Update Figures, paper compiling fine
This commit is contained in:
		@@ -20,6 +20,9 @@
 | 
			
		||||
#+LATEX_HEADER: \usepackage{algorithmic, graphicx, textcomp}
 | 
			
		||||
#+LATEX_HEADER: \usepackage{xcolor, import, hyperref}
 | 
			
		||||
#+LATEX_HEADER: \usepackage[USenglish]{babel}
 | 
			
		||||
#+LATEX_HEADER_EXTRA: \usepackage{tikz}
 | 
			
		||||
#+LATEX_HEADER_EXTRA: \usetikzlibrary{shapes.misc}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
#+LATEX_HEADER: \setcounter{footnote}{1}
 | 
			
		||||
#+LATEX_HEADER: \input{config.tex}
 | 
			
		||||
@@ -56,6 +59,10 @@
 | 
			
		||||
*** Establish the importance of the research topic                 :ignore:
 | 
			
		||||
# Active Damping + Rotating System
 | 
			
		||||
 | 
			
		||||
Controller Poles are shown by black crosses (
 | 
			
		||||
\begin{tikzpicture} \node[cross out, draw=black, minimum size=1ex, line width=2pt, inner sep=0pt, outer sep=0pt] at (0, 0){}; \end{tikzpicture}
 | 
			
		||||
).
 | 
			
		||||
 | 
			
		||||
*** Applications of active damping                                  :ignore:
 | 
			
		||||
# Link to previous paper / tomography
 | 
			
		||||
 | 
			
		||||
@@ -122,7 +129,7 @@ The Lagrangian is the kinetic energy minus the potential energy:
 | 
			
		||||
L = T - V
 | 
			
		||||
\end{equation}
 | 
			
		||||
 | 
			
		||||
From the Lagrange's equations of the second kind eqref:eq:lagrange_second_kind, the equation of motion eqref:eq:eom_mixed is obtained ($q_1 = u$, $q_2 = v$).
 | 
			
		||||
From the Lagrange's equations of the second kind, the equation of motion is obtained ($q_1 = u$, $q_2 = v$).
 | 
			
		||||
\begin{equation}
 | 
			
		||||
  \frac{d}{dt} \left( \frac{\partial L}{\partial \dot{q}_i} \right) + \frac{\partial D}{\partial \dot{q}_i} - \frac{\partial L}{\partial q_i} = Q_i
 | 
			
		||||
\end{equation}
 | 
			
		||||
@@ -319,7 +326,7 @@ This means that at low frequency, the system is decoupled (the force sensor remo
 | 
			
		||||
#+name: fig:root_locus_modified_iff
 | 
			
		||||
#+caption: Figure caption
 | 
			
		||||
#+attr_latex: :scale 1
 | 
			
		||||
[[file:figs/root_locus_modified_iff_bis.pdf]]
 | 
			
		||||
[[file:figs/root_locus_modified_iff_ter.pdf]]
 | 
			
		||||
 | 
			
		||||
** Optimal Cut-Off Frequency
 | 
			
		||||
 | 
			
		||||
@@ -354,7 +361,7 @@ This means that at low frequency, the system is decoupled (the force sensor remo
 | 
			
		||||
#+name: fig:root_locus_iff_kp_bis
 | 
			
		||||
#+caption: Figure caption
 | 
			
		||||
#+attr_latex: :scale 1
 | 
			
		||||
[[file:figs/root_locus_iff_kp_bis.pdf]]
 | 
			
		||||
[[file:figs/root_locus_iff_kp_ter.pdf]]
 | 
			
		||||
 | 
			
		||||
#+name: fig:root_locus_opt_gain_iff_kp
 | 
			
		||||
#+caption: Figure caption
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										
											BIN
										
									
								
								paper/paper.pdf
									
									
									
									
									
								
							
							
						
						
									
										
											BIN
										
									
								
								paper/paper.pdf
									
									
									
									
									
								
							
										
											Binary file not shown.
										
									
								
							@@ -1,4 +1,4 @@
 | 
			
		||||
% Created 2020-06-22 lun. 17:38
 | 
			
		||||
% Created 2020-06-23 mar. 19:34
 | 
			
		||||
% Intended LaTeX compiler: pdflatex
 | 
			
		||||
\documentclass{ISMA_USD2020}
 | 
			
		||||
\usepackage[utf8]{inputenc}
 | 
			
		||||
@@ -32,8 +32,17 @@
 | 
			
		||||
\affil[2] {BEAMS Department\NewLineAffil Free University of Brussels, Belgium \NewAffil}
 | 
			
		||||
\affil[3] {European Synchrotron Radiation Facility \NewLineAffil Grenoble, France e-mail: \textbf{thomas.dehaeze@esrf.fr}}
 | 
			
		||||
\bibliographystyle{IEEEtran}
 | 
			
		||||
\usepackage{tikz}
 | 
			
		||||
\usetikzlibrary{shapes.misc}
 | 
			
		||||
\date{}
 | 
			
		||||
\title{Active Damping of Rotating Positioning Platforms}
 | 
			
		||||
\hypersetup{
 | 
			
		||||
 pdfauthor={},
 | 
			
		||||
 pdftitle={Active Damping of Rotating Positioning Platforms},
 | 
			
		||||
 pdfkeywords={},
 | 
			
		||||
 pdfsubject={},
 | 
			
		||||
 pdfcreator={Emacs 27.0.91 (Org mode 9.4)}, 
 | 
			
		||||
 pdflang={English}}
 | 
			
		||||
\begin{document}
 | 
			
		||||
 | 
			
		||||
\maketitle
 | 
			
		||||
@@ -43,14 +52,17 @@
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
\section{Introduction}
 | 
			
		||||
\label{sec:org67e0a4e}
 | 
			
		||||
\label{sec:org977317c}
 | 
			
		||||
\label{sec:introduction}
 | 
			
		||||
Controller Poles are shown by black crosses (
 | 
			
		||||
\begin{tikzpicture} \node[cross out, draw=black, minimum size=1ex, line width=2pt, inner sep=0pt, outer sep=0pt] at (0, 0){}; \end{tikzpicture}
 | 
			
		||||
).
 | 
			
		||||
\cite{dehaeze18_sampl_stabil_for_tomog_exper}
 | 
			
		||||
 | 
			
		||||
\section{System Under Study}
 | 
			
		||||
\label{sec:org85bcde2}
 | 
			
		||||
\label{sec:org042e800}
 | 
			
		||||
\subsection{Rotating Positioning Platform}
 | 
			
		||||
\label{sec:org4959a5e}
 | 
			
		||||
\label{sec:org489e4b9}
 | 
			
		||||
Consider the rotating X-Y stage of Figure \ref{fig:rotating_xy_platform}.
 | 
			
		||||
 | 
			
		||||
\begin{itemize}
 | 
			
		||||
@@ -75,7 +87,7 @@ Consider the rotating X-Y stage of Figure \ref{fig:rotating_xy_platform}.
 | 
			
		||||
\end{figure}
 | 
			
		||||
 | 
			
		||||
\subsection{Equation of Motion}
 | 
			
		||||
\label{sec:orgdb109d9}
 | 
			
		||||
\label{sec:orgb1836d5}
 | 
			
		||||
The system has two degrees of freedom and is thus fully described by the generalized coordinates \(u\) and \(v\).
 | 
			
		||||
 | 
			
		||||
Let's express the kinetic energy \(T\) and the potential energy \(V\) of the mass \(m\) (neglecting the rotational energy):
 | 
			
		||||
@@ -96,7 +108,7 @@ The Lagrangian is the kinetic energy minus the potential energy:
 | 
			
		||||
L = T - V
 | 
			
		||||
\end{equation}
 | 
			
		||||
 | 
			
		||||
From the Lagrange's equations of the second kind \eqref{eq:lagrange_second_kind}, the equation of motion \eqref{eq:eom_mixed} is obtained (\(q_1 = u\), \(q_2 = v\)).
 | 
			
		||||
From the Lagrange's equations of the second kind, the equation of motion is obtained (\(q_1 = u\), \(q_2 = v\)).
 | 
			
		||||
\begin{equation}
 | 
			
		||||
  \frac{d}{dt} \left( \frac{\partial L}{\partial \dot{q}_i} \right) + \frac{\partial D}{\partial \dot{q}_i} - \frac{\partial L}{\partial q_i} = Q_i
 | 
			
		||||
\end{equation}
 | 
			
		||||
@@ -120,7 +132,7 @@ Thus, the term \(- m\dot{\theta}^2\) acts like a negative stiffness (due to \tex
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
\subsection{Transfer Functions in the Laplace domain}
 | 
			
		||||
\label{sec:orgfcd3def}
 | 
			
		||||
\label{sec:orgb1002ed}
 | 
			
		||||
 | 
			
		||||
\begin{subequations}
 | 
			
		||||
  \begin{align}
 | 
			
		||||
@@ -159,7 +171,7 @@ With:
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
\subsection{Constant Rotating Speed}
 | 
			
		||||
\label{sec:org81c7074}
 | 
			
		||||
\label{sec:orga4faf60}
 | 
			
		||||
To simplify, let's consider a constant rotating speed \(\dot{\theta} = \Omega\) and thus \(\ddot{\theta} = 0\).
 | 
			
		||||
 | 
			
		||||
\begin{equation}
 | 
			
		||||
@@ -214,9 +226,9 @@ The magnitude of the coupling terms are increasing with the rotation speed.
 | 
			
		||||
\end{figure}
 | 
			
		||||
 | 
			
		||||
\section{Integral Force Feedback}
 | 
			
		||||
\label{sec:orgc6c1b99}
 | 
			
		||||
\label{sec:orgaf500b0}
 | 
			
		||||
\subsection{Control Schematic}
 | 
			
		||||
\label{sec:orgb93b297}
 | 
			
		||||
\label{sec:orgbd9f859}
 | 
			
		||||
 | 
			
		||||
Force Sensors are added in series with the actuators as shown in Figure \ref{fig:system_iff}.
 | 
			
		||||
 | 
			
		||||
@@ -227,7 +239,7 @@ Force Sensors are added in series with the actuators as shown in Figure \ref{fig
 | 
			
		||||
\end{figure}
 | 
			
		||||
 | 
			
		||||
\subsection{Equations}
 | 
			
		||||
\label{sec:org4072ea4}
 | 
			
		||||
\label{sec:org48206d5}
 | 
			
		||||
The sensed forces are equal to:
 | 
			
		||||
\begin{equation}
 | 
			
		||||
\begin{bmatrix} f_{u} \\ f_{v} \end{bmatrix} =
 | 
			
		||||
@@ -260,7 +272,7 @@ Which then gives:
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
\subsection{Plant Dynamics}
 | 
			
		||||
\label{sec:org0250ac0}
 | 
			
		||||
\label{sec:orgec8431d}
 | 
			
		||||
 | 
			
		||||
\begin{figure}[htbp]
 | 
			
		||||
\centering
 | 
			
		||||
@@ -269,19 +281,18 @@ Which then gives:
 | 
			
		||||
\end{figure}
 | 
			
		||||
 | 
			
		||||
\subsection{Physical Interpretation}
 | 
			
		||||
\label{sec:orgb2d79d2}
 | 
			
		||||
\label{sec:org159680e}
 | 
			
		||||
 | 
			
		||||
At low frequency, the gain is very large and thus no force is transmitted between the payload and the rotating stage.
 | 
			
		||||
This means that at low frequency, the system is decoupled (the force sensor removed) and thus the system is unstable.
 | 
			
		||||
 | 
			
		||||
\section{Integral Force Feedback with High Pass Filters}
 | 
			
		||||
\label{sec:orgabf7a6a}
 | 
			
		||||
\label{sec:org694707d}
 | 
			
		||||
\subsection{Modification of the Control Low}
 | 
			
		||||
\label{sec:org4766bd6}
 | 
			
		||||
 | 
			
		||||
\label{sec:org931fb10}
 | 
			
		||||
 | 
			
		||||
\subsection{Close Loop Analysis}
 | 
			
		||||
\label{sec:org4c639fd}
 | 
			
		||||
\label{sec:org9de0aa7}
 | 
			
		||||
 | 
			
		||||
\begin{figure}[htbp]
 | 
			
		||||
\centering
 | 
			
		||||
@@ -291,12 +302,12 @@ This means that at low frequency, the system is decoupled (the force sensor remo
 | 
			
		||||
 | 
			
		||||
\begin{figure}[htbp]
 | 
			
		||||
\centering
 | 
			
		||||
\includegraphics[scale=1]{figs/root_locus_modified_iff_bis.pdf}
 | 
			
		||||
\includegraphics[scale=1]{figs/root_locus_modified_iff_ter.pdf}
 | 
			
		||||
\caption{\label{fig:root_locus_modified_iff}Figure caption}
 | 
			
		||||
\end{figure}
 | 
			
		||||
 | 
			
		||||
\subsection{Optimal Cut-Off Frequency}
 | 
			
		||||
\label{sec:orge829a45}
 | 
			
		||||
\label{sec:org9808de1}
 | 
			
		||||
 | 
			
		||||
\begin{figure}[htbp]
 | 
			
		||||
\centering
 | 
			
		||||
@@ -312,7 +323,7 @@ This means that at low frequency, the system is decoupled (the force sensor remo
 | 
			
		||||
\end{figure}
 | 
			
		||||
 | 
			
		||||
\section{Integral Force Feedback with Parallel Springs}
 | 
			
		||||
\label{sec:orgd96ea25}
 | 
			
		||||
\label{sec:orgd4915d5}
 | 
			
		||||
 | 
			
		||||
\begin{figure}[htbp]
 | 
			
		||||
\centering
 | 
			
		||||
@@ -334,7 +345,7 @@ This means that at low frequency, the system is decoupled (the force sensor remo
 | 
			
		||||
 | 
			
		||||
\begin{figure}[htbp]
 | 
			
		||||
\centering
 | 
			
		||||
\includegraphics[scale=1]{figs/root_locus_iff_kp_bis.pdf}
 | 
			
		||||
\includegraphics[scale=1]{figs/root_locus_iff_kp_ter.pdf}
 | 
			
		||||
\caption{\label{fig:root_locus_iff_kp_bis}Figure caption}
 | 
			
		||||
\end{figure}
 | 
			
		||||
 | 
			
		||||
@@ -351,7 +362,7 @@ This means that at low frequency, the system is decoupled (the force sensor remo
 | 
			
		||||
\end{figure}
 | 
			
		||||
 | 
			
		||||
\section{Direct Velocity Feedback}
 | 
			
		||||
\label{sec:org027d051}
 | 
			
		||||
\label{sec:orgb0a5870}
 | 
			
		||||
 | 
			
		||||
\begin{figure}[htbp]
 | 
			
		||||
\centering
 | 
			
		||||
@@ -360,7 +371,7 @@ This means that at low frequency, the system is decoupled (the force sensor remo
 | 
			
		||||
\end{figure}
 | 
			
		||||
 | 
			
		||||
\section{Comparison of the Proposed Active Damping Techniques}
 | 
			
		||||
\label{sec:org1eaa959}
 | 
			
		||||
\label{sec:org6097c1d}
 | 
			
		||||
 | 
			
		||||
\begin{figure}[htbp]
 | 
			
		||||
\centering
 | 
			
		||||
@@ -381,12 +392,12 @@ This means that at low frequency, the system is decoupled (the force sensor remo
 | 
			
		||||
\end{figure}
 | 
			
		||||
 | 
			
		||||
\section{Conclusion}
 | 
			
		||||
\label{sec:org1b2b4ae}
 | 
			
		||||
\label{sec:org1624a6b}
 | 
			
		||||
\label{sec:conclusion}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
\section*{Acknowledgment}
 | 
			
		||||
\label{sec:org2ae16a5}
 | 
			
		||||
\label{sec:org1b29790}
 | 
			
		||||
 | 
			
		||||
\bibliography{ref.bib}
 | 
			
		||||
\end{document}
 | 
			
		||||
 
 | 
			
		||||
		Reference in New Issue
	
	Block a user