dehaeze20_optim_robus_compl.../matlab/index.html

1503 lines
52 KiB
HTML
Raw Normal View History

2019-08-14 12:08:30 +02:00
<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
<head>
2020-10-01 15:14:10 +02:00
<!-- 2020-10-01 jeu. 15:12 -->
2019-08-14 12:08:30 +02:00
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
<title>Robust and Optimal Sensor Fusion - Matlab Computation</title>
2019-08-14 12:08:30 +02:00
<meta name="generator" content="Org mode" />
<meta name="author" content="Thomas Dehaeze" />
<link rel="stylesheet" type="text/css" href="../css/htmlize.css"/>
<link rel="stylesheet" type="text/css" href="../css/readtheorg.css"/>
<script src="../js/jquery.min.js"></script>
<script src="../js/bootstrap.min.js"></script>
<script src="../js/jquery.stickytableheaders.min.js"></script>
<script src="../js/readtheorg.js"></script>
2020-10-01 15:14:10 +02:00
<link rel="stylesheet" type="text/css" href="https://cdn.rawgit.com/dreampulse/computer-modern-web-font/master/fonts.css">
2020-09-30 08:47:27 +02:00
<script>MathJax = {
tex: {
tags: 'ams',
macros: {bm: ["\\boldsymbol{#1}",1],}
}
};
</script>
<script type="text/javascript" src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
2019-08-14 12:08:30 +02:00
</head>
<body>
<div id="org-div-home-and-up">
<a accesskey="h" href="../index.html"> UP </a>
|
<a accesskey="H" href="../index.html"> HOME </a>
</div><div id="content">
<h1 class="title">Robust and Optimal Sensor Fusion - Matlab Computation</h1>
2019-08-14 12:08:30 +02:00
<div id="table-of-contents">
<h2>Table of Contents</h2>
<div id="text-table-of-contents">
<ul>
2020-10-01 15:14:10 +02:00
<li><a href="#orgca76559">1. Sensor Description</a>
2019-08-14 12:08:30 +02:00
<ul>
2020-10-01 15:14:10 +02:00
<li><a href="#org3c3d9de">1.1. Sensor Dynamics</a></li>
<li><a href="#orgdad1407">1.2. Sensor Model Uncertainty</a></li>
<li><a href="#orge7b9c26">1.3. Sensor Noise</a></li>
<li><a href="#org93a8b3d">1.4. Save Model</a></li>
2019-08-14 12:08:30 +02:00
</ul>
</li>
2020-10-01 15:14:10 +02:00
<li><a href="#org44fc9f2">2. Introduction to Sensor Fusion</a>
2019-08-14 12:08:30 +02:00
<ul>
2020-10-01 15:14:10 +02:00
<li><a href="#org046f351">2.1. Sensor Fusion Architecture</a></li>
<li><a href="#org21fff50">2.2. Super Sensor Noise</a></li>
<li><a href="#org1c04704">2.3. Super Sensor Dynamical Uncertainty</a></li>
</ul>
</li>
2020-10-01 15:14:10 +02:00
<li><a href="#org24786a9">3. Optimal Super Sensor Noise: \(\mathcal{H}_2\) Synthesis</a>
<ul>
2020-10-01 15:14:10 +02:00
<li><a href="#orgb5cf4c2">3.1. \(\mathcal{H}_2\) Synthesis</a></li>
<li><a href="#org5d3402d">3.2. Super Sensor Noise</a></li>
<li><a href="#orgd724be3">3.3. Discrepancy between sensor dynamics and model</a></li>
<li><a href="#org14ef526">3.4. Conclusion</a></li>
</ul>
</li>
2020-10-01 15:14:10 +02:00
<li><a href="#orge170b7d">4. Robust Sensor Fusion: \(\mathcal{H}_\infty\) Synthesis</a>
<ul>
2020-10-01 15:14:10 +02:00
<li><a href="#org58a2403">4.1. Super Sensor Dynamical Uncertainty</a></li>
<li><a href="#org9563d0a">4.2. Synthesis objective</a></li>
<li><a href="#orgd7f10bf">4.3. Requirements as an \(\mathcal{H}_\infty\) norm</a></li>
<li><a href="#org2c9d72a">4.4. Weighting Function used to bound the super sensor uncertainty</a></li>
<li><a href="#org2d1873b">4.5. \(\mathcal{H}_\infty\) Synthesis</a></li>
<li><a href="#org30c3b86">4.6. Super sensor uncertainty</a></li>
<li><a href="#org1a771db">4.7. Super sensor noise</a></li>
<li><a href="#org27b50b1">4.8. Conclusion</a></li>
</ul>
</li>
2020-10-01 15:14:10 +02:00
<li><a href="#org0e86f6d">5. Optimal and Robust Sensor Fusion: Mixed \(\mathcal{H}_2/\mathcal{H}_\infty\) Synthesis</a>
<ul>
2020-10-01 15:14:10 +02:00
<li><a href="#orgc034a5e">5.1. Mixed \(\mathcal{H}_2\) / \(\mathcal{H}_\infty\) Synthesis - Introduction</a></li>
<li><a href="#org69a4331">5.2. Noise characteristics and Uncertainty of the individual sensors</a></li>
<li><a href="#org014bfe3">5.3. Weighting Functions on the uncertainty of the super sensor</a></li>
<li><a href="#orgd80e164">5.4. Mixed \(\mathcal{H}_2\) / \(\mathcal{H}_\infty\) Synthesis</a></li>
<li><a href="#orgc600a0e">5.5. Obtained Super Sensor&rsquo;s noise</a></li>
<li><a href="#org14a7871">5.6. Obtained Super Sensor&rsquo;s Uncertainty</a></li>
<li><a href="#org6170476">5.7. Comparison Hinf H2 H2/Hinf</a></li>
<li><a href="#org99a64d6">5.8. Conclusion</a></li>
</ul>
</li>
<li><a href="#org6159413">6. Matlab Functions</a>
<ul>
<li><a href="#org6ccaec5">6.1. <code>createWeight</code></a></li>
<li><a href="#org66fd774">6.2. <code>plotMagUncertainty</code></a></li>
<li><a href="#orge99a206">6.3. <code>plotPhaseUncertainty</code></a></li>
</ul>
</li>
2019-08-14 12:08:30 +02:00
</ul>
</div>
</div>
<p>
2019-09-03 09:01:59 +02:00
In this document, the optimal and robust design of complementary filters is studied.
2019-08-14 12:08:30 +02:00
</p>
<p>
2019-09-03 09:01:59 +02:00
Two sensors are considered with both different noise characteristics and dynamical uncertainties represented by multiplicative input uncertainty.
2019-08-14 12:08:30 +02:00
</p>
<ul class="org-ul">
2020-10-01 15:14:10 +02:00
<li>Section <a href="#orgd3b3857">3</a>: the \(\mathcal{H}_2\) synthesis is used to design complementary filters such that the RMS value of the super sensor&rsquo;s noise is minimized</li>
<li>Section <a href="#orgfcc39fd">4</a>: the \(\mathcal{H}_\infty\) synthesis is used to design complementary filters such that the super sensor&rsquo;s uncertainty is bonded to acceptable values</li>
<li>Section <a href="#org760d4b9">5</a>: the mixed \(\mathcal{H}_2/\mathcal{H}_\infty\) synthesis is used to both limit the super sensor&rsquo;s uncertainty and to lower the RMS value of the super sensor&rsquo;s noise</li>
2019-08-14 12:08:30 +02:00
</ul>
2020-10-01 15:14:10 +02:00
<div id="outline-container-orgca76559" class="outline-2">
<h2 id="orgca76559"><span class="section-number-2">1</span> Sensor Description</h2>
2019-08-14 12:08:30 +02:00
<div class="outline-text-2" id="text-1">
<p>
2020-10-01 15:14:10 +02:00
<a id="orgc105b40"></a>
</p>
<p>
In Figure <a href="#org9ff61e6">1</a> is shown a schematic of a sensor model that is used in the following study.
In this example, the measured quantity \(x\) is the velocity of an object.
2019-08-14 12:08:30 +02:00
</p>
2020-10-01 15:14:10 +02:00
<table id="orgbfba8e5" border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
<caption class="t-above"><span class="table-number">Table 1:</span> Description of signals in Figure <a href="#org9ff61e6">1</a></caption>
<colgroup>
<col class="org-left" />
2020-10-01 15:14:10 +02:00
<col class="org-left" />
<col class="org-left" />
</colgroup>
<thead>
<tr>
<th scope="col" class="org-left"><b>Notation</b></th>
<th scope="col" class="org-left"><b>Meaning</b></th>
2020-10-01 15:14:10 +02:00
<th scope="col" class="org-left"><b>Unit</b></th>
</tr>
</thead>
<tbody>
<tr>
<td class="org-left">\(x\)</td>
<td class="org-left">Physical measured quantity</td>
2020-10-01 15:14:10 +02:00
<td class="org-left">\([m/s]\)</td>
</tr>
<tr>
<td class="org-left">\(\tilde{n}_i\)</td>
<td class="org-left">White noise with unitary PSD</td>
2020-10-01 15:14:10 +02:00
<td class="org-left">&#xa0;</td>
</tr>
<tr>
<td class="org-left">\(n_i\)</td>
<td class="org-left">Shaped noise</td>
2020-10-01 15:14:10 +02:00
<td class="org-left">\([m/s]\)</td>
</tr>
<tr>
<td class="org-left">\(v_i\)</td>
<td class="org-left">Sensor output measurement</td>
2020-10-01 15:14:10 +02:00
<td class="org-left">\([V]\)</td>
</tr>
<tr>
<td class="org-left">\(\hat{x}_i\)</td>
<td class="org-left">Estimate of \(x\) from the sensor</td>
2020-10-01 15:14:10 +02:00
<td class="org-left">\([m/s]\)</td>
</tr>
</tbody>
</table>
2020-10-01 15:14:10 +02:00
<table id="org58c8e91" border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
<caption class="t-above"><span class="table-number">Table 2:</span> Description of Systems in Figure <a href="#org9ff61e6">1</a></caption>
<colgroup>
<col class="org-left" />
2020-10-01 15:14:10 +02:00
<col class="org-left" />
<col class="org-left" />
</colgroup>
<thead>
<tr>
<th scope="col" class="org-left"><b>Notation</b></th>
<th scope="col" class="org-left"><b>Meaning</b></th>
2020-10-01 15:14:10 +02:00
<th scope="col" class="org-left"><b>Unit</b></th>
</tr>
</thead>
<tbody>
<tr>
<td class="org-left">\(\hat{G}_i\)</td>
<td class="org-left">Nominal Sensor Dynamics</td>
2020-10-01 15:14:10 +02:00
<td class="org-left">\([\frac{V}{m/s}]\)</td>
</tr>
<tr>
<td class="org-left">\(W_i\)</td>
<td class="org-left">Weight representing the size of the uncertainty at each frequency</td>
2020-10-01 15:14:10 +02:00
<td class="org-left">&#xa0;</td>
</tr>
<tr>
<td class="org-left">\(\Delta_i\)</td>
<td class="org-left">Any complex perturbation such that \(\vert\vert\Delta_i\vert\vert_\infty < 1\)</td>
2020-10-01 15:14:10 +02:00
<td class="org-left">&#xa0;</td>
</tr>
<tr>
<td class="org-left">\(N_i\)</td>
<td class="org-left">Weight representing the sensor noise</td>
2020-10-01 15:14:10 +02:00
<td class="org-left">\([m/s]\)</td>
</tr>
</tbody>
</table>
2020-10-01 15:14:10 +02:00
<div id="org9ff61e6" class="figure">
<p><img src="figs-tikz/sensor_model_noise_uncertainty.png" alt="sensor_model_noise_uncertainty.png" />
</p>
<p><span class="figure-number">Figure 1: </span>Sensor Model</p>
</div>
</div>
2020-10-01 15:14:10 +02:00
<div id="outline-container-org3c3d9de" class="outline-3">
<h3 id="org3c3d9de"><span class="section-number-3">1.1</span> Sensor Dynamics</h3>
<div class="outline-text-3" id="text-1-1">
2019-08-14 12:08:30 +02:00
<p>
2020-10-01 15:14:10 +02:00
<a id="orgeec3842"></a>
Let&rsquo;s consider two sensors measuring the velocity of an object.
2019-08-14 12:08:30 +02:00
</p>
<p>
The first sensor is an accelerometer.
Its nominal dynamics \(\hat{G}_1(s)\) is defined below.
2019-08-14 12:08:30 +02:00
</p>
<div class="org-src-container">
<pre class="src src-matlab">m_acc = 0.01; % Inertial Mass [kg]
c_acc = 5; % Damping [N/(m/s)]
k_acc = 1e5; % Stiffness [N/m]
g_acc = 1e5; % Gain [V/m]
2020-10-01 15:14:10 +02:00
G1 = g_acc*m_acc*s/(m_acc*s^2 + c_acc*s + k_acc); % Accelerometer Plant [V/(m/s)]
</pre>
</div>
2019-08-14 12:08:30 +02:00
<p>
The second sensor is a displacement sensor, its nominal dynamics \(\hat{G}_2(s)\) is defined below.
2019-08-14 12:08:30 +02:00
</p>
<div class="org-src-container">
<pre class="src src-matlab">w_pos = 2*pi*2e3; % Measurement Banwdith [rad/s]
g_pos = 1e4; % Gain [V/m]
G2 = g_pos/s/(1 + s/w_pos); % Position Sensor Plant [V/(m/s)]
</pre>
</div>
2019-08-14 12:08:30 +02:00
<p>
These nominal dynamics are also taken as the model of the sensor dynamics.
2020-10-01 15:14:10 +02:00
The true sensor dynamics has some uncertainty associated to it and described in section <a href="#org5a0d0e4">1.2</a>.
2019-08-14 12:08:30 +02:00
</p>
<p>
2020-10-01 15:14:10 +02:00
Both sensor dynamics in \([\frac{V}{m/s}]\) are shown in Figure <a href="#orgc562240">2</a>.
</p>
2020-10-01 15:14:10 +02:00
<div id="orgc562240" class="figure">
<p><img src="figs/sensors_nominal_dynamics.png" alt="sensors_nominal_dynamics.png" />
</p>
<p><span class="figure-number">Figure 2: </span>Sensor nominal dynamics from the velocity of the object to the output voltage</p>
</div>
2019-08-14 12:08:30 +02:00
</div>
</div>
2020-10-01 15:14:10 +02:00
<div id="outline-container-orgdad1407" class="outline-3">
<h3 id="orgdad1407"><span class="section-number-3">1.2</span> Sensor Model Uncertainty</h3>
<div class="outline-text-3" id="text-1-2">
2019-08-14 12:08:30 +02:00
<p>
2020-10-01 15:14:10 +02:00
<a id="org5a0d0e4"></a>
The uncertainty on the sensor dynamics is described by multiplicative uncertainty (Figure <a href="#org9ff61e6">1</a>).
2019-08-14 12:08:30 +02:00
</p>
<p>
The true sensor dynamics \(G_i(s)\) is then described by \eqref{eq:sensor_dynamics_uncertainty}.
2019-08-14 12:08:30 +02:00
</p>
\begin{equation}
G_i(s) = \hat{G}_i(s) \left( 1 + W_i(s) \Delta_i(s) \right); \quad |\Delta_i(j\omega)| < 1 \forall \omega \label{eq:sensor_dynamics_uncertainty}
\end{equation}
2019-08-14 12:08:30 +02:00
<p>
2020-10-01 15:14:10 +02:00
The weights \(W_i(s)\) representing the dynamical uncertainty are defined below and their magnitude is shown in Figure <a href="#orgf6732e7">3</a>.
2019-08-14 12:08:30 +02:00
</p>
<div class="org-src-container">
<pre class="src src-matlab">W1 = createWeight('n', 2, 'w0', 2*pi*3, 'G0', 2, 'G1', 0.1, 'Gc', 1) * ...
createWeight('n', 2, 'w0', 2*pi*1e3, 'G0', 1, 'G1', 4/0.1, 'Gc', 1/0.1);
W2 = createWeight('n', 2, 'w0', 2*pi*1e2, 'G0', 0.05, 'G1', 4, 'Gc', 1);
</pre>
2019-08-14 12:08:30 +02:00
</div>
<p>
2020-10-01 15:14:10 +02:00
The bode plot of the sensors nominal dynamics as well as their defined dynamical spread are shown in Figure <a href="#orgc569fc6">4</a>.
2019-08-14 12:08:30 +02:00
</p>
2020-10-01 15:14:10 +02:00
<div id="orgf6732e7" class="figure">
<p><img src="figs/sensors_uncertainty_weights.png" alt="sensors_uncertainty_weights.png" />
2019-08-14 12:08:30 +02:00
</p>
<p><span class="figure-number">Figure 3: </span>Magnitude of the multiplicative uncertainty weights \(|W_i(j\omega)|\)</p>
</div>
2019-08-14 12:08:30 +02:00
2020-10-01 15:14:10 +02:00
<div id="orgc569fc6" class="figure">
<p><img src="figs/sensors_nominal_dynamics_and_uncertainty.png" alt="sensors_nominal_dynamics_and_uncertainty.png" />
2019-08-14 12:08:30 +02:00
</p>
<p><span class="figure-number">Figure 4: </span>Nominal Sensor Dynamics \(\hat{G}_i\) (solid lines) as well as the spread of the dynamical uncertainty (background color)</p>
</div>
</div>
</div>
2019-08-14 12:08:30 +02:00
2020-10-01 15:14:10 +02:00
<div id="outline-container-orge7b9c26" class="outline-3">
<h3 id="orge7b9c26"><span class="section-number-3">1.3</span> Sensor Noise</h3>
<div class="outline-text-3" id="text-1-3">
2019-08-14 12:08:30 +02:00
<p>
2020-10-01 15:14:10 +02:00
<a id="org5456884"></a>
The noise of the sensors \(n_i\) are modelled by shaping a white noise with unitary PSD \(\tilde{n}_i\) \eqref{eq:unitary_noise_psd} with a LTI transfer function \(N_i(s)\) (Figure <a href="#org9ff61e6">1</a>).
2019-08-14 12:08:30 +02:00
</p>
\begin{equation}
\Phi_{\tilde{n}_i}(\omega) = 1 \label{eq:unitary_noise_psd}
\end{equation}
2019-08-14 12:08:30 +02:00
<p>
The Power Spectral Density of the sensor noise \(\Phi_{n_i}(\omega)\) is then computed using \eqref{eq:sensor_noise_shaping} and expressed in \([\frac{(m/s)^2}{Hz}]\).
2019-08-14 12:08:30 +02:00
</p>
\begin{equation}
\Phi_{n_i}(\omega) = \left| N_i(j\omega) \right|^2 \Phi_{\tilde{n}_i}(\omega) \label{eq:sensor_noise_shaping}
\end{equation}
2019-08-14 12:08:30 +02:00
<p>
2020-10-01 15:14:10 +02:00
The weights \(N_1\) and \(N_2\) representing the amplitude spectral density of the sensor noises are defined below and shown in Figure <a href="#orgd3ea86e">5</a>.
2019-08-14 12:08:30 +02:00
</p>
<div class="org-src-container">
2020-10-01 15:14:10 +02:00
<pre class="src src-matlab">omegac = 0.15*2*pi; G0 = 1e-1; Ginf = 1e-6;
N1 = (Ginf*s/omegac + G0)/(s/omegac + 1)/(1 + s/2/pi/1e4);
2019-08-14 12:08:30 +02:00
omegac = 1000*2*pi; G0 = 1e-6; Ginf = 1e-3;
N2 = (Ginf*s/omegac + G0)/(s/omegac + 1)/(1 + s/2/pi/1e4);
</pre>
</div>
2020-10-01 15:14:10 +02:00
<div id="orgd3ea86e" class="figure">
<p><img src="figs/sensors_noise.png" alt="sensors_noise.png" />
2019-08-14 12:08:30 +02:00
</p>
<p><span class="figure-number">Figure 5: </span>Amplitude spectral density of the sensors \(\sqrt{\Phi_{n_i}(\omega)} = |N_i(j\omega)|\)</p>
</div>
2019-08-14 12:08:30 +02:00
</div>
</div>
2020-10-01 15:14:10 +02:00
<div id="outline-container-org93a8b3d" class="outline-3">
<h3 id="org93a8b3d"><span class="section-number-3">1.4</span> Save Model</h3>
<div class="outline-text-3" id="text-1-4">
2019-08-14 12:08:30 +02:00
<p>
All the dynamical systems representing the sensors are saved for further use.
2019-08-14 12:08:30 +02:00
</p>
<div class="org-src-container">
<pre class="src src-matlab">save('./mat/model.mat', 'freqs', 'G1', 'G2', 'N2', 'N1', 'W2', 'W1');
2019-08-14 12:08:30 +02:00
</pre>
</div>
</div>
</div>
</div>
2019-08-14 12:08:30 +02:00
2020-10-01 15:14:10 +02:00
<div id="outline-container-org44fc9f2" class="outline-2">
<h2 id="org44fc9f2"><span class="section-number-2">2</span> Introduction to Sensor Fusion</h2>
<div class="outline-text-2" id="text-2">
<p>
2020-10-01 15:14:10 +02:00
<a id="orga4cc3b8"></a>
</p>
2020-10-01 15:14:10 +02:00
</div>
<div id="outline-container-org046f351" class="outline-3">
<h3 id="org046f351"><span class="section-number-3">2.1</span> Sensor Fusion Architecture</h3>
<div class="outline-text-3" id="text-2-1">
<p>
2020-10-01 15:14:10 +02:00
<a id="orgd2cc63f"></a>
</p>
2019-08-14 12:08:30 +02:00
<p>
2020-10-01 15:14:10 +02:00
The two sensors presented in Section <a href="#orgc105b40">1</a> are now merged together using complementary filters \(H_1(s)\) and \(H_2(s)\) to form a super sensor (Figure <a href="#orga6bd433">6</a>).
2019-08-14 12:08:30 +02:00
</p>
2020-10-01 15:14:10 +02:00
<div id="orga6bd433" class="figure">
<p><img src="figs-tikz/sensor_fusion_noise_arch.png" alt="sensor_fusion_noise_arch.png" />
</p>
<p><span class="figure-number">Figure 6: </span>Sensor Fusion Architecture</p>
</div>
<p>
2020-10-01 15:14:10 +02:00
The complementary property of \(H_1(s)\) and \(H_2(s)\) means that the sum of their transfer function is equal to \(1\) \eqref{eq:complementary_property}.
</p>
2020-10-01 15:14:10 +02:00
\begin{equation}
H_1(s) + H_2(s) = 1 \label{eq:complementary_property}
\end{equation}
<p>
2020-10-01 15:14:10 +02:00
The super sensor estimate \(\hat{x}\) is given by \eqref{eq:super_sensor_estimate}.
</p>
2020-10-01 15:14:10 +02:00
\begin{equation}
\hat{x} = \left( H_1 \hat{G}_1^{-1} G_1 + H_2 \hat{G}_2^{-1} G_2 \right) x + \left( H_1 \hat{G}_1^{-1} G_1 N_1 \right) \tilde{n}_1 + \left( H_2 \hat{G}_2^{-1} G_2 N_2 \right) \tilde{n}_2 \label{eq:super_sensor_estimate}
\end{equation}
2019-08-14 12:08:30 +02:00
</div>
</div>
2020-10-01 15:14:10 +02:00
<div id="outline-container-org21fff50" class="outline-3">
<h3 id="org21fff50"><span class="section-number-3">2.2</span> Super Sensor Noise</h3>
<div class="outline-text-3" id="text-2-2">
<p>
<a id="orgce01316"></a>
</p>
<p>
If we first suppose that the models of the sensors \(\hat{G}_i\) are very close to the true sensor dynamics \(G_i\) \eqref{eq:good_dynamical_model}, we have that the super sensor estimate \(\hat{x}\) is equals to the measured quantity \(x\) plus the noise of the two sensors filtered out by the complementary filters \eqref{eq:estimate_perfect_models}.
</p>
\begin{equation}
\hat{G}_i^{-1}(s) G_i(s) \approx 1 \label{eq:good_dynamical_model}
\end{equation}
\begin{equation}
\hat{x} = x + \underbrace{\left( H_1 N_1 \right) \tilde{n}_1 + \left( H_2 N_2 \right) \tilde{n}_2}_{n} \label{eq:estimate_perfect_models}
\end{equation}
<p>
As the noise of both sensors are considered to be uncorrelated, the PSD of the super sensor noise is computed as follow:
</p>
\begin{equation}
\Phi_n(\omega) = \left| H_1(j\omega) N_1(j\omega) \right|^2 + \left| H_2(j\omega) N_2(j\omega) \right|^2 \label{eq:super_sensor_psd_noise}
\end{equation}
<p>
And the Root Mean Square (RMS) value of the super sensor noise \(\sigma_n\) is given by Equation \eqref{eq:super_sensor_rms_noise}.
</p>
\begin{equation}
\sigma_n = \sqrt{\int_0^\infty \Phi_n(\omega) d\omega} \label{eq:super_sensor_rms_noise}
\end{equation}
</div>
</div>
<div id="outline-container-org1c04704" class="outline-3">
<h3 id="org1c04704"><span class="section-number-3">2.3</span> Super Sensor Dynamical Uncertainty</h3>
<div class="outline-text-3" id="text-2-3">
<p>
<a id="orgea09f91"></a>
</p>
<p>
If we consider some dynamical uncertainty (the true system dynamics \(G_i\) not being perfectly equal to our model \(\hat{G}_i\)) that we model by the use of multiplicative uncertainty (Figure <a href="#orgeccb26f">7</a>), the super sensor dynamics is then equals to:
</p>
\begin{equation}
\begin{aligned}
\frac{\hat{x}}{x} &= \Big( H_1 \hat{G}_1^{-1} \hat{G}_1 (1 + W_1 \Delta_1) + H_2 \hat{G}_2^{-1} \hat{G}_2 (1 + W_2 \Delta_2) \Big) \\
&= \Big( H_1 (1 + W_1 \Delta_1) + H_2 (1 + W_2 \Delta_2) \Big) \\
&= \left( 1 + H_1 W_1 \Delta_1 + H_2 W_2 \Delta_2 \right), \quad \|\Delta_i\|_\infty<1
\end{aligned}
\end{equation}
<div id="orgeccb26f" class="figure">
<p><img src="figs-tikz/sensor_model_uncertainty.png" alt="sensor_model_uncertainty.png" />
</p>
<p><span class="figure-number">Figure 7: </span>Sensor Model including Dynamical Uncertainty</p>
</div>
<p>
The uncertainty set of the transfer function from \(\hat{x}\) to \(x\) at frequency \(\omega\) is bounded in the complex plane by a circle centered on 1 and with a radius equal to \(|W_1(j\omega) H_1(j\omega)| + |W_2(j\omega) H_2(j\omega)|\) as shown in Figure <a href="#org15230a0">8</a>.
</p>
<div id="org15230a0" class="figure">
<p><img src="figs-tikz/uncertainty_set_super_sensor.png" alt="uncertainty_set_super_sensor.png" />
</p>
<p><span class="figure-number">Figure 8: </span>Super Sensor model uncertainty displayed in the complex plane</p>
</div>
</div>
</div>
</div>
<div id="outline-container-org24786a9" class="outline-2">
<h2 id="org24786a9"><span class="section-number-2">3</span> Optimal Super Sensor Noise: \(\mathcal{H}_2\) Synthesis</h2>
<div class="outline-text-2" id="text-3">
<p>
<a id="orgd3b3857"></a>
</p>
<p>
In this section, the complementary filters \(H_1(s)\) and \(H_2(s)\) are designed in order to minimize the RMS value of super sensor noise \(\sigma_n\).
</p>
<div id="org0929d72" class="figure">
<p><img src="figs-tikz/sensor_fusion_noise_arch.png" alt="sensor_fusion_noise_arch.png" />
</p>
<p><span class="figure-number">Figure 9: </span>Optimal Sensor Fusion Architecture</p>
</div>
<p>
The RMS value of the super sensor noise is (neglecting the model uncertainty):
</p>
\begin{equation}
\begin{aligned}
\sigma_{n} &= \sqrt{\int_0^\infty |H_1(j\omega) N_1(j\omega)|^2 + |H_2(j\omega) N_2(j\omega)|^2 d\omega} \\
&= \left\| \begin{matrix} H_1 N_1 \\ H_2 N_2 \end{matrix} \right\|_2
\end{aligned}
\end{equation}
2019-08-14 12:08:30 +02:00
<p>
2020-10-01 15:14:10 +02:00
The goal is to design \(H_1(s)\) and \(H_2(s)\) such that \(H_1(s) + H_2(s) = 1\) (complementary property) and such that \(\left\| \begin{matrix} H_1 N_1 \\ H_2 N_2 \end{matrix} \right\|_2\) is minimized (minimized RMS value of the super sensor noise).
This is done using the \(\mathcal{H}_2\) synthesis in Section <a href="#org5b1b6c8">3.1</a>.
</p>
2020-10-01 15:14:10 +02:00
</div>
2020-10-01 15:14:10 +02:00
<div id="outline-container-orgb5cf4c2" class="outline-3">
<h3 id="orgb5cf4c2"><span class="section-number-3">3.1</span> \(\mathcal{H}_2\) Synthesis</h3>
<div class="outline-text-3" id="text-3-1">
<p>
2020-10-01 15:14:10 +02:00
<a id="org5b1b6c8"></a>
</p>
<p>
2020-10-01 15:14:10 +02:00
Consider the generalized plant \(P_{\mathcal{H}_2}\) shown in Figure <a href="#org3dd902a">10</a> and described by Equation \eqref{eq:H2_generalized_plant}.
2019-08-14 12:08:30 +02:00
</p>
2020-10-01 15:14:10 +02:00
<div id="org3dd902a" class="figure">
<p><img src="figs-tikz/h_two_optimal_fusion.png" alt="h_two_optimal_fusion.png" />
2019-08-14 12:08:30 +02:00
</p>
2020-10-01 15:14:10 +02:00
<p><span class="figure-number">Figure 10: </span>Architecture used for \(\mathcal{H}_\infty\) synthesis of complementary filters</p>
2019-08-14 12:08:30 +02:00
</div>
2020-10-01 15:14:10 +02:00
\begin{equation} \label{eq:H2_generalized_plant}
\begin{pmatrix}
2020-10-01 15:14:10 +02:00
z_1 \\ z_2 \\ v
\end{pmatrix} = \underbrace{\begin{bmatrix}
N_1 & -N_1 \\
0 & N_2 \\
1 & 0
\end{bmatrix}}_{P_{\mathcal{H}_2}} \begin{pmatrix}
w \\ u
\end{pmatrix}
2020-10-01 15:14:10 +02:00
\end{equation}
2019-08-14 12:08:30 +02:00
<p>
2020-10-01 15:14:10 +02:00
Applying the \(\mathcal{H}_2\) synthesis on \(P_{\mathcal{H}_2}\) will generate a filter \(H_2(s)\) such that the \(\mathcal{H}_2\) norm from \(w\) to \((z_1,z_2)\) which is actually equals to \(\sigma_n\) by defining \(H_1(s) = 1 - H_2(s)\):
2019-08-14 12:08:30 +02:00
</p>
2020-10-01 15:14:10 +02:00
\begin{equation}
\left\| \begin{matrix} z_1/w \\ z_2/w \end{matrix} \right\|_2 = \left\| \begin{matrix} N_1 (1 - H_2) \\ N_2 H_2 \end{matrix} \right\|_2 = \sigma_n \quad \text{with} \quad H_1(s) = 1 - H_2(s)
\end{equation}
2019-08-14 12:08:30 +02:00
<p>
2020-10-01 15:14:10 +02:00
We then have that the \(\mathcal{H}_2\) synthesis applied on \(P_{\mathcal{H}_2}\) generates two complementary filters \(H_1(s)\) and \(H_2(s)\) such that the RMS value of super sensor noise is minimized.
2019-08-14 12:08:30 +02:00
</p>
<p>
2020-10-01 15:14:10 +02:00
The generalized plant \(P_{\mathcal{H}_2}\) is defined below
2019-08-14 12:08:30 +02:00
</p>
<div class="org-src-container">
2020-10-01 15:14:10 +02:00
<pre class="src src-matlab">PH2 = [N1 -N1;
0 N2;
1 0];
2019-08-14 12:08:30 +02:00
</pre>
</div>
<p>
2020-10-01 15:14:10 +02:00
The \(\mathcal{H}_2\) synthesis using the <code>h2syn</code> command
2019-08-14 12:08:30 +02:00
</p>
<div class="org-src-container">
2020-10-01 15:14:10 +02:00
<pre class="src src-matlab">[H2, ~, gamma] = h2syn(PH2, 1, 1);
2019-08-14 12:08:30 +02:00
</pre>
</div>
<p>
2020-10-01 15:14:10 +02:00
Finally, \(H_1(s)\) is defined as follows
2019-08-14 12:08:30 +02:00
</p>
<div class="org-src-container">
<pre class="src src-matlab">H1 = 1 - H2;
2019-08-14 12:08:30 +02:00
</pre>
</div>
<p>
2020-10-01 15:14:10 +02:00
The obtained complementary filters are shown in Figure <a href="#org320a0c5">11</a>.
</p>
2020-10-01 15:14:10 +02:00
<div id="org320a0c5" class="figure">
<p><img src="figs/htwo_comp_filters.png" alt="htwo_comp_filters.png" />
</p>
2020-10-01 15:14:10 +02:00
<p><span class="figure-number">Figure 11: </span>Obtained complementary filters using the \(\mathcal{H}_2\) Synthesis</p>
</div>
</div>
</div>
2020-10-01 15:14:10 +02:00
<div id="outline-container-org5d3402d" class="outline-3">
<h3 id="org5d3402d"><span class="section-number-3">3.2</span> Super Sensor Noise</h3>
<div class="outline-text-3" id="text-3-2">
<p>
2020-10-01 15:14:10 +02:00
<a id="org22cf774"></a>
</p>
<p>
2020-10-01 15:14:10 +02:00
The Power Spectral Density of the individual sensors&rsquo; noise \(\Phi_{n_1}, \Phi_{n_2}\) and of the super sensor noise \(\Phi_{n_{\mathcal{H}_2}}\) are computed below and shown in Figure <a href="#orgd017917">12</a>.
2019-08-14 12:08:30 +02:00
</p>
2020-10-01 15:14:10 +02:00
<div class="org-src-container">
<pre class="src src-matlab">PSD_S1 = abs(squeeze(freqresp(N1, freqs, 'Hz'))).^2;
PSD_S2 = abs(squeeze(freqresp(N2, freqs, 'Hz'))).^2;
PSD_H2 = abs(squeeze(freqresp(N1*H1, freqs, 'Hz'))).^2 + ...
abs(squeeze(freqresp(N2*H2, freqs, 'Hz'))).^2;
</pre>
</div>
2019-08-14 12:08:30 +02:00
<p>
2020-10-01 15:14:10 +02:00
The corresponding Cumulative Power Spectrum \(\Gamma_{n_1}\), \(\Gamma_{n_2}\) and \(\Gamma_{n_{\mathcal{H}_2}}\) (cumulative integration of the PSD \eqref{eq:CPS_definition}) are computed below and shown in Figure <a href="#org069ec84">13</a>.
2019-08-14 12:08:30 +02:00
</p>
<div class="org-src-container">
2020-10-01 15:14:10 +02:00
<pre class="src src-matlab">CPS_S1 = cumtrapz(freqs, PSD_S1);
CPS_S2 = cumtrapz(freqs, PSD_S2);
CPS_H2 = cumtrapz(freqs, PSD_H2);
</pre>
</div>
2019-08-14 12:08:30 +02:00
2020-10-01 15:14:10 +02:00
\begin{equation}
\Gamma_n (\omega) = \int_0^\omega \Phi_n(\nu) d\nu \label{eq:CPS_definition}
\end{equation}
2020-10-01 15:14:10 +02:00
<p>
The RMS value of the individual sensors and of the super sensor are listed in Table <a href="#org0aedb51">3</a>.
</p>
2020-10-01 15:14:10 +02:00
<table id="org0aedb51" border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
<caption class="t-above"><span class="table-number">Table 3:</span> RMS value of the individual sensor noise and of the super sensor using the \(\mathcal{H}_2\) Synthesis</caption>
<colgroup>
<col class="org-left" />
<col class="org-right" />
</colgroup>
<thead>
<tr>
<th scope="col" class="org-left">&#xa0;</th>
2020-10-01 15:14:10 +02:00
<th scope="col" class="org-right">RMS value \([m/s]\)</th>
</tr>
</thead>
<tbody>
<tr>
2020-10-01 15:14:10 +02:00
<td class="org-left">\(\sigma_{n_1}\)</td>
<td class="org-right">0.015</td>
</tr>
<tr>
2020-10-01 15:14:10 +02:00
<td class="org-left">\(\sigma_{n_2}\)</td>
<td class="org-right">0.08</td>
</tr>
<tr>
2020-10-01 15:14:10 +02:00
<td class="org-left">\(\sigma_{n_{\mathcal{H}_2}}\)</td>
<td class="org-right">0.0027</td>
</tr>
</tbody>
</table>
2020-10-01 15:14:10 +02:00
<div id="orgd017917" class="figure">
<p><img src="figs/psd_sensors_htwo_synthesis.png" alt="psd_sensors_htwo_synthesis.png" />
</p>
<p><span class="figure-number">Figure 12: </span>Power Spectral Density of the estimated \(\hat{x}\) using the two sensors alone and using the optimally fused signal</p>
</div>
2019-08-14 12:08:30 +02:00
2020-10-01 15:14:10 +02:00
<div id="org069ec84" class="figure">
<p><img src="figs/cps_h2_synthesis.png" alt="cps_h2_synthesis.png" />
2019-08-14 12:08:30 +02:00
</p>
2020-10-01 15:14:10 +02:00
<p><span class="figure-number">Figure 13: </span>Cumulative Power Spectrum of individual sensors and super sensor using the \(\mathcal{H}_2\) synthesis</p>
2019-08-14 12:08:30 +02:00
</div>
<p>
2020-10-01 15:14:10 +02:00
A time domain simulation is now performed.
The measured velocity \(x\) is set to be a sweep sine with an amplitude of \(0.1\ [m/s]\).
The velocity estimates from the two sensors and from the super sensors are shown in Figure <a href="#org87c67f2">14</a>.
The resulting noises are displayed in Figure <a href="#orgeabe8e8">15</a>.
2019-08-14 12:08:30 +02:00
</p>
2020-10-01 15:14:10 +02:00
<div id="org87c67f2" class="figure">
<p><img src="figs/super_sensor_time_domain_h2.png" alt="super_sensor_time_domain_h2.png" />
2019-08-14 12:08:30 +02:00
</p>
2020-10-01 15:14:10 +02:00
<p><span class="figure-number">Figure 14: </span>Noise of individual sensors and noise of the super sensor</p>
</div>
2020-10-01 15:14:10 +02:00
<div id="orgeabe8e8" class="figure">
<p><img src="figs/sensor_noise_H2_time_domain.png" alt="sensor_noise_H2_time_domain.png" />
</p>
</div>
</div>
</div>
2020-10-01 15:14:10 +02:00
<div id="outline-container-orgd724be3" class="outline-3">
<h3 id="orgd724be3"><span class="section-number-3">3.3</span> Discrepancy between sensor dynamics and model</h3>
<div class="outline-text-3" id="text-3-3">
<p>
If we consider sensor dynamical uncertainty as explained in Section <a href="#org5a0d0e4">1.2</a>, we can compute what would be the super sensor dynamical uncertainty when using the complementary filters obtained using the \(\mathcal{H}_2\) Synthesis.
</p>
2019-08-14 12:08:30 +02:00
<p>
2020-10-01 15:14:10 +02:00
The super sensor dynamical uncertainty is shown in Figure <a href="#org482651f">16</a>.
2019-08-14 12:08:30 +02:00
</p>
<p>
2020-10-01 15:14:10 +02:00
It is shown that the phase uncertainty is not bounded between 100Hz and 200Hz.
As a result the super sensor signal can not be used for feedback applications about 100Hz.
2019-08-14 12:08:30 +02:00
</p>
2020-10-01 15:14:10 +02:00
<div id="org482651f" class="figure">
<p><img src="figs/super_sensor_dynamical_uncertainty_H2.png" alt="super_sensor_dynamical_uncertainty_H2.png" />
</p>
<p><span class="figure-number">Figure 16: </span>Super sensor dynamical uncertainty when using the \(\mathcal{H}_2\) Synthesis</p>
</div>
</div>
</div>
2019-08-14 12:08:30 +02:00
2020-10-01 15:14:10 +02:00
<div id="outline-container-org14ef526" class="outline-3">
<h3 id="org14ef526"><span class="section-number-3">3.4</span> Conclusion</h3>
</div>
</div>
<div id="outline-container-orge170b7d" class="outline-2">
<h2 id="orge170b7d"><span class="section-number-2">4</span> Robust Sensor Fusion: \(\mathcal{H}_\infty\) Synthesis</h2>
<div class="outline-text-2" id="text-4">
2019-08-14 12:08:30 +02:00
<p>
2020-10-01 15:14:10 +02:00
<a id="orgfcc39fd"></a>
2019-08-14 12:08:30 +02:00
</p>
<p>
We initially considered perfectly known sensor dynamics so that it can be perfectly inverted.
2019-08-14 12:08:30 +02:00
</p>
<p>
We now take into account the fact that the sensor dynamics is only partially known.
2020-10-01 15:14:10 +02:00
To do so, we model the uncertainty that we have on the sensor dynamics by multiplicative input uncertainty as shown in Figure <a href="#org2ede630">17</a>.
2019-08-14 12:08:30 +02:00
</p>
2020-10-01 15:14:10 +02:00
<div id="org2ede630" class="figure">
<p><img src="figs-tikz/sensor_fusion_arch_uncertainty.png" alt="sensor_fusion_arch_uncertainty.png" />
2019-08-14 12:08:30 +02:00
</p>
2020-10-01 15:14:10 +02:00
<p><span class="figure-number">Figure 17: </span>Sensor fusion architecture with sensor dynamics uncertainty</p>
2019-08-14 12:08:30 +02:00
</div>
<p>
The objective here is to design complementary filters \(H_1(s)\) and \(H_2(s)\) in order to minimize the dynamical uncertainty of the super sensor.
2019-08-14 12:08:30 +02:00
</p>
</div>
2019-08-14 12:08:30 +02:00
2020-10-01 15:14:10 +02:00
<div id="outline-container-org58a2403" class="outline-3">
<h3 id="org58a2403"><span class="section-number-3">4.1</span> Super Sensor Dynamical Uncertainty</h3>
<div class="outline-text-3" id="text-4-1">
2019-08-14 12:08:30 +02:00
<p>
In practical systems, the sensor dynamics has always some level of uncertainty.
2019-08-14 12:08:30 +02:00
</p>
<p>
The dynamics of the super sensor is represented by
2019-08-14 12:08:30 +02:00
</p>
\begin{align*}
\frac{\hat{x}}{x} &= (1 + W_1 \Delta_1) H_1 + (1 + W_2 \Delta_2) H_2 \\
&= 1 + W_1 H_1 \Delta_1 + W_2 H_2 \Delta_2
\end{align*}
2019-08-14 12:08:30 +02:00
<p>
with \(\Delta_i\) is any transfer function satisfying \(\| \Delta_i \|_\infty < 1\).
2019-08-14 12:08:30 +02:00
</p>
<p>
We see that as soon as we have some uncertainty in the sensor dynamics, we have that the complementary filters have some effect on the transfer function from \(x\) to \(\hat{x}\).
2019-08-14 12:08:30 +02:00
</p>
<p>
2020-10-01 15:14:10 +02:00
The uncertainty set of the transfer function from \(\hat{x}\) to \(x\) at frequency \(\omega\) is bounded in the complex plane by a circle centered on 1 and with a radius equal to \(|W_1(j\omega) H_1(j\omega)| + |W_2(j\omega) H_2(j\omega)|\) (figure <a href="#orgd8516e1">18</a>).
2019-08-14 12:08:30 +02:00
</p>
<p>
We then have that the angle introduced by the super sensor is bounded by \(\arcsin(\epsilon)\):
\[ \angle \frac{\hat{x}}{x}(j\omega) \le \arcsin \Big(|W_1(j\omega) H_1(j\omega)| + |W_2(j\omega) H_2(j\omega)|\Big) \]
2019-08-14 12:08:30 +02:00
</p>
2020-10-01 15:14:10 +02:00
<div id="orgd8516e1" class="figure">
<p><img src="figs-tikz/uncertainty_gain_phase_variation.png" alt="uncertainty_gain_phase_variation.png" />
2019-08-14 12:08:30 +02:00
</p>
2020-10-01 15:14:10 +02:00
<p><span class="figure-number">Figure 18: </span>Maximum phase variation</p>
2019-08-14 12:08:30 +02:00
</div>
</div>
</div>
2020-10-01 15:14:10 +02:00
<div id="outline-container-org9563d0a" class="outline-3">
<h3 id="org9563d0a"><span class="section-number-3">4.2</span> Synthesis objective</h3>
<div class="outline-text-3" id="text-4-2">
<p>
2020-10-01 15:14:10 +02:00
The uncertainty region of the super sensor dynamics is represented by a circle in the complex plane as shown in Figure <a href="#orgd8516e1">18</a>.
</p>
<p>
At each frequency \(\omega\), the radius of the circle is \(|W_1(j\omega) H_1(j\omega)| + |W_2(j\omega) H_2(j\omega)|\).
</p>
<p>
Thus, the phase shift \(\Delta\phi(\omega)\) due to the super sensor uncertainty is bounded by:
\[ |\Delta\phi(\omega)| \leq \arcsin\big( |W_1(j\omega) H_1(j\omega)| + |W_2(j\omega) H_2(j\omega)| \big) \]
</p>
<p>
2020-09-30 08:47:27 +02:00
Let&rsquo;s define some allowed frequency depend phase shift \(\Delta\phi_\text{max}(\omega) > 0\) such that:
\[ |\Delta\phi(\omega)| < \Delta\phi_\text{max}(\omega), \quad \forall\omega \]
</p>
<p>
If \(H_1(s)\) and \(H_2(s)\) are designed such that
\[ |W_1(j\omega) H_1(j\omega)| + |W_2(j\omega) H_2(j\omega)| < \sin\big( \Delta\phi_\text{max}(\omega) \big) \]
</p>
<p>
The maximum phase shift due to dynamic uncertainty at frequency \(\omega\) will be \(\Delta\phi_\text{max}(\omega)\).
</p>
</div>
</div>
2020-10-01 15:14:10 +02:00
<div id="outline-container-orgd7f10bf" class="outline-3">
<h3 id="orgd7f10bf"><span class="section-number-3">4.3</span> Requirements as an \(\mathcal{H}_\infty\) norm</h3>
<div class="outline-text-3" id="text-4-3">
<p>
2020-09-30 08:47:27 +02:00
We now try to express this requirement in terms of an \(\mathcal{H}_\infty\) norm.
</p>
<p>
Let&rsquo;s define one weight \(W_\phi(s)\) that represents the maximum wanted phase uncertainty:
\[ |W_{\phi}(j\omega)|^{-1} \approx \sin(\Delta\phi_{\text{max}}(\omega)), \quad \forall\omega \]
</p>
<p>
Then:
</p>
\begin{align*}
& |W_1(j\omega) H_1(j\omega)| + |W_2(j\omega) H_2(j\omega)| < \sin\big( \Delta\phi_\text{max}(\omega) \big), \quad \forall\omega \\
\Longleftrightarrow & |W_1(j\omega) H_1(j\omega)| + |W_2(j\omega) H_2(j\omega)| < |W_\phi(j\omega)|^{-1}, \quad \forall\omega \\
\Longleftrightarrow & \left| W_1(j\omega) H_1(j\omega) W_\phi(j\omega) \right| + \left| W_2(j\omega) H_2(j\omega) W_\phi(j\omega) \right| < 1, \quad \forall\omega
\end{align*}
<p>
Which is approximately equivalent to (with an error of maximum \(\sqrt{2}\)):
</p>
\begin{equation}
2020-10-01 15:14:10 +02:00
\label{org99994fc}
\left\| \begin{matrix} W_1(s) W_\phi(s) H_1(s) \\ W_2(s) W_\phi(s) H_2(s) \end{matrix} \right\|_\infty < 1
\end{equation}
<p>
One should not forget that at frequency where both sensors has unknown dynamics (\(|W_1(j\omega)| > 1\) and \(|W_2(j\omega)| > 1\)), the super sensor dynamics will also be unknown and the phase uncertainty cannot be bounded.
Thus, at these frequencies, \(|W_\phi|\) should be smaller than \(1\).
</p>
</div>
</div>
2020-10-01 15:14:10 +02:00
<div id="outline-container-org2c9d72a" class="outline-3">
<h3 id="org2c9d72a"><span class="section-number-3">4.4</span> Weighting Function used to bound the super sensor uncertainty</h3>
<div class="outline-text-3" id="text-4-4">
<p>
Let&rsquo;s define \(W_\phi(s)\) in order to bound the maximum allowed phase uncertainty \(\Delta\phi_\text{max}\) of the super sensor dynamics.
</p>
<div class="org-src-container">
<pre class="src src-matlab">Dphi = 10; % [deg]
Wu = createWeight('n', 2, 'w0', 2*pi*4e2, 'G0', 1/sin(Dphi*pi/180), 'G1', 1/4, 'Gc', 1);
</pre>
</div>
<div class="org-src-container">
<pre class="src src-matlab">save('./mat/Wu.mat', 'Wu');
</pre>
</div>
<p>
2020-10-01 15:14:10 +02:00
The obtained upper bounds on the complementary filters in order to limit the phase uncertainty of the super sensor are represented in Figure <a href="#orgb53fcec">19</a>.
</p>
2020-10-01 15:14:10 +02:00
<div id="orgb53fcec" class="figure">
<p><img src="figs/upper_bounds_comp_filter_max_phase_uncertainty.png" alt="upper_bounds_comp_filter_max_phase_uncertainty.png" />
</p>
2020-10-01 15:14:10 +02:00
<p><span class="figure-number">Figure 19: </span>Upper bounds on the complementary filters set in order to limit the maximum phase uncertainty of the super sensor to 30 degrees until 500Hz</p>
</div>
</div>
</div>
2020-10-01 15:14:10 +02:00
<div id="outline-container-org2d1873b" class="outline-3">
<h3 id="org2d1873b"><span class="section-number-3">4.5</span> \(\mathcal{H}_\infty\) Synthesis</h3>
<div class="outline-text-3" id="text-4-5">
<p>
2020-10-01 15:14:10 +02:00
The \(\mathcal{H}_\infty\) synthesis architecture used for the complementary filters is shown in Figure <a href="#org009b5de">20</a>.
</p>
2020-10-01 15:14:10 +02:00
<div id="org009b5de" class="figure">
<p><img src="figs-tikz/h_infinity_robust_fusion.png" alt="h_infinity_robust_fusion.png" />
</p>
2020-10-01 15:14:10 +02:00
<p><span class="figure-number">Figure 20: </span>Architecture used for \(\mathcal{H}_\infty\) synthesis of complementary filters</p>
</div>
<p>
The generalized plant is defined below.
</p>
<div class="org-src-container">
<pre class="src src-matlab">P = [Wu*W1 -Wu*W1;
2020-10-01 15:14:10 +02:00
0 Wu*W2;
1 0];
</pre>
</div>
<p>
And we do the \(\mathcal{H}_\infty\) synthesis using the <code>hinfsyn</code> command.
</p>
<div class="org-src-container">
2020-09-30 08:47:27 +02:00
<pre class="src src-matlab">[H2, ~, gamma, ~] = hinfsyn(P, 1, 1,'TOLGAM', 0.001, 'METHOD', 'ric', 'DISPLAY', 'on');
</pre>
</div>
<pre class="example">
[H2, ~, gamma, ~] = hinfsyn(P, 1, 1,'TOLGAM', 0.001, 'METHOD', 'ric', 'DISPLAY', 'on');
Test bounds: 0.7071 &lt;= gamma &lt;= 1.291
gamma X&gt;=0 Y&gt;=0 rho(XY)&lt;1 p/f
9.554e-01 0.0e+00 0.0e+00 3.529e-16 p
8.219e-01 0.0e+00 0.0e+00 5.204e-16 p
7.624e-01 3.8e-17 0.0e+00 1.955e-15 p
7.342e-01 0.0e+00 0.0e+00 5.612e-16 p
7.205e-01 0.0e+00 0.0e+00 7.184e-16 p
7.138e-01 0.0e+00 0.0e+00 0.000e+00 p
7.104e-01 4.1e-16 0.0e+00 6.749e-15 p
7.088e-01 0.0e+00 0.0e+00 2.794e-15 p
7.079e-01 0.0e+00 0.0e+00 6.503e-16 p
7.075e-01 0.0e+00 0.0e+00 4.302e-15 p
Best performance (actual): 0.7071
</pre>
<p>
And \(H_1(s)\) is defined as the complementary of \(H_2(s)\).
</p>
<div class="org-src-container">
2020-09-30 08:47:27 +02:00
<pre class="src src-matlab">H1 = 1 - H2;
</pre>
</div>
<p>
2020-10-01 15:14:10 +02:00
The obtained complementary filters are shown in Figure <a href="#org8022713">21</a>.
</p>
2020-10-01 15:14:10 +02:00
<div id="org8022713" class="figure">
<p><img src="figs/comp_filter_hinf_uncertainty.png" alt="comp_filter_hinf_uncertainty.png" />
</p>
2020-10-01 15:14:10 +02:00
<p><span class="figure-number">Figure 21: </span>Obtained complementary filters</p>
</div>
2019-08-14 12:08:30 +02:00
</div>
</div>
2020-10-01 15:14:10 +02:00
<div id="outline-container-org30c3b86" class="outline-3">
<h3 id="org30c3b86"><span class="section-number-3">4.6</span> Super sensor uncertainty</h3>
<div class="outline-text-3" id="text-4-6">
<div class="org-src-container">
<pre class="src src-matlab">H2_filters = load('./mat/H2_filters.mat', 'H2', 'H1');
</pre>
</div>
<p>
The uncertainty of the super sensor cannot be made smaller than both the individual sensor. Ideally, it would follow the minimum uncertainty of both sensors.
</p>
<p>
We here just used very wimple weights.
For instance, we could improve the dynamical uncertainty of the super sensor by making \(|W_\phi(j\omega)|\) smaller bellow 2Hz where the dynamical uncertainty of the sensor 1 is small.
</p>
</div>
</div>
2020-10-01 15:14:10 +02:00
<div id="outline-container-org1a771db" class="outline-3">
<h3 id="org1a771db"><span class="section-number-3">4.7</span> Super sensor noise</h3>
<div class="outline-text-3" id="text-4-7">
<p>
2020-09-30 08:47:27 +02:00
We now compute the obtain Power Spectral Density of the super sensor&rsquo;s noise.
The noise characteristics of both individual sensor are defined below.
</p>
<p>
2020-10-01 15:14:10 +02:00
The PSD of both sensor and of the super sensor is shown in Figure <a href="#org0f597e8">22</a>.
The CPS of both sensor and of the super sensor is shown in Figure <a href="#org91e95dc">23</a>.
</p>
<div class="org-src-container">
<pre class="src src-matlab">PSD_S2 = abs(squeeze(freqresp(N2, freqs, 'Hz'))).^2;
PSD_S1 = abs(squeeze(freqresp(N1, freqs, 'Hz'))).^2;
PSD_Hinf = abs(squeeze(freqresp(N1*H1, freqs, 'Hz'))).^2+abs(squeeze(freqresp(N2*H2, freqs, 'Hz'))).^2;
PSD_H2 = abs(squeeze(freqresp(N1*H2_filters.H1, freqs, 'Hz'))).^2+abs(squeeze(freqresp(N2*H2_filters.H2, freqs, 'Hz'))).^2;
CPS_S2 = cumtrapz(freqs, PSD_S2);
CPS_S1 = cumtrapz(freqs, PSD_S1);
CPS_Hinf = cumtrapz(freqs, PSD_Hinf);
CPS_H2 = cumtrapz(freqs, PSD_H2);
</pre>
</div>
2020-10-01 15:14:10 +02:00
<div id="org0f597e8" class="figure">
<p><img src="figs/psd_sensors_hinf_synthesis.png" alt="psd_sensors_hinf_synthesis.png" />
</p>
2020-10-01 15:14:10 +02:00
<p><span class="figure-number">Figure 22: </span>Power Spectral Density of the obtained super sensor using the \(\mathcal{H}_\infty\) synthesis</p>
</div>
2020-10-01 15:14:10 +02:00
<div id="org91e95dc" class="figure">
<p><img src="figs/cps_sensors_hinf_synthesis.png" alt="cps_sensors_hinf_synthesis.png" />
</p>
2020-10-01 15:14:10 +02:00
<p><span class="figure-number">Figure 23: </span>Cumulative Power Spectrum of the obtained super sensor using the \(\mathcal{H}_\infty\) synthesis</p>
</div>
</div>
</div>
2020-10-01 15:14:10 +02:00
<div id="outline-container-org27b50b1" class="outline-3">
<h3 id="org27b50b1"><span class="section-number-3">4.8</span> Conclusion</h3>
<div class="outline-text-3" id="text-4-8">
<p>
Using the \(\mathcal{H}_\infty\) synthesis, the dynamical uncertainty of the super sensor can be bounded to acceptable values.
</p>
<p>
However, the RMS of the super sensor noise is not optimized as it was the case with the \(\mathcal{H}_2\) synthesis
</p>
</div>
</div>
</div>
2020-10-01 15:14:10 +02:00
<div id="outline-container-org0e86f6d" class="outline-2">
<h2 id="org0e86f6d"><span class="section-number-2">5</span> Optimal and Robust Sensor Fusion: Mixed \(\mathcal{H}_2/\mathcal{H}_\infty\) Synthesis</h2>
<div class="outline-text-2" id="text-5">
2019-09-03 09:01:59 +02:00
<p>
2020-10-01 15:14:10 +02:00
<a id="org760d4b9"></a>
2019-09-03 09:01:59 +02:00
</p>
2020-10-01 15:14:10 +02:00
<div id="org2752cd1" class="figure">
<p><img src="figs-tikz/sensor_fusion_arch_full.png" alt="sensor_fusion_arch_full.png" />
</p>
<p><span class="figure-number">Figure 24: </span>Sensor fusion architecture with sensor dynamics uncertainty</p>
2019-09-03 09:01:59 +02:00
</div>
</div>
2020-10-01 15:14:10 +02:00
<div id="outline-container-orgc034a5e" class="outline-3">
<h3 id="orgc034a5e"><span class="section-number-3">5.1</span> Mixed \(\mathcal{H}_2\) / \(\mathcal{H}_\infty\) Synthesis - Introduction</h3>
<div class="outline-text-3" id="text-5-1">
<p>
The goal is to design complementary filters such that:
</p>
<ul class="org-ul">
2019-09-03 09:01:59 +02:00
<li>the maximum uncertainty of the super sensor is bounded</li>
<li>the RMS value of the super sensor noise is minimized</li>
</ul>
<p>
To do so, we can use the Mixed \(\mathcal{H}_2\) / \(\mathcal{H}_\infty\) Synthesis.
</p>
<p>
The Matlab function for that is <code>h2hinfsyn</code> (<a href="https://fr.mathworks.com/help/robust/ref/h2hinfsyn.html">doc</a>).
</p>
</div>
</div>
2020-10-01 15:14:10 +02:00
<div id="outline-container-org69a4331" class="outline-3">
<h3 id="org69a4331"><span class="section-number-3">5.2</span> Noise characteristics and Uncertainty of the individual sensors</h3>
<div class="outline-text-3" id="text-5-2">
<p>
2020-10-01 15:14:10 +02:00
Both dynamical uncertainty and noise characteristics of the individual sensors are shown in Figure <a href="#orgeed2e30">25</a>.
</p>
2020-10-01 15:14:10 +02:00
<div id="orgeed2e30" class="figure">
2019-09-03 09:01:59 +02:00
<p><img src="figs/mixed_synthesis_noise_uncertainty_sensors.png" alt="mixed_synthesis_noise_uncertainty_sensors.png" />
</p>
2020-10-01 15:14:10 +02:00
<p><span class="figure-number">Figure 25: </span>Noise characteristsics and Dynamical uncertainty of the individual sensors</p>
2019-09-03 09:01:59 +02:00
</div>
</div>
</div>
2020-10-01 15:14:10 +02:00
<div id="outline-container-org014bfe3" class="outline-3">
<h3 id="org014bfe3"><span class="section-number-3">5.3</span> Weighting Functions on the uncertainty of the super sensor</h3>
<div class="outline-text-3" id="text-5-3">
2019-09-03 09:01:59 +02:00
<p>
We design weights for the \(\mathcal{H}_\infty\) part of the synthesis in order to limit the dynamical uncertainty of the super sensor.
2020-10-01 15:14:10 +02:00
The maximum wanted multiplicative uncertainty is shown in Figure .The idea here is that we don&rsquo;t really need low uncertainty at low frequency but only near the crossover frequency that is suppose to be around 300Hz here.
2019-09-03 09:01:59 +02:00
</p>
</div>
</div>
2020-10-01 15:14:10 +02:00
<div id="outline-container-orgd80e164" class="outline-3">
<h3 id="orgd80e164"><span class="section-number-3">5.4</span> Mixed \(\mathcal{H}_2\) / \(\mathcal{H}_\infty\) Synthesis</h3>
<div class="outline-text-3" id="text-5-4">
2019-09-03 09:01:59 +02:00
<p>
2020-10-01 15:14:10 +02:00
The synthesis architecture that is used here is shown in Figure <a href="#org4520d6a">26</a>.
2019-09-03 09:01:59 +02:00
</p>
<p>
The controller \(K\) is synthesized such that it:
</p>
<ul class="org-ul">
<li>Keeps the \(\mathcal{H}_\infty\) norm \(G\) of the transfer function from \(w\) to \(z_\infty\) bellow some specified value</li>
<li>Keeps the \(\mathcal{H}_2\) norm \(H\) of the transfer function from \(w\) to \(z_2\) bellow some specified value</li>
<li>Minimizes a trade-off criterion of the form \(W_1 G^2 + W_2 H^2\) where \(W_1\) and \(W_2\) are specified values</li>
</ul>
2020-10-01 15:14:10 +02:00
<div id="org4520d6a" class="figure">
2019-09-03 09:01:59 +02:00
<p><img src="figs-tikz/mixed_h2_hinf_synthesis.png" alt="mixed_h2_hinf_synthesis.png" />
</p>
2020-10-01 15:14:10 +02:00
<p><span class="figure-number">Figure 26: </span>Mixed \(\mathcal{H}_2/\mathcal{H}_\infty\) Synthesis</p>
2019-09-03 09:01:59 +02:00
</div>
<p>
Here, we define \(P\) such that:
</p>
\begin{align*}
\left\| \frac{z_\infty}{w} \right\|_\infty &= \left\| \begin{matrix}W_1(s) H_1(s) \\ W_2(s) H_2(s)\end{matrix} \right\|_\infty \\
\left\| \frac{z_2}{w} \right\|_2 &= \left\| \begin{matrix}N_1(s) H_1(s) \\ N_2(s) H_2(s)\end{matrix} \right\|_2
\end{align*}
<p>
Then:
</p>
<ul class="org-ul">
<li>we specify the maximum value for the \(\mathcal{H}_\infty\) norm between \(w\) and \(z_\infty\) to be \(1\)</li>
2020-09-30 08:47:27 +02:00
<li>we don&rsquo;t specify any maximum value for the \(\mathcal{H}_2\) norm between \(w\) and \(z_2\)</li>
2019-09-03 09:01:59 +02:00
<li>we choose \(W_1 = 0\) and \(W_2 = 1\) such that the objective is to minimize the \(\mathcal{H}_2\) norm between \(w\) and \(z_2\)</li>
</ul>
<p>
The synthesis objective is to have:
\[ \left\| \frac{z_\infty}{w} \right\|_\infty = \left\| \begin{matrix}W_1(s) H_1(s) \\ W_2(s) H_2(s)\end{matrix} \right\|_\infty < 1 \]
and to minimize:
\[ \left\| \frac{z_2}{w} \right\|_2 = \left\| \begin{matrix}N_1(s) H_1(s) \\ N_2(s) H_2(s)\end{matrix} \right\|_2 \]
which is what we wanted.
</p>
<p>
We define the generalized plant that will be used for the mixed synthesis.
</p>
<div class="org-src-container">
<pre class="src src-matlab">W1u = ss(W2*Wu); W2u = ss(W1*Wu); % Weight on the uncertainty
W1n = ss(N2); W2n = ss(N1); % Weight on the noise
2020-09-30 08:47:27 +02:00
P = [W1u -W1u;
0 W2u;
W1n -W1n;
0 W2n;
1 0];
</pre>
</div>
2019-09-03 09:01:59 +02:00
<p>
2020-09-30 08:47:27 +02:00
The mixed \(\mathcal{H}_2/\mathcal{H}_\infty\) synthesis is performed below.
2019-09-03 09:01:59 +02:00
</p>
<div class="org-src-container">
2020-09-30 08:47:27 +02:00
<pre class="src src-matlab">Nmeas = 1; Ncon = 1; Nz2 = 2;
[H1, ~, normz, ~] = h2hinfsyn(P, Nmeas, Ncon, Nz2, [0, 1], 'HINFMAX', 1, 'H2MAX', Inf, 'DKMAX', 100, 'TOL', 0.01, 'DISPLAY', 'on');
H2 = 1 - H1;
</pre>
</div>
2019-09-03 09:01:59 +02:00
<p>
2020-10-01 15:14:10 +02:00
The obtained complementary filters are shown in Figure <a href="#org352d1dd">27</a>.
2019-09-03 09:01:59 +02:00
</p>
2020-10-01 15:14:10 +02:00
<div id="org352d1dd" class="figure">
2019-09-03 09:01:59 +02:00
<p><img src="figs/comp_filters_mixed_synthesis.png" alt="comp_filters_mixed_synthesis.png" />
</p>
2020-10-01 15:14:10 +02:00
<p><span class="figure-number">Figure 27: </span>Obtained complementary filters after mixed \(\mathcal{H}_2/\mathcal{H}_\infty\) synthesis</p>
2019-09-03 09:01:59 +02:00
</div>
</div>
</div>
2020-10-01 15:14:10 +02:00
<div id="outline-container-orgc600a0e" class="outline-3">
<h3 id="orgc600a0e"><span class="section-number-3">5.5</span> Obtained Super Sensor&rsquo;s noise</h3>
<div class="outline-text-3" id="text-5-5">
2019-09-03 09:01:59 +02:00
<p>
2020-10-01 15:14:10 +02:00
The PSD and CPS of the super sensor&rsquo;s noise are shown in Figure <a href="#orge5c443e">28</a> and Figure <a href="#org3e57c81">29</a> respectively.
2019-09-03 09:01:59 +02:00
</p>
<div class="org-src-container">
<pre class="src src-matlab">PSD_S2 = abs(squeeze(freqresp(N2, freqs, 'Hz'))).^2;
PSD_S1 = abs(squeeze(freqresp(N1, freqs, 'Hz'))).^2;
PSD_H2Hinf = abs(squeeze(freqresp(N1*H1, freqs, 'Hz'))).^2+abs(squeeze(freqresp(N2*H2, freqs, 'Hz'))).^2;
CPS_S2 = cumtrapz(freqs, PSD_S2);
CPS_S1 = cumtrapz(freqs, PSD_S1);
CPS_H2Hinf = cumtrapz(freqs, PSD_H2Hinf);
</pre>
</div>
2019-09-03 09:01:59 +02:00
2020-10-01 15:14:10 +02:00
<div id="orge5c443e" class="figure">
2019-09-03 09:01:59 +02:00
<p><img src="figs/psd_super_sensor_mixed_syn.png" alt="psd_super_sensor_mixed_syn.png" />
</p>
2020-10-01 15:14:10 +02:00
<p><span class="figure-number">Figure 28: </span>Power Spectral Density of the Super Sensor obtained with the mixed \(\mathcal{H}_2/\mathcal{H}_\infty\) synthesis</p>
2019-09-03 09:01:59 +02:00
</div>
2020-10-01 15:14:10 +02:00
<div id="org3e57c81" class="figure">
2019-09-03 09:01:59 +02:00
<p><img src="figs/cps_super_sensor_mixed_syn.png" alt="cps_super_sensor_mixed_syn.png" />
</p>
2020-10-01 15:14:10 +02:00
<p><span class="figure-number">Figure 29: </span>Cumulative Power Spectrum of the Super Sensor obtained with the mixed \(\mathcal{H}_2/\mathcal{H}_\infty\) synthesis</p>
2019-09-03 09:01:59 +02:00
</div>
</div>
</div>
2020-10-01 15:14:10 +02:00
<div id="outline-container-org14a7871" class="outline-3">
<h3 id="org14a7871"><span class="section-number-3">5.6</span> Obtained Super Sensor&rsquo;s Uncertainty</h3>
<div class="outline-text-3" id="text-5-6">
2019-09-03 09:01:59 +02:00
<p>
2020-10-01 15:14:10 +02:00
The uncertainty on the super sensor&rsquo;s dynamics is shown in Figure
2019-09-03 09:01:59 +02:00
</p>
</div>
</div>
2019-09-03 09:01:59 +02:00
2020-10-01 15:14:10 +02:00
<div id="outline-container-org6170476" class="outline-3">
<h3 id="org6170476"><span class="section-number-3">5.7</span> Comparison Hinf H2 H2/Hinf</h3>
<div class="outline-text-3" id="text-5-7">
<div class="org-src-container">
<pre class="src src-matlab">H2_filters = load('./mat/H2_filters.mat', 'H2', 'H1');
Hinf_filters = load('./mat/Hinf_filters.mat', 'H2', 'H1');
H2_Hinf_filters = load('./mat/H2_Hinf_filters.mat', 'H2', 'H1');
</pre>
</div>
2019-09-03 09:01:59 +02:00
<div class="org-src-container">
<pre class="src src-matlab">PSD_H2 = abs(squeeze(freqresp(N2*H2_filters.H2, freqs, 'Hz'))).^2+abs(squeeze(freqresp(N1*H2_filters.H1, freqs, 'Hz'))).^2;
CPS_H2 = cumtrapz(freqs, PSD_H2);
PSD_Hinf = abs(squeeze(freqresp(N2*Hinf_filters.H2, freqs, 'Hz'))).^2+abs(squeeze(freqresp(N1*Hinf_filters.H1, freqs, 'Hz'))).^2;
CPS_Hinf = cumtrapz(freqs, PSD_Hinf);
PSD_H2Hinf = abs(squeeze(freqresp(N2*H2_Hinf_filters.H2, freqs, 'Hz'))).^2+abs(squeeze(freqresp(N1*H2_Hinf_filters.H1, freqs, 'Hz'))).^2;
CPS_H2Hinf = cumtrapz(freqs, PSD_H2Hinf);
</pre>
2019-09-03 09:01:59 +02:00
</div>
<table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
<colgroup>
<col class="org-left" />
<col class="org-right" />
</colgroup>
<thead>
<tr>
<th scope="col" class="org-left">&#xa0;</th>
<th scope="col" class="org-right">RMS [m/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td class="org-left">Optimal: \(\mathcal{H}_2\)</td>
<td class="org-right">0.0012</td>
</tr>
<tr>
<td class="org-left">Robust: \(\mathcal{H}_\infty\)</td>
<td class="org-right">0.041</td>
</tr>
<tr>
<td class="org-left">Mixed: \(\mathcal{H}_2/\mathcal{H}_\infty\)</td>
<td class="org-right">0.011</td>
</tr>
</tbody>
</table>
2019-09-03 09:01:59 +02:00
</div>
</div>
2020-10-01 15:14:10 +02:00
<div id="outline-container-org99a64d6" class="outline-3">
<h3 id="org99a64d6"><span class="section-number-3">5.8</span> Conclusion</h3>
<div class="outline-text-3" id="text-5-8">
2019-09-03 09:01:59 +02:00
<p>
This synthesis methods allows both to:
</p>
<ul class="org-ul">
<li>limit the dynamical uncertainty of the super sensor</li>
<li>minimize the RMS value of the estimation</li>
</ul>
</div>
</div>
</div>
2020-10-01 15:14:10 +02:00
<div id="outline-container-org6159413" class="outline-2">
<h2 id="org6159413"><span class="section-number-2">6</span> Matlab Functions</h2>
<div class="outline-text-2" id="text-6">
<p>
<a id="org2667713"></a>
</p>
</div>
2020-10-01 15:14:10 +02:00
<div id="outline-container-org6ccaec5" class="outline-3">
<h3 id="org6ccaec5"><span class="section-number-3">6.1</span> <code>createWeight</code></h3>
<div class="outline-text-3" id="text-6-1">
<p>
2020-10-01 15:14:10 +02:00
<a id="org72a8d27"></a>
</p>
<p>
This Matlab function is accessible <a href="src/createWeight.m">here</a>.
</p>
<div class="org-src-container">
<pre class="src src-matlab">function [W] = createWeight(args)
% createWeight -
%
% Syntax: [in_data] = createWeight(in_data)
%
% Inputs:
% - n - Weight Order
% - G0 - Low frequency Gain
% - G1 - High frequency Gain
% - Gc - Gain of W at frequency w0
% - w0 - Frequency at which |W(j w0)| = Gc
%
% Outputs:
% - W - Generated Weight
arguments
args.n (1,1) double {mustBeInteger, mustBePositive} = 1
args.G0 (1,1) double {mustBeNumeric, mustBePositive} = 0.1
args.G1 (1,1) double {mustBeNumeric, mustBePositive} = 10
args.Gc (1,1) double {mustBeNumeric, mustBePositive} = 1
args.w0 (1,1) double {mustBeNumeric, mustBePositive} = 1
end
mustBeBetween(args.G0, args.Gc, args.G1);
s = tf('s');
W = (((1/args.w0)*sqrt((1-(args.G0/args.Gc)^(2/args.n))/(1-(args.Gc/args.G1)^(2/args.n)))*s + (args.G0/args.Gc)^(1/args.n))/((1/args.G1)^(1/args.n)*(1/args.w0)*sqrt((1-(args.G0/args.Gc)^(2/args.n))/(1-(args.Gc/args.G1)^(2/args.n)))*s + (1/args.Gc)^(1/args.n)))^args.n;
end
% Custom validation function
function mustBeBetween(a,b,c)
if ~((a &gt; b &amp;&amp; b &gt; c) || (c &gt; b &amp;&amp; b &gt; a))
eid = 'createWeight:inputError';
msg = 'Gc should be between G0 and G1.';
throwAsCaller(MException(eid,msg))
end
end
</pre>
</div>
</div>
</div>
2020-10-01 15:14:10 +02:00
<div id="outline-container-org66fd774" class="outline-3">
<h3 id="org66fd774"><span class="section-number-3">6.2</span> <code>plotMagUncertainty</code></h3>
<div class="outline-text-3" id="text-6-2">
<p>
2020-10-01 15:14:10 +02:00
<a id="org7384a61"></a>
</p>
<p>
This Matlab function is accessible <a href="src/plotMagUncertainty.m">here</a>.
</p>
<div class="org-src-container">
<pre class="src src-matlab">function [p] = plotMagUncertainty(W, freqs, args)
% plotMagUncertainty -
%
% Syntax: [p] = plotMagUncertainty(W, freqs, args)
%
% Inputs:
% - W - Multiplicative Uncertainty Weight
% - freqs - Frequency Vector [Hz]
% - args - Optional Arguments:
% - G
% - color_i
% - opacity
%
% Outputs:
% - p - Plot Handle
arguments
W
freqs double {mustBeNumeric, mustBeNonnegative}
args.G = tf(1)
args.color_i (1,1) double {mustBeInteger, mustBePositive} = 1
2020-10-01 15:14:10 +02:00
args.opacity (1,1) double {mustBeNumeric, mustBeNonnegative} = 0.3
args.DisplayName char = ''
end
% Get defaults colors
colors = get(groot, 'defaultAxesColorOrder');
p = patch([freqs flip(freqs)], ...
[abs(squeeze(freqresp(args.G, freqs, 'Hz'))).*(1 + abs(squeeze(freqresp(W, freqs, 'Hz')))); ...
flip(abs(squeeze(freqresp(args.G, freqs, 'Hz'))).*max(1 - abs(squeeze(freqresp(W, freqs, 'Hz'))), 1e-6))], 'w', ...
'DisplayName', args.DisplayName);
p.FaceColor = colors(args.color_i, :);
p.EdgeColor = 'none';
p.FaceAlpha = args.opacity;
end
</pre>
</div>
</div>
</div>
2020-10-01 15:14:10 +02:00
<div id="outline-container-orge99a206" class="outline-3">
<h3 id="orge99a206"><span class="section-number-3">6.3</span> <code>plotPhaseUncertainty</code></h3>
<div class="outline-text-3" id="text-6-3">
<p>
2020-10-01 15:14:10 +02:00
<a id="orgcc7dac5"></a>
</p>
<p>
This Matlab function is accessible <a href="src/plotPhaseUncertainty.m">here</a>.
</p>
<div class="org-src-container">
<pre class="src src-matlab">function [p] = plotPhaseUncertainty(W, freqs, args)
% plotPhaseUncertainty -
%
% Syntax: [p] = plotPhaseUncertainty(W, freqs, args)
%
% Inputs:
% - W - Multiplicative Uncertainty Weight
% - freqs - Frequency Vector [Hz]
% - args - Optional Arguments:
% - G
% - color_i
% - opacity
%
% Outputs:
% - p - Plot Handle
arguments
W
freqs double {mustBeNumeric, mustBeNonnegative}
args.G = tf(1)
args.color_i (1,1) double {mustBeInteger, mustBePositive} = 1
args.opacity (1,1) double {mustBeNumeric, mustBePositive} = 0.3
args.DisplayName char = ''
end
% Get defaults colors
colors = get(groot, 'defaultAxesColorOrder');
% Compute Phase Uncertainty
Dphi = 180/pi*asin(abs(squeeze(freqresp(W, freqs, 'Hz'))));
Dphi(abs(squeeze(freqresp(W, freqs, 'Hz'))) &gt; 1) = 360;
% Compute Plant Phase
G_ang = 180/pi*angle(squeeze(freqresp(args.G, freqs, 'Hz')));
p = patch([freqs flip(freqs)], [G_ang+Dphi; flip(G_ang-Dphi)], 'w', ...
'DisplayName', args.DisplayName);
p.FaceColor = colors(args.color_i, :);
p.EdgeColor = 'none';
p.FaceAlpha = args.opacity;
end
</pre>
</div>
</div>
</div>
</div>
2019-09-11 17:56:44 +02:00
<p>
2020-10-01 15:14:10 +02:00
<a href="ref.bib">ref.bib</a>
2019-09-11 17:56:44 +02:00
</p>
2019-08-14 12:08:30 +02:00
</div>
<div id="postamble" class="status">
<p class="author">Author: Thomas Dehaeze</p>
2020-10-01 15:14:10 +02:00
<p class="date">Created: 2020-10-01 jeu. 15:12</p>
2019-08-14 12:08:30 +02:00
</div>
</body>
</html>