Add weight on the uncertainty
This commit is contained in:
parent
9a1379d4eb
commit
7b9574bc9e
@ -289,13 +289,23 @@ In order for the fusion to be "robust", meaning no phase drop will be induced in
|
|||||||
|
|
||||||
The goal is to design two complementary filters $H_1(s)$ and $H_2(s)$ such that the super sensor noise uncertainty is kept reasonably small.
|
The goal is to design two complementary filters $H_1(s)$ and $H_2(s)$ such that the super sensor noise uncertainty is kept reasonably small.
|
||||||
|
|
||||||
This problem can be dealt with an $\mathcal{H}_\infty$ synthesis problem by considering the following generalized plant:
|
To define what by "small" we mean, we use a weighting filter $W_u(s)$ such that the synthesis objective is:
|
||||||
|
\begin{equation}
|
||||||
|
\left| W_1(j\omega)H_1(j\omega) \right| + \left| W_2(j\omega)H_2(j\omega) \right| < \frac{1}{\left| W_u(j\omega) \right|}, \quad \forall \omega
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
This is actually almost equivalent (to within a factor $\sqrt{2}$) equivalent as to have:
|
||||||
|
\begin{equation}
|
||||||
|
\left\| \begin{matrix} W_u W_1 H_1 \\ W_u W_2 H_2 \end{matrix} \right\|_\infty < 1
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
This problem can thus be dealt with an $\mathcal{H}_\infty$ synthesis problem by considering the following generalized plant (Figure ref:fig:h_infinity_robust_fusion):
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\begin{pmatrix}
|
\begin{pmatrix}
|
||||||
z_1 \\ z_2 \\ v
|
z_1 \\ z_2 \\ v
|
||||||
\end{pmatrix} = \underbrace{\begin{bmatrix}
|
\end{pmatrix} = \underbrace{\begin{bmatrix}
|
||||||
W_1 & W_1 \\
|
W_u W_1 & W_u W_1 \\
|
||||||
0 & W_2 \\
|
0 & W_u W_2 \\
|
||||||
1 & 0
|
1 & 0
|
||||||
\end{bmatrix}}_{P_{\mathcal{H}_\infty}} \begin{pmatrix}
|
\end{bmatrix}}_{P_{\mathcal{H}_\infty}} \begin{pmatrix}
|
||||||
w \\ u
|
w \\ u
|
||||||
@ -305,7 +315,7 @@ This problem can be dealt with an $\mathcal{H}_\infty$ synthesis problem by cons
|
|||||||
Applying the $\mathcal{H}_\infty$ synthesis on $P_{\mathcal{H}_\infty}$ will generate a filter $H_2(s)$ such that the $\mathcal{H}_\infty$ norm from $w$ to $(z_1,z_2)$ is minimized:
|
Applying the $\mathcal{H}_\infty$ synthesis on $P_{\mathcal{H}_\infty}$ will generate a filter $H_2(s)$ such that the $\mathcal{H}_\infty$ norm from $w$ to $(z_1,z_2)$ is minimized:
|
||||||
#+NAME: eq:Hinf_norm
|
#+NAME: eq:Hinf_norm
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\left\| \begin{matrix} z_1/w \\ z_2/w \end{matrix} \right\|_\infty = \left\| \begin{matrix} W_1 (1 - H_2) \\ W_2 H_2 \end{matrix} \right\|_\infty
|
\left\| \begin{matrix} z_1/w \\ z_2/w \end{matrix} \right\|_\infty = \left\| \begin{matrix} W_u W_1 (1 - H_2) \\ W_u W_2 H_2 \end{matrix} \right\|_\infty
|
||||||
\end{equation}
|
\end{equation}
|
||||||
|
|
||||||
The $\mathcal{H}_\infty$ norm of Eq. eqref:eq:Hinf_norm is equals to $\sigma_n$ by defining $H_1(s)$ to be the complementary filter of $H_2(s)$:
|
The $\mathcal{H}_\infty$ norm of Eq. eqref:eq:Hinf_norm is equals to $\sigma_n$ by defining $H_1(s)$ to be the complementary filter of $H_2(s)$:
|
||||||
@ -313,7 +323,6 @@ The $\mathcal{H}_\infty$ norm of Eq. eqref:eq:Hinf_norm is equals to $\sigma_n$
|
|||||||
H_1(s) = 1 - H_2(s)
|
H_1(s) = 1 - H_2(s)
|
||||||
\end{equation}
|
\end{equation}
|
||||||
|
|
||||||
|
|
||||||
#+name: fig:h_infinity_robust_fusion
|
#+name: fig:h_infinity_robust_fusion
|
||||||
#+caption: Generalized plant $P_{\mathcal{H}_\infty}$ used for the $\mathcal{H}_\infty$ synthesis of complementary filters
|
#+caption: Generalized plant $P_{\mathcal{H}_\infty}$ used for the $\mathcal{H}_\infty$ synthesis of complementary filters
|
||||||
#+attr_latex: :scale 1
|
#+attr_latex: :scale 1
|
||||||
|
Loading…
Reference in New Issue
Block a user