Simlink figure folder and change paper name

This commit is contained in:
2019-08-21 16:35:08 +02:00
parent 5cfb7b8de1
commit 55e7b81886
6 changed files with 70 additions and 68 deletions

1
paper/figs Symbolic link
View File

@@ -0,0 +1 @@
../tikz/figs

View File

@@ -1,4 +1,4 @@
#+TITLE: Optimal and Robust Complementary Filters for Sensor Fusion
#+TITLE: Robust and Optimal Sensor Fusion
:DRAWER:
#+LATEX_CLASS: ieeeconf
#+LATEX_CLASS_OPTIONS: [9pt, technote, a4paper]
@@ -52,6 +52,7 @@
#+end_src
* Build :noexport:
#+NAME: startblock
#+BEGIN_SRC emacs-lisp :results none
(add-to-list 'org-latex-classes
'("ieeeconf"

Binary file not shown.

View File

@@ -1,4 +1,4 @@
% Created 2019-08-12 lun. 16:02
% Created 2019-08-21 mer. 13:19
% Intended LaTeX compiler: pdflatex
\documentclass[9pt, technote, a4paper]{ieeeconf}
\usepackage[utf8]{inputenc}
@@ -23,11 +23,11 @@
\setcounter{footnote}{1}
\input{config.tex}
\author{\IEEEauthorblockN{Dehaeze Thomas\IEEEauthorrefmark{*} and Collette Christophe} \\ \IEEEauthorblockA{Precision Mechatronics Laboratory, ULB\\ Brussels, Belgium\\ Email: \IEEEauthorrefmark{*}dehaeze.thomas@gmail.com}}
\date{2019-08-12}
\title{On the Design of Complementary Filters for Control}
\date{2019-08-21}
\title{Optimal and Robust Sensor Fusion using Complementary Filters}
\hypersetup{
pdfauthor={\IEEEauthorblockN{Dehaeze Thomas\IEEEauthorrefmark{*} and Collette Christophe} \\ \IEEEauthorblockA{Precision Mechatronics Laboratory, ULB\\ Brussels, Belgium\\ Email: \IEEEauthorrefmark{*}dehaeze.thomas@gmail.com}},
pdftitle={On the Design of Complementary Filters for Control},
pdftitle={Optimal and Robust Sensor Fusion using Complementary Filters},
pdfkeywords={},
pdfsubject={},
pdfcreator={Emacs 26.2 (Org mode 9.2.5)},
@@ -46,7 +46,7 @@ complementary filters, h-infinity, feedback control
\end{IEEEkeywords}
\section{Introduction}
\label{sec:orgb15ebed}
\label{sec:org77eabad}
\label{sec:introduction}
The basic idea of a complementary filter involves taking two or more sensors, filtering out unreliable frequencies for each sensor and combining the filtered outputs to get a better estimate throughout the entire bandwidth of the system.
To achieve this, the sensors included in the filter should complement one another by performing better over specific parts of the system bandwidth.
@@ -97,7 +97,7 @@ In this paper, we propose
The body of the paper consists of five parts followed by a conclusion.
\section{H-Infinity synthesis of complementary filters}
\label{sec:org303afb5}
\label{sec:org5f39b25}
\label{sec:hinf_filters}
First order complementary filters are easy to synthesize. For instance, one can use the following filters
\begin{equation}
@@ -113,7 +113,7 @@ As shown in Sec. \ref{sec:trans_perf}, most of the performance requirements can
Thus, the \(\mathcal{H}_\infty\) framework seems adapted and we here propose a technique to synthesis complementary filters while specifying uppers bounds on their magnitudes.
\subsection{\(\hinf\) problem formulation}
\label{sec:org9dcb2b1}
\label{sec:org9a24692}
\label{sec:hinf_conf}
In this section, we formulate the \(\hinf\) problem for the synthesis of complementary filters.
@@ -168,7 +168,7 @@ The stability condition \eqref{eq:hinf_cond_stability} is guaranteed by the \(H_
Using this synthesis method, we are then able to shape at the same time the high pass and low pass filters while ensuring their complementary.
\subsection{Control requirements as \(\mathcal{H}_\infty\) norm of complementary filters}
\label{sec:orgb7d25ea}
\label{sec:org48e11e8}
As presented in Sec. \ref{sec:trans_perf}, almost all the requirements can be specified with upper bounds on the complementary filters.
However, robust performance condition \eqref{eq:robust_perf_a} is not.
@@ -181,7 +181,7 @@ With the \(\mathcal{H}_\infty\) synthesis the condition \eqref{eq:hinf_problem}
And thus we have almost robust stability.
\subsection{Choice of the weighting functions}
\label{sec:org2d7aa5b}
\label{sec:orgb8575b8}
\label{sec:hinf_weighting_func}
We here give some advice on the choice of the weighting functions used for the synthesis of the complementary filters.
@@ -194,10 +194,10 @@ One should not forget the fundamental limitations of feedback control such that
Similarly, we here have that \(H_L + H_H = 1\) which implies that \(H_L\) and \(H_H\) cannot be made small at the same time.
\subsection{Trade-off between performance and robustness}
\label{sec:org7af3efe}
\label{sec:orgc90eaf9}
\subsection{Analytical formula of complementary filters}
\label{sec:org477b4a4}
\label{sec:org52d63ba}
\label{sec:analytical_complementary_filters}
To simplify the synthesis, one can use already synthesized filters
@@ -217,13 +217,13 @@ To simplify the synthesis, one can use already synthesized filters
\end{align}
\section{Discussion}
\label{sec:org4fb9d01}
\label{sec:orgb80d2a2}
\section{Conclusion}
\label{sec:orgecd9d50}
\label{sec:orgdccbd69}
\label{sec:conclusion}
\section{Acknowledgment}
\label{sec:org5cf5157}
\label{sec:org8f4226e}
\bibliography{ref}
\end{document}