);
plot(freqs_study, abs(squeeze(freqresp(Hl2, freqs_study, 'Hz'))));
end
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
set(gca, 'XTickLabel',[]);
ylabel('Magnitude');
hold off;
ylim([1e-3, 20]);
% Phase
ax2 = subaxis(2,1,2);
hold on;
for i = 1:length(alphas)
alpha = alphas(i);
Hh2 = (s/w0)^2*((s/w0)+1+alpha)/(((s/w0)+1)*((s/w0)^2 + alpha*(s/w0) + 1));
Hl2 = ((1+alpha)*(s/w0)+1)/(((s/w0)+1)*((s/w0)^2 + alpha*(s/w0) + 1));
set(gca,'ColorOrderIndex',i);
plot(freqs_study, 180/pi*angle(squeeze(freqresp(Hh2, freqs_study, 'Hz'))), 'DisplayName', sprintf('$\\alpha = %g$', alpha));
set(gca,'ColorOrderIndex',i);
plot(freqs_study, 180/pi*angle(squeeze(freqresp(Hl2, freqs_study, 'Hz'))), 'HandleVisibility', 'off');
end
set(gca,'xscale','log');
yticks(-180:90:180);
ylim([-180 180]);
xlabel('Relative Frequency $\frac{\omega}{\omega_0}$'); ylabel('Phase [deg]');
legend('Location', 'northeast');
hold off;
linkaxes([ax1,ax2],'x');
xlim([freqs_study(1), freqs_study(end)]);
% #+NAME: fig:comp_filters_param_alpha
% #+CAPTION: Effect of the parameter $\alpha$ on the shape of the generated second order complementary filters ([[./figs/comp_filters_param_alpha.png][png]], [[./figs/comp_filters_param_alpha.pdf][pdf]])
% [[file:figs/comp_filters_param_alpha.png]]
% We now study the maximum norm of the filters function of the parameter $\alpha$. As we saw that the maximum norm of the filters is important for the robust merging of filters.
alphas = logspace(-2, 2, 100);
w0 = 2*pi*1;
infnorms = zeros(size(alphas));
for i = 1:length(alphas)
alpha = alphas(i);
Hh2 = (s/w0)^2*((s/w0)+1+alpha)/(((s/w0)+1)*((s/w0)^2 + alpha*(s/w0) + 1));
Hl2 = ((1+alpha)*(s/w0)+1)/(((s/w0)+1)*((s/w0)^2 + alpha*(s/w0) + 1));
infnorms(i) = norm(Hh2, 'inf');
end
figure;
plot(alphas, infnorms)
set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log');
xlabel('$\alpha$'); ylabel('$\|H_1\|_\infty$');
% Third Order Complementary Filters
% The following formula gives complementary filters with slopes of $-3$ and $3$:
% \begin{align*}
% H_L(s) &= \frac{\left(1+(\alpha+1)(\beta+1)\right) (\frac{s}{\omega_0})^2 + (1+\alpha+\beta)(\frac{s}{\omega_0}) + 1}{\left(\frac{s}{\omega_0} + 1\right) \left( (\frac{s}{\omega_0})^2 + \alpha (\frac{s}{\omega_0}) + 1 \right) \left( (\frac{s}{\omega_0})^2 + \beta (\frac{s}{\omega_0}) + 1 \right)}\\
% H_H(s) &= \frac{(\frac{s}{\omega_0})^3 \left( (\frac{s}{\omega_0})^2 + (1+\alpha+\beta) (\frac{s}{\omega_0}) + (1+(\alpha+1)(\beta+1)) \right)}{\left(\frac{s}{\omega_0} + 1\right) \left( (\frac{s}{\omega_0})^2 + \alpha (\frac{s}{\omega_0}) + 1 \right) \left( (\frac{s}{\omega_0})^2 + \beta (\frac{s}{\omega_0}) + 1 \right)}
% \end{align*}
% The parameters are:
% - $\omega_0$ is the blending frequency in rad/s
% - $\alpha$ and $\beta$ that are used to change the shape of the filters similarly to the parameter $\alpha$ for the second order complementary filters
% The filters are defined below and the result is shown on figure [[fig:complementary_filters_third_order]].
alpha = 1;
beta = 10;
w0 = 2*pi*14;
Hh3_ana = (s/w0)^3 * ((s/w0)^2 + (1+alpha+beta)*(s/w0) + (1+(alpha+1)*(beta+1)))/((s/w0 + 1)*((s/w0)^2+alpha*(s/w0)+1)*((s/w0)^2+beta*(s/w0)+1));
Hl3_ana = ((1+(alpha+1)*(beta+1))*(s/w0)^2 + (1+alpha+beta)*(s/w0) + 1)/((s/w0 + 1)*((s/w0)^2+alpha*(s/w0)+1)*((s/w0)^2+beta*(s/w0)+1));
figure;
hold on;
set(gca,'ColorOrderIndex',1)
plot(freqs, abs(squeeze(freqresp(Hl3_ana, freqs, 'Hz'))), '-', 'DisplayName', '$H_L$ - Analytical');
set(gca,'ColorOrderIndex',2)
plot(freqs, abs(squeeze(freqresp(Hh3_ana, freqs, 'Hz'))), '-', 'DisplayName', '$H_H$ - Analytical');
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
xlabel('Frequency [Hz]'); ylabel('Magnitude');
hold off;
xlim([freqs(1), freqs(end)]);
ylim([1e-3, 10]);
xticks([0.1, 1, 10, 100, 1000]);
legend('location', 'northeast');

View File

@ -0,0 +1,53 @@
%% Clear Workspace and Close figures
clear; close all; clc;
%% Intialize Laplace variable
s = zpk('s');
% Matlab
omega0 = 1*2*pi; % [rad/s]
tau = 1/omega0; % [s]
% From cite:corke04_inert_visual_sensin_system_small_auton_helic
HL1 = 1/(s/omega0 + 1); HH1 = s/omega0/(s/omega0 + 1);
% From cite:jensen13_basic_uas
HL2 = (2*omega0*s + omega0^2)/(s+omega0)^2; HH2 = s^2/(s+omega0)^2;
% From cite:shaw90_bandw_enhan_posit_measur_using_measur_accel
HL3 = (3*tau*s + 1)/(tau*s + 1)^3; HH3 = (tau^3*s^3 + 3*tau^2*s^2)/(tau*s + 1)^3;
freqs = logspace(-1, 1, 1000);
figure;
% Magnitude
ax1 = subaxis(2,1,1);
hold on;
set(gca,'ColorOrderIndex',1); plot(freqs, abs(squeeze(freqresp(HH1, freqs, 'Hz'))));
set(gca,'ColorOrderIndex',1); plot(freqs, abs(squeeze(freqresp(HL1, freqs, 'Hz'))));
set(gca,'ColorOrderIndex',2); plot(freqs, abs(squeeze(freqresp(HH2, freqs, 'Hz'))));
set(gca,'ColorOrderIndex',2); plot(freqs, abs(squeeze(freqresp(HL2, freqs, 'Hz'))));
set(gca,'ColorOrderIndex',3); plot(freqs, abs(squeeze(freqresp(HH3, freqs, 'Hz'))));
set(gca,'ColorOrderIndex',3); plot(freqs, abs(squeeze(freqresp(HL3, freqs, 'Hz'))));
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
set(gca, 'XTickLabel',[]);
ylabel('Magnitude');
hold off;
ylim([1e-2 2]);
% Phase
ax2 = subaxis(2,1,2);
hold on;
set(gca,'ColorOrderIndex',1); plot(freqs, 180/pi*angle(squeeze(freqresp(HH1, freqs, 'Hz'))));
set(gca,'ColorOrderIndex',1); plot(freqs, 180/pi*angle(squeeze(freqresp(HL1, freqs, 'Hz'))));
set(gca,'ColorOrderIndex',2); plot(freqs, 180/pi*angle(squeeze(freqresp(HH2, freqs, 'Hz'))));
set(gca,'ColorOrderIndex',2); plot(freqs, 180/pi*angle(squeeze(freqresp(HL2, freqs, 'Hz'))));
set(gca,'ColorOrderIndex',3); plot(freqs, 180/pi*angle(squeeze(freqresp(HH3, freqs, 'Hz'))));
set(gca,'ColorOrderIndex',3); plot(freqs, 180/pi*angle(squeeze(freqresp(HL3, freqs, 'Hz'))));
set(gca,'xscale','log');
yticks(-180:90:180);
ylim([-180 180]);
xlabel('Relative Frequency $\frac{\omega}{\omega_0}$'); ylabel('Phase [deg]');
hold off;
linkaxes([ax1,ax2],'x');
xlim([freqs(1), freqs(end)]);

View File

@ -0,0 +1,58 @@
%% Clear Workspace and Close figures
clear; close all; clc;
%% Intialize Laplace variable
s = zpk('s');
freqs = logspace(-2, 2, 1000);
% Loop Gain Design
% Let's first define the loop gain $L$.
wc = 2*pi*1;
alpha = 2;
L = (wc/s)^2 * (s/(wc/alpha) + 1)/(s/wc + alpha);
figure;
ax1 = subplot(2,1,1);
plot(freqs, abs(squeeze(freqresp(L, freqs, 'Hz'))), '-');
ylabel('Magnitude');
set(gca, 'XScale', 'log');
set(gca, 'YScale', 'log');
ax2 = subplot(2,1,2);
plot(freqs, 180/pi*phase(squeeze(freqresp(L, freqs, 'Hz'))), '--');
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
set(gca, 'XScale', 'log');
ylim([-180, 0]);
yticks([-360:90:360]);
linkaxes([ax1,ax2],'x');
xlim([freqs(1), freqs(end)]);
xticks([0.1, 1, 10, 100, 1000]);
% Complementary Filters Obtained
% We then compute the resulting low pass and high pass filters.
Hl = L/(L + 1);
Hh = 1/(L + 1);
alphas = [1, 2, 10];
figure;
hold on;
for i = 1:length(alphas)
alpha = alphas(i);
L = (wc/s)^2 * (s/(wc/alpha) + 1)/(s/wc + alpha);
Hl = L/(L + 1);
Hh = 1/(L + 1);
set(gca,'ColorOrderIndex',i)
plot(freqs, abs(squeeze(freqresp(Hl, freqs, 'Hz'))), 'DisplayName', sprintf('$\\alpha = %.0f$', alpha));
set(gca,'ColorOrderIndex',i)
plot(freqs, abs(squeeze(freqresp(Hh, freqs, 'Hz'))), 'HandleVisibility', 'off');
end
set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log');
xlabel('Frequency [Hz]'); ylabel('Amplitude')
legend('location', 'northeast');

View File

@ -0,0 +1,94 @@
%% Clear Workspace and Close figures
clear; close all; clc;
%% Intialize Laplace variable
s = zpk('s');
freqs = logspace(-1, 3, 1000);
% Weights
omegab = 2*pi*9;
wH = (omegab)^2/(s + omegab*sqrt(1e-5))^2;
omegab = 2*pi*28;
wL = (s + omegab/(4.5)^(1/3))^3/(s*(1e-4)^(1/3) + omegab)^3;
figure;
hold on;
set(gca,'ColorOrderIndex',1)
plot(freqs, 1./abs(squeeze(freqresp(wL, freqs, 'Hz'))), '-', 'DisplayName', '$w_L$');
set(gca,'ColorOrderIndex',2)
plot(freqs, 1./abs(squeeze(freqresp(wH, freqs, 'Hz'))), '-', 'DisplayName', '$w_H$');
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
xlabel('Frequency [Hz]'); ylabel('Magnitude');
hold off;
xlim([freqs(1), freqs(end)]);
ylim([1e-3, 10]);
xticks([0.1, 1, 10, 100, 1000]);
legend('location', 'northeast');
% H-Infinity Synthesis
% We define the generalized plant $P$ on matlab.
P = [0 wL;
wH -wH;
1 0];
% And we do the $\mathcal{H}_\infty$ synthesis using the =hinfsyn= command.
[Hl_hinf, ~, gamma, ~] = hinfsyn(P, 1, 1,'TOLGAM', 0.001, 'METHOD', 'ric', 'DISPLAY', 'on');
% #+RESULTS:
% #+begin_example
% [Hl_hinf, ~, gamma, ~] = hinfsyn(P, 1, 1,'TOLGAM', 0.001, 'METHOD', 'ric', 'DISPLAY', 'on');
% Test bounds: 0.0000 < gamma <= 1.7285
% gamma hamx_eig xinf_eig hamy_eig yinf_eig nrho_xy p/f
% 1.729 4.1e+01 8.4e-12 1.8e-01 0.0e+00 0.0000 p
% 0.864 3.9e+01 -5.8e-02# 1.8e-01 0.0e+00 0.0000 f
% 1.296 4.0e+01 8.4e-12 1.8e-01 0.0e+00 0.0000 p
% 1.080 4.0e+01 8.5e-12 1.8e-01 0.0e+00 0.0000 p
% 0.972 3.9e+01 -4.2e-01# 1.8e-01 0.0e+00 0.0000 f
% 1.026 4.0e+01 8.5e-12 1.8e-01 0.0e+00 0.0000 p
% 0.999 3.9e+01 8.5e-12 1.8e-01 0.0e+00 0.0000 p
% 0.986 3.9e+01 -1.2e+00# 1.8e-01 0.0e+00 0.0000 f
% 0.993 3.9e+01 -8.2e+00# 1.8e-01 0.0e+00 0.0000 f
% 0.996 3.9e+01 8.5e-12 1.8e-01 0.0e+00 0.0000 p
% 0.994 3.9e+01 8.5e-12 1.8e-01 0.0e+00 0.0000 p
% 0.993 3.9e+01 -3.2e+01# 1.8e-01 0.0e+00 0.0000 f
% Gamma value achieved: 0.9942
% #+end_example
% We then define the high pass filter $H_H = 1 - H_L$. The bode plot of both $H_L$ and $H_H$ is shown on figure [[fig:hinf_filters_results]].
Hh_hinf = 1 - Hl_hinf;
% Obtained Complementary Filters
% The obtained complementary filters are shown on figure [[fig:hinf_filters_results]].
figure;
hold on;
set(gca,'ColorOrderIndex',1)
plot(freqs, 1./abs(squeeze(freqresp(wL, freqs, 'Hz'))), '--', 'DisplayName', '$w_L$');
set(gca,'ColorOrderIndex',2)
plot(freqs, 1./abs(squeeze(freqresp(wH, freqs, 'Hz'))), '--', 'DisplayName', '$w_H$');
set(gca,'ColorOrderIndex',1)
plot(freqs, abs(squeeze(freqresp(Hl_hinf, freqs, 'Hz'))), '-', 'DisplayName', '$H_L$ - $\mathcal{H}_\infty$');
set(gca,'ColorOrderIndex',2)
plot(freqs, abs(squeeze(freqresp(Hh_hinf, freqs, 'Hz'))), '-', 'DisplayName', '$H_H$ - $\mathcal{H}_\infty$');
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
xlabel('Frequency [Hz]'); ylabel('Magnitude');
hold off;
xlim([freqs(1), freqs(end)]);
ylim([1e-3, 10]);
xticks([0.1, 1, 10, 100, 1000]);
legend('location', 'northeast');

View File

@ -0,0 +1,432 @@
%% Clear Workspace and Close figures
clear; close all; clc;
%% Intialize Laplace variable
s = zpk('s');
freqs = logspace(-1, 3, 1000);
% Noise of the sensors
% Let's define the noise characteristics of the two sensors by choosing $N_1$ and $N_2$:
% - Sensor 1 characterized by $N_1(s)$ has low noise at low frequency (for instance a geophone)
% - Sensor 2 characterized by $N_2(s)$ has low noise at high frequency (for instance an accelerometer)
omegac = 100*2*pi; G0 = 1e-5; Ginf = 1e-4;
N1 = (Ginf*s/omegac + G0)/(s/omegac + 1)/(1 + s/2/pi/100);
omegac = 1*2*pi; G0 = 1e-3; Ginf = 1e-8;
N2 = ((sqrt(Ginf)*s/omegac + sqrt(G0))/(s/omegac + 1))^2/(1 + s/2/pi/4000)^2;
figure;
hold on;
plot(freqs, abs(squeeze(freqresp(N1, freqs, 'Hz'))), '-', 'DisplayName', '$N_1$');
plot(freqs, abs(squeeze(freqresp(N2, freqs, 'Hz'))), '-', 'DisplayName', '$N_2$');
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
xlabel('Frequency [Hz]'); ylabel('Magnitude');
hold off;
xlim([freqs(1), freqs(end)]);
legend('location', 'northeast');
% H-Two Synthesis
% As $\tilde{n}_1$ and $\tilde{n}_2$ are normalized white noise: $\Phi_{\tilde{n}_1}(\omega) = \Phi_{\tilde{n}_2}(\omega) = 1$ and we have:
% \[ \sigma_{\hat{x}} = \sqrt{\int_0^\infty |H_1 N_1|^2(\omega) + |H_2 N_2|^2(\omega) d\omega} = \left\| \begin{matrix} H_1 N_1 \\ H_2 N_2 \end{matrix} \right\|_2 \]
% Thus, the goal is to design $H_1(s)$ and $H_2(s)$ such that $H_1(s) + H_2(s) = 1$ and such that $\left\| \begin{matrix} H_1 N_1 \\ H_2 N_2 \end{matrix} \right\|_2$ is minimized.
% For that, we use the $\mathcal{H}_2$ Synthesis.
% We use the generalized plant architecture shown on figure [[fig:h_infinity_optimal_comp_filters]].
% #+name: fig:h_infinity_optimal_comp_filters
% #+caption: $\mathcal{H}_2$ Synthesis - Generalized plant used for the optimal generation of complementary filters
% [[file:figs-tikz/h_infinity_optimal_comp_filters.png]]
% The transfer function from $[n_1, n_2]$ to $\hat{x}$ is:
% \[ \begin{bmatrix} N_1 H_1 \\ N_2 (1 - H_1) \end{bmatrix} \]
% If we define $H_2 = 1 - H_1$, we obtain:
% \[ \begin{bmatrix} N_1 H_1 \\ N_2 H_2 \end{bmatrix} \]
% Thus, if we minimize the $\mathcal{H}_2$ norm of this transfer function, we minimize the RMS value of $\hat{x}$.
% We define the generalized plant $P$ on matlab as shown on figure [[fig:h_infinity_optimal_comp_filters]].
P = [0 N2 1;
N1 -N2 0];
% And we do the $\mathcal{H}_2$ synthesis using the =h2syn= command.
[H1, ~, gamma] = h2syn(P, 1, 1);
% Finally, we define $H_2(s) = 1 - H_1(s)$.
H2 = 1 - H1;
% The complementary filters obtained are shown on figure [[fig:htwo_comp_filters]].
% The PSD of the noise of the individual sensor and of the super sensor are shown in Fig. [[fig:psd_sensors_htwo_synthesis]].
% The Cumulative Power Spectrum (CPS) is shown on Fig. [[fig:cps_h2_synthesis]].
% The obtained RMS value of the super sensor is lower than the RMS value of the individual sensors.
figure;
hold on;
plot(freqs, abs(squeeze(freqresp(H1, freqs, 'Hz'))), '-', 'DisplayName', '$H_1$');
plot(freqs, abs(squeeze(freqresp(H2, freqs, 'Hz'))), '-', 'DisplayName', '$H_2$');
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
xlabel('Frequency [Hz]'); ylabel('Magnitude');
hold off;
xlim([freqs(1), freqs(end)]);
legend('location', 'northeast');
% #+NAME: fig:htwo_comp_filters
% #+CAPTION: Obtained complementary filters using the $\mathcal{H}_2$ Synthesis ([[./figs/htwo_comp_filters.png][png]], [[./figs/htwo_comp_filters.pdf][pdf]])
% [[file:figs/htwo_comp_filters.png]]
PSD_S1 = abs(squeeze(freqresp(N1, freqs, 'Hz'))).^2;
PSD_S2 = abs(squeeze(freqresp(N2, freqs, 'Hz'))).^2;
PSD_H2 = abs(squeeze(freqresp(N1*H1, freqs, 'Hz'))).^2+abs(squeeze(freqresp(N2*H2, freqs, 'Hz'))).^2;
figure;
hold on;
plot(freqs, PSD_S1, '-', 'DisplayName', '$\Phi_{\hat{x}_1}$');
plot(freqs, PSD_S2, '-', 'DisplayName', '$\Phi_{\hat{x}_2}$');
plot(freqs, PSD_H2, 'k-', 'DisplayName', '$\Phi_{\hat{x}_{\mathcal{H}_2}}$');
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
xlabel('Frequency [Hz]'); ylabel('Power Spectral Density');
hold off;
xlim([freqs(1), freqs(end)]);
legend('location', 'northeast');
% #+NAME: fig:psd_sensors_htwo_synthesis
% #+CAPTION: Power Spectral Density of the estimated $\hat{x}$ using the two sensors alone and using the optimally fused signal ([[./figs/psd_sensors_htwo_synthesis.png][png]], [[./figs/psd_sensors_htwo_synthesis.pdf][pdf]])
% [[file:figs/psd_sensors_htwo_synthesis.png]]
CPS_S1 = 1/pi*cumtrapz(2*pi*freqs, PSD_S1);
CPS_S2 = 1/pi*cumtrapz(2*pi*freqs, PSD_S2);
CPS_H2 = 1/pi*cumtrapz(2*pi*freqs, PSD_H2);
figure;
hold on;
plot(freqs, CPS_S1, '-', 'DisplayName', sprintf('$\\sigma_{\\hat{x}_1} = %.1e$', sqrt(CPS_S1(end))));
plot(freqs, CPS_S2, '-', 'DisplayName', sprintf('$\\sigma_{\\hat{x}_2} = %.1e$', sqrt(CPS_S2(end))));
plot(freqs, CPS_H2, 'k-', 'DisplayName', sprintf('$\\sigma_{\\hat{x}_{\\mathcal{H}_2}} = %.1e$', sqrt(CPS_H2(end))));
set(gca, 'YScale', 'log'); set(gca, 'XScale', 'log');
xlabel('Frequency [Hz]'); ylabel('Cumulative Power Spectrum');
hold off;
xlim([2e-1, freqs(end)]);
ylim([1e-10 1e-5]);
legend('location', 'southeast');
% H-Infinity Synthesis - method A
% Another objective that we may have is that the noise of the super sensor $n_{SS}$ is following the minimum of the noise of the two sensors $n_1$ and $n_2$:
% \[ \Gamma_{n_{ss}}(\omega) = \min(\Gamma_{n_1}(\omega),\ \Gamma_{n_2}(\omega)) \]
% In order to obtain that ideal case, we need that the complementary filters be designed such that:
% \begin{align*}
% & |H_1(j\omega)| = 1 \text{ and } |H_2(j\omega)| = 0 \text{ at frequencies where } \Gamma_{n_1}(\omega) < \Gamma_{n_2}(\omega) \\
% & |H_1(j\omega)| = 0 \text{ and } |H_2(j\omega)| = 1 \text{ at frequencies where } \Gamma_{n_1}(\omega) > \Gamma_{n_2}(\omega)
% \end{align*}
% Which is indeed impossible in practice.
% We could try to approach that with the $\mathcal{H}_\infty$ synthesis by using high order filters.
% As shown on Fig. [[fig:noise_characteristics_sensors]], the frequency where the two sensors have the same noise level is around 9Hz.
% We will thus choose weighting functions such that the merging frequency is around 9Hz.
% The weighting functions used as well as the obtained complementary filters are shown in Fig. [[fig:weights_comp_filters_Hinfa]].
n = 5; w0 = 2*pi*10; G0 = 1/10; G1 = 10000; Gc = 1/2;
W1a = (((1/w0)*sqrt((1-(G0/Gc)^(2/n))/(1-(Gc/G1)^(2/n)))*s + (G0/Gc)^(1/n))/((1/G1)^(1/n)*(1/w0)*sqrt((1-(G0/Gc)^(2/n))/(1-(Gc/G1)^(2/n)))*s + (1/Gc)^(1/n)))^n;
n = 5; w0 = 2*pi*8; G0 = 1000; G1 = 0.1; Gc = 1/2;
W2a = (((1/w0)*sqrt((1-(G0/Gc)^(2/n))/(1-(Gc/G1)^(2/n)))*s + (G0/Gc)^(1/n))/((1/G1)^(1/n)*(1/w0)*sqrt((1-(G0/Gc)^(2/n))/(1-(Gc/G1)^(2/n)))*s + (1/Gc)^(1/n)))^n;
P = [W1a -W1a;
0 W2a;
1 0];
% And we do the $\mathcal{H}_\infty$ synthesis using the =hinfsyn= command.
[H2a, ~, gamma, ~] = hinfsyn(P, 1, 1,'TOLGAM', 0.001, 'METHOD', 'ric', 'DISPLAY', 'on');
% #+RESULTS:
% #+begin_example
% [H2a, ~, gamma, ~] = hinfsyn(P, 1, 1,'TOLGAM', 0.001, 'METHOD', 'ric', 'DISPLAY', 'on');
% Resetting value of Gamma min based on D_11, D_12, D_21 terms
% Test bounds: 0.1000 < gamma <= 10500.0000
% gamma hamx_eig xinf_eig hamy_eig yinf_eig nrho_xy p/f
% 1.050e+04 2.1e+01 -3.0e-07 7.8e+00 -1.3e-15 0.0000 p
% 5.250e+03 2.1e+01 -1.5e-08 7.8e+00 -5.8e-14 0.0000 p
% 2.625e+03 2.1e+01 2.5e-10 7.8e+00 -3.7e-12 0.0000 p
% 1.313e+03 2.1e+01 -3.2e-11 7.8e+00 -7.3e-14 0.0000 p
% 656.344 2.1e+01 -2.2e-10 7.8e+00 -1.1e-15 0.0000 p
% 328.222 2.1e+01 -1.1e-10 7.8e+00 -1.2e-15 0.0000 p
% 164.161 2.1e+01 -2.4e-08 7.8e+00 -8.9e-16 0.0000 p
% 82.130 2.1e+01 2.0e-10 7.8e+00 -9.1e-31 0.0000 p
% 41.115 2.1e+01 -6.8e-09 7.8e+00 -4.1e-13 0.0000 p
% 20.608 2.1e+01 3.3e-10 7.8e+00 -1.4e-12 0.0000 p
% 10.354 2.1e+01 -9.8e-09 7.8e+00 -1.8e-15 0.0000 p
% 5.227 2.1e+01 -4.1e-09 7.8e+00 -2.5e-12 0.0000 p
% 2.663 2.1e+01 2.7e-10 7.8e+00 -4.0e-14 0.0000 p
% 1.382 2.1e+01 -3.2e+05# 7.8e+00 -3.5e-14 0.0000 f
% 2.023 2.1e+01 -5.0e-10 7.8e+00 0.0e+00 0.0000 p
% 1.702 2.1e+01 -2.4e+07# 7.8e+00 -1.6e-13 0.0000 f
% 1.862 2.1e+01 -6.0e+08# 7.8e+00 -1.0e-12 0.0000 f
% 1.942 2.1e+01 -2.8e-09 7.8e+00 -8.1e-14 0.0000 p
% 1.902 2.1e+01 -2.5e-09 7.8e+00 -1.1e-13 0.0000 p
% 1.882 2.1e+01 -9.3e-09 7.8e+00 -2.0e-15 0.0001 p
% 1.872 2.1e+01 -1.3e+09# 7.8e+00 -3.6e-22 0.0000 f
% 1.877 2.1e+01 -2.6e+09# 7.8e+00 -1.2e-13 0.0000 f
% 1.880 2.1e+01 -5.6e+09# 7.8e+00 -1.4e-13 0.0000 f
% 1.881 2.1e+01 -1.2e+10# 7.8e+00 -3.3e-12 0.0000 f
% 1.882 2.1e+01 -3.2e+10# 7.8e+00 -8.5e-14 0.0001 f
% Gamma value achieved: 1.8824
% #+end_example
H1a = 1 - H2a;
figure;
ax1 = subplot(2,1,1);
hold on;
set(gca,'ColorOrderIndex',1)
plot(freqs, 1./abs(squeeze(freqresp(W1a, freqs, 'Hz'))), '--', 'DisplayName', '$w_1$');
set(gca,'ColorOrderIndex',2)
plot(freqs, 1./abs(squeeze(freqresp(W2a, freqs, 'Hz'))), '--', 'DisplayName', '$w_2$');
set(gca,'ColorOrderIndex',1)
plot(freqs, abs(squeeze(freqresp(H1a, freqs, 'Hz'))), '-', 'DisplayName', '$H_1$');
set(gca,'ColorOrderIndex',2)
plot(freqs, abs(squeeze(freqresp(H2a, freqs, 'Hz'))), '-', 'DisplayName', '$H_2$');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Magnitude');
set(gca, 'XTickLabel',[]);
ylim([5e-4, 20]);
legend('location', 'northeast');
ax2 = subplot(2,1,2);
hold on;
set(gca,'ColorOrderIndex',1)
plot(freqs, 180/pi*phase(squeeze(freqresp(H1a, freqs, 'Hz'))), '-');
set(gca,'ColorOrderIndex',2)
plot(freqs, 180/pi*phase(squeeze(freqresp(H2a, freqs, 'Hz'))), '-');
hold off;
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
set(gca, 'XScale', 'log');
yticks([-360:90:360]);
linkaxes([ax1,ax2],'x');
xlim([freqs(1), freqs(end)]);
xticks([0.1, 1, 10, 100, 1000]);
% #+NAME: fig:weights_comp_filters_Hinfa
% #+CAPTION: Weights and Complementary Fitlers obtained ([[./figs/weights_comp_filters_Hinfa.png][png]], [[./figs/weights_comp_filters_Hinfa.pdf][pdf]])
% [[file:figs/weights_comp_filters_Hinfa.png]]
% We then compute the Power Spectral Density as well as the Cumulative Power Spectrum.
PSD_Ha = abs(squeeze(freqresp(N1*H1a, freqs, 'Hz'))).^2+abs(squeeze(freqresp(N2*H2a, freqs, 'Hz'))).^2;
CPS_Ha = 1/pi*cumtrapz(2*pi*freqs, PSD_Ha);
% H-Infinity Synthesis - method B
% We have that:
% \[ \Phi_{\hat{x}}(\omega) = \left|H_1(j\omega) N_1(j\omega)\right|^2 + \left|H_2(j\omega) N_2(j\omega)\right|^2 \]
% Then, at frequencies where $|H_1(j\omega)| < |H_2(j\omega)|$ we would like that $|N_1(j\omega)| = 1$ and $|N_2(j\omega)| = 0$ as we discussed before.
% Then $|H_1 N_1|^2 + |H_2 N_2|^2 = |N_1|^2$.
% We know that this is impossible in practice. A more realistic choice is to design $H_2(s)$ such that when $|N_2(j\omega)| > |N_1(j\omega)|$, we have that:
% \[ |H_2 N_2|^2 = \epsilon |H_1 N_1|^2 \]
% Which is equivalent to have (by supposing $|H_1| \approx 1$):
% \[ |H_2| = \sqrt{\epsilon} \frac{|N_1|}{|N_2|} \]
% And we have:
% \begin{align*}
% \Phi_{\hat{x}} &= \left|H_1 N_1\right|^2 + |H_2 N_2|^2 \\
% &= (1 + \epsilon) \left| H_1 N_1 \right|^2 \\
% &\approx \left|N_1\right|^2
% \end{align*}
% Similarly, we design $H_1(s)$ such that at frequencies where $|N_1| > |N_2|$:
% \[ |H_1| = \sqrt{\epsilon} \frac{|N_2|}{|N_1|} \]
% For instance, is we take $\epsilon = 1$, then the PSD of $\hat{x}$ is increased by just by a factor $\sqrt{2}$ over the all frequencies from the idea case.
% We use this as the weighting functions for the $\mathcal{H}_\infty$ synthesis of the complementary filters.
% The weighting function and the obtained complementary filters are shown in Fig. [[fig:weights_comp_filters_Hinfb]].
epsilon = 2;
W1b = 1/epsilon*N1/N2;
W2b = 1/epsilon*N2/N1;
W1b = W1b/(1 + s/2/pi/1000); % this is added so that it is proper
P = [W1b -W1b;
0 W2b;
1 0];
% And we do the $\mathcal{H}_\infty$ synthesis using the =hinfsyn= command.
[H2b, ~, gamma, ~] = hinfsyn(P, 1, 1,'TOLGAM', 0.001, 'METHOD', 'ric', 'DISPLAY', 'on');
% #+RESULTS:
% #+begin_example
% [H2b, ~, gamma, ~] = hinfsyn(P, 1, 1,'TOLGAM', 0.001, 'METHOD', 'ric', 'DISPLAY', 'on');
% Test bounds: 0.0000 < gamma <= 32.8125
% gamma hamx_eig xinf_eig hamy_eig yinf_eig nrho_xy p/f
% 32.812 1.8e+01 3.4e-10 6.3e+00 -2.9e-13 0.0000 p
% 16.406 1.8e+01 3.4e-10 6.3e+00 -1.2e-15 0.0000 p
% 8.203 1.8e+01 3.3e-10 6.3e+00 -2.6e-13 0.0000 p
% 4.102 1.8e+01 3.3e-10 6.3e+00 -2.1e-13 0.0000 p
% 2.051 1.7e+01 3.4e-10 6.3e+00 -7.2e-16 0.0000 p
% 1.025 1.6e+01 -1.3e+06# 6.3e+00 -8.3e-14 0.0000 f
% 1.538 1.7e+01 3.4e-10 6.3e+00 -2.0e-13 0.0000 p
% 1.282 1.7e+01 3.4e-10 6.3e+00 -7.9e-17 0.0000 p
% 1.154 1.7e+01 3.6e-10 6.3e+00 -1.8e-13 0.0000 p
% 1.089 1.7e+01 -3.4e+06# 6.3e+00 -1.7e-13 0.0000 f
% 1.122 1.7e+01 -1.0e+07# 6.3e+00 -3.2e-13 0.0000 f
% 1.138 1.7e+01 -1.3e+08# 6.3e+00 -1.8e-13 0.0000 f
% 1.146 1.7e+01 3.2e-10 6.3e+00 -3.0e-13 0.0000 p
% 1.142 1.7e+01 5.5e-10 6.3e+00 -2.8e-13 0.0000 p
% 1.140 1.7e+01 -1.5e-10 6.3e+00 -2.3e-13 0.0000 p
% 1.139 1.7e+01 -4.8e+08# 6.3e+00 -6.2e-14 0.0000 f
% 1.139 1.7e+01 1.3e-09 6.3e+00 -8.9e-17 0.0000 p
% Gamma value achieved: 1.1390
% #+end_example
H1b = 1 - H2b;
figure;
ax1 = subplot(2,1,1);
hold on;
set(gca,'ColorOrderIndex',1)
plot(freqs, 1./abs(squeeze(freqresp(W1b, freqs, 'Hz'))), '--', 'DisplayName', '$w_1$');
set(gca,'ColorOrderIndex',2)
plot(freqs, 1./abs(squeeze(freqresp(W2b, freqs, 'Hz'))), '--', 'DisplayName', '$w_2$');
set(gca,'ColorOrderIndex',1)
plot(freqs, abs(squeeze(freqresp(H1b, freqs, 'Hz'))), '-', 'DisplayName', '$H_1$');
set(gca,'ColorOrderIndex',2)
plot(freqs, abs(squeeze(freqresp(H2b, freqs, 'Hz'))), '-', 'DisplayName', '$H_2$');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Magnitude');
set(gca, 'XTickLabel',[]);
ylim([5e-4, 20]);
legend('location', 'northeast');
ax2 = subplot(2,1,2);
hold on;
set(gca,'ColorOrderIndex',1)
plot(freqs, 180/pi*phase(squeeze(freqresp(H1b, freqs, 'Hz'))), '-');
set(gca,'ColorOrderIndex',2)
plot(freqs, 180/pi*phase(squeeze(freqresp(H2b, freqs, 'Hz'))), '-');
hold off;
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
set(gca, 'XScale', 'log');
yticks([-360:90:360]);
linkaxes([ax1,ax2],'x');
xlim([freqs(1), freqs(end)]);
xticks([0.1, 1, 10, 100, 1000]);
% #+NAME: fig:weights_comp_filters_Hinfb
% #+CAPTION: Weights and Complementary Fitlers obtained ([[./figs/weights_comp_filters_Hinfb.png][png]], [[./figs/weights_comp_filters_Hinfb.pdf][pdf]])
% [[file:figs/weights_comp_filters_Hinfb.png]]
PSD_Hb = abs(squeeze(freqresp(N1*H1b, freqs, 'Hz'))).^2+abs(squeeze(freqresp(N2*H2b, freqs, 'Hz'))).^2;
CPS_Hb = 1/pi*cumtrapz(2*pi*freqs, PSD_Hb);
% #+name: tab:rms_results
% #+caption: RMS value of the estimation error when using the sensor individually and when using the two sensor merged using the optimal complementary filters
% #+RESULTS:
% | | rms value |
% |--------------+-----------|
% | Sensor 1 | 1.3e-03 |
% | Sensor 2 | 1.3e-03 |
% | H2 Fusion | 1.2e-04 |
% | H-Infinity a | 2.4e-04 |
% | H-Infinity b | 1.4e-04 |
figure;
hold on;
plot(freqs, PSD_S1, '-', 'DisplayName', '$\Phi_{\hat{x}_1}$');
plot(freqs, PSD_S2, '-', 'DisplayName', '$\Phi_{\hat{x}_2}$');
plot(freqs, PSD_H2, 'k-', 'DisplayName', '$\Phi_{\hat{x}_{\mathcal{H}_2}}$');
plot(freqs, PSD_Ha, 'k--', 'DisplayName', '$\Phi_{\hat{x}_{\mathcal{H}_\infty},a}$');
plot(freqs, PSD_Hb, 'k-.', 'DisplayName', '$\Phi_{\hat{x}_{\mathcal{H}_\infty},b}$');
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
xlabel('Frequency [Hz]'); ylabel('Power Spectral Density');
hold off;
xlim([freqs(1), freqs(end)]);
legend('location', 'northeast');
% #+NAME: fig:comparison_psd_noise
% #+CAPTION: Comparison of the obtained Power Spectral Density using the three methods ([[./figs/comparison_psd_noise.png][png]], [[./figs/comparison_psd_noise.pdf][pdf]])
% [[file:figs/comparison_psd_noise.png]]
figure;
hold on;
plot(freqs, CPS_S1, '-', 'DisplayName', sprintf('$\\sigma_{\\hat{x}_1} = %.1e$', sqrt(CPS_S1(end))));
plot(freqs, CPS_S2, '-', 'DisplayName', sprintf('$\\sigma_{\\hat{x}_2} = %.1e$', sqrt(CPS_S2(end))));
plot(freqs, CPS_H2, 'k-', 'DisplayName', sprintf('$\\sigma_{\\hat{x}_{\\mathcal{H}_2}} = %.1e$', sqrt(CPS_H2(end))));
plot(freqs, CPS_Ha, 'k--', 'DisplayName', sprintf('$\\sigma_{\\hat{x}_{\\mathcal{H}_\\infty, a}} = %.1e$', sqrt(CPS_Ha(end))));
plot(freqs, CPS_Hb, 'k-.', 'DisplayName', sprintf('$\\sigma_{\\hat{x}_{\\mathcal{H}_\\infty, b}} = %.1e$', sqrt(CPS_Hb(end))));
set(gca, 'YScale', 'log'); set(gca, 'XScale', 'log');
xlabel('Frequency [Hz]'); ylabel('Cumulative Power Spectrum');
hold off;
xlim([2e-1, freqs(end)]);
ylim([1e-10 1e-5]);
legend('location', 'southeast');