Simlink figure folder and change paper name
This commit is contained in:
1
paper/figs
Symbolic link
1
paper/figs
Symbolic link
@@ -0,0 +1 @@
|
||||
../tikz/figs
|
@@ -1,4 +1,4 @@
|
||||
#+TITLE: Optimal and Robust Complementary Filters for Sensor Fusion
|
||||
#+TITLE: Robust and Optimal Sensor Fusion
|
||||
:DRAWER:
|
||||
#+LATEX_CLASS: ieeeconf
|
||||
#+LATEX_CLASS_OPTIONS: [9pt, technote, a4paper]
|
||||
@@ -52,6 +52,7 @@
|
||||
#+end_src
|
||||
|
||||
* Build :noexport:
|
||||
#+NAME: startblock
|
||||
#+BEGIN_SRC emacs-lisp :results none
|
||||
(add-to-list 'org-latex-classes
|
||||
'("ieeeconf"
|
||||
|
BIN
paper/paper.pdf
BIN
paper/paper.pdf
Binary file not shown.
@@ -1,4 +1,4 @@
|
||||
% Created 2019-08-12 lun. 16:02
|
||||
% Created 2019-08-21 mer. 13:19
|
||||
% Intended LaTeX compiler: pdflatex
|
||||
\documentclass[9pt, technote, a4paper]{ieeeconf}
|
||||
\usepackage[utf8]{inputenc}
|
||||
@@ -23,11 +23,11 @@
|
||||
\setcounter{footnote}{1}
|
||||
\input{config.tex}
|
||||
\author{\IEEEauthorblockN{Dehaeze Thomas\IEEEauthorrefmark{*} and Collette Christophe} \\ \IEEEauthorblockA{Precision Mechatronics Laboratory, ULB\\ Brussels, Belgium\\ Email: \IEEEauthorrefmark{*}dehaeze.thomas@gmail.com}}
|
||||
\date{2019-08-12}
|
||||
\title{On the Design of Complementary Filters for Control}
|
||||
\date{2019-08-21}
|
||||
\title{Optimal and Robust Sensor Fusion using Complementary Filters}
|
||||
\hypersetup{
|
||||
pdfauthor={\IEEEauthorblockN{Dehaeze Thomas\IEEEauthorrefmark{*} and Collette Christophe} \\ \IEEEauthorblockA{Precision Mechatronics Laboratory, ULB\\ Brussels, Belgium\\ Email: \IEEEauthorrefmark{*}dehaeze.thomas@gmail.com}},
|
||||
pdftitle={On the Design of Complementary Filters for Control},
|
||||
pdftitle={Optimal and Robust Sensor Fusion using Complementary Filters},
|
||||
pdfkeywords={},
|
||||
pdfsubject={},
|
||||
pdfcreator={Emacs 26.2 (Org mode 9.2.5)},
|
||||
@@ -46,7 +46,7 @@ complementary filters, h-infinity, feedback control
|
||||
\end{IEEEkeywords}
|
||||
|
||||
\section{Introduction}
|
||||
\label{sec:orgb15ebed}
|
||||
\label{sec:org77eabad}
|
||||
\label{sec:introduction}
|
||||
The basic idea of a complementary filter involves taking two or more sensors, filtering out unreliable frequencies for each sensor and combining the filtered outputs to get a better estimate throughout the entire bandwidth of the system.
|
||||
To achieve this, the sensors included in the filter should complement one another by performing better over specific parts of the system bandwidth.
|
||||
@@ -97,7 +97,7 @@ In this paper, we propose
|
||||
The body of the paper consists of five parts followed by a conclusion.
|
||||
|
||||
\section{H-Infinity synthesis of complementary filters}
|
||||
\label{sec:org303afb5}
|
||||
\label{sec:org5f39b25}
|
||||
\label{sec:hinf_filters}
|
||||
First order complementary filters are easy to synthesize. For instance, one can use the following filters
|
||||
\begin{equation}
|
||||
@@ -113,7 +113,7 @@ As shown in Sec. \ref{sec:trans_perf}, most of the performance requirements can
|
||||
Thus, the \(\mathcal{H}_\infty\) framework seems adapted and we here propose a technique to synthesis complementary filters while specifying uppers bounds on their magnitudes.
|
||||
|
||||
\subsection{\(\hinf\) problem formulation}
|
||||
\label{sec:org9dcb2b1}
|
||||
\label{sec:org9a24692}
|
||||
\label{sec:hinf_conf}
|
||||
In this section, we formulate the \(\hinf\) problem for the synthesis of complementary filters.
|
||||
|
||||
@@ -168,7 +168,7 @@ The stability condition \eqref{eq:hinf_cond_stability} is guaranteed by the \(H_
|
||||
Using this synthesis method, we are then able to shape at the same time the high pass and low pass filters while ensuring their complementary.
|
||||
|
||||
\subsection{Control requirements as \(\mathcal{H}_\infty\) norm of complementary filters}
|
||||
\label{sec:orgb7d25ea}
|
||||
\label{sec:org48e11e8}
|
||||
As presented in Sec. \ref{sec:trans_perf}, almost all the requirements can be specified with upper bounds on the complementary filters.
|
||||
However, robust performance condition \eqref{eq:robust_perf_a} is not.
|
||||
|
||||
@@ -181,7 +181,7 @@ With the \(\mathcal{H}_\infty\) synthesis the condition \eqref{eq:hinf_problem}
|
||||
And thus we have almost robust stability.
|
||||
|
||||
\subsection{Choice of the weighting functions}
|
||||
\label{sec:org2d7aa5b}
|
||||
\label{sec:orgb8575b8}
|
||||
\label{sec:hinf_weighting_func}
|
||||
We here give some advice on the choice of the weighting functions used for the synthesis of the complementary filters.
|
||||
|
||||
@@ -194,10 +194,10 @@ One should not forget the fundamental limitations of feedback control such that
|
||||
Similarly, we here have that \(H_L + H_H = 1\) which implies that \(H_L\) and \(H_H\) cannot be made small at the same time.
|
||||
|
||||
\subsection{Trade-off between performance and robustness}
|
||||
\label{sec:org7af3efe}
|
||||
\label{sec:orgc90eaf9}
|
||||
|
||||
\subsection{Analytical formula of complementary filters}
|
||||
\label{sec:org477b4a4}
|
||||
\label{sec:org52d63ba}
|
||||
\label{sec:analytical_complementary_filters}
|
||||
To simplify the synthesis, one can use already synthesized filters
|
||||
|
||||
@@ -217,13 +217,13 @@ To simplify the synthesis, one can use already synthesized filters
|
||||
\end{align}
|
||||
|
||||
\section{Discussion}
|
||||
\label{sec:org4fb9d01}
|
||||
\label{sec:orgb80d2a2}
|
||||
\section{Conclusion}
|
||||
\label{sec:orgecd9d50}
|
||||
\label{sec:orgdccbd69}
|
||||
\label{sec:conclusion}
|
||||
|
||||
\section{Acknowledgment}
|
||||
\label{sec:org5cf5157}
|
||||
\label{sec:org8f4226e}
|
||||
|
||||
\bibliography{ref}
|
||||
\end{document}
|
Reference in New Issue
Block a user