Add weight on the uncertainty
This commit is contained in:
		@@ -289,14 +289,24 @@ In order for the fusion to be "robust", meaning no phase drop will be induced in
 | 
			
		||||
 | 
			
		||||
The goal is to design two complementary filters $H_1(s)$ and $H_2(s)$ such that the super sensor noise uncertainty is kept reasonably small.
 | 
			
		||||
 | 
			
		||||
This problem can be dealt with an $\mathcal{H}_\infty$ synthesis problem by considering the following generalized plant:
 | 
			
		||||
To define what by "small" we mean, we use a weighting filter $W_u(s)$ such that the synthesis objective is:
 | 
			
		||||
\begin{equation}
 | 
			
		||||
  \left| W_1(j\omega)H_1(j\omega) \right| + \left| W_2(j\omega)H_2(j\omega) \right| < \frac{1}{\left| W_u(j\omega) \right|}, \quad \forall \omega
 | 
			
		||||
\end{equation}
 | 
			
		||||
 | 
			
		||||
This is actually almost equivalent (to within a factor $\sqrt{2}$) equivalent as to have:
 | 
			
		||||
\begin{equation}
 | 
			
		||||
  \left\| \begin{matrix} W_u W_1 H_1 \\ W_u W_2 H_2 \end{matrix} \right\|_\infty < 1
 | 
			
		||||
\end{equation}
 | 
			
		||||
 | 
			
		||||
This problem can thus be dealt with an $\mathcal{H}_\infty$ synthesis problem by considering the following generalized plant (Figure ref:fig:h_infinity_robust_fusion):
 | 
			
		||||
\begin{equation}
 | 
			
		||||
\begin{pmatrix}
 | 
			
		||||
  z_1 \\ z_2 \\ v
 | 
			
		||||
\end{pmatrix} = \underbrace{\begin{bmatrix}
 | 
			
		||||
  W_1 & W_1 \\
 | 
			
		||||
  0   & W_2 \\
 | 
			
		||||
  1   &  0
 | 
			
		||||
  W_u W_1 & W_u W_1 \\
 | 
			
		||||
  0       & W_u W_2 \\
 | 
			
		||||
  1       & 0
 | 
			
		||||
\end{bmatrix}}_{P_{\mathcal{H}_\infty}} \begin{pmatrix}
 | 
			
		||||
  w \\ u
 | 
			
		||||
\end{pmatrix}
 | 
			
		||||
@@ -305,7 +315,7 @@ This problem can be dealt with an $\mathcal{H}_\infty$ synthesis problem by cons
 | 
			
		||||
Applying the $\mathcal{H}_\infty$ synthesis on $P_{\mathcal{H}_\infty}$ will generate a filter $H_2(s)$ such that the $\mathcal{H}_\infty$ norm from $w$ to $(z_1,z_2)$ is minimized:
 | 
			
		||||
#+NAME: eq:Hinf_norm
 | 
			
		||||
\begin{equation}
 | 
			
		||||
   \left\| \begin{matrix} z_1/w \\ z_2/w \end{matrix} \right\|_\infty = \left\| \begin{matrix} W_1 (1 - H_2) \\ W_2 H_2 \end{matrix} \right\|_\infty
 | 
			
		||||
   \left\| \begin{matrix} z_1/w \\ z_2/w \end{matrix} \right\|_\infty = \left\| \begin{matrix} W_u W_1 (1 - H_2) \\ W_u W_2 H_2 \end{matrix} \right\|_\infty
 | 
			
		||||
\end{equation}
 | 
			
		||||
 | 
			
		||||
The $\mathcal{H}_\infty$ norm of Eq. eqref:eq:Hinf_norm is equals to $\sigma_n$ by defining $H_1(s)$ to be the complementary filter of $H_2(s)$:
 | 
			
		||||
@@ -313,7 +323,6 @@ The $\mathcal{H}_\infty$ norm of Eq. eqref:eq:Hinf_norm is equals to $\sigma_n$
 | 
			
		||||
  H_1(s) = 1 - H_2(s)
 | 
			
		||||
\end{equation}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
#+name: fig:h_infinity_robust_fusion
 | 
			
		||||
#+caption: Generalized plant $P_{\mathcal{H}_\infty}$ used for the $\mathcal{H}_\infty$ synthesis of complementary filters
 | 
			
		||||
#+attr_latex: :scale 1
 | 
			
		||||
 
 | 
			
		||||
		Reference in New Issue
	
	Block a user