Lot of works on simscape, IFF and DVF
This commit is contained in:
@@ -3,13 +3,13 @@
|
||||
(lambda ()
|
||||
(TeX-add-to-alist 'LaTeX-provided-package-options
|
||||
'(("inputenc" "utf8") ("fontenc" "T1") ("ulem" "normalem") ("tcolorbox" "most") ("babel" "USenglish" "english")))
|
||||
(add-to-list 'LaTeX-verbatim-macros-with-braces-local "href")
|
||||
(add-to-list 'LaTeX-verbatim-macros-with-braces-local "hyperref")
|
||||
(add-to-list 'LaTeX-verbatim-macros-with-braces-local "hyperimage")
|
||||
(add-to-list 'LaTeX-verbatim-macros-with-braces-local "hyperbaseurl")
|
||||
(add-to-list 'LaTeX-verbatim-macros-with-braces-local "nolinkurl")
|
||||
(add-to-list 'LaTeX-verbatim-macros-with-braces-local "url")
|
||||
(add-to-list 'LaTeX-verbatim-macros-with-braces-local "path")
|
||||
(add-to-list 'LaTeX-verbatim-macros-with-braces-local "url")
|
||||
(add-to-list 'LaTeX-verbatim-macros-with-braces-local "nolinkurl")
|
||||
(add-to-list 'LaTeX-verbatim-macros-with-braces-local "hyperbaseurl")
|
||||
(add-to-list 'LaTeX-verbatim-macros-with-braces-local "hyperimage")
|
||||
(add-to-list 'LaTeX-verbatim-macros-with-braces-local "hyperref")
|
||||
(add-to-list 'LaTeX-verbatim-macros-with-braces-local "href")
|
||||
(add-to-list 'LaTeX-verbatim-macros-with-delims-local "path")
|
||||
(TeX-run-style-hooks
|
||||
"latex2e"
|
||||
@@ -42,13 +42,20 @@
|
||||
"import"
|
||||
"babel")
|
||||
(LaTeX-add-labels
|
||||
"sec:org8c48899"
|
||||
"sec:org335669b"
|
||||
"sec:introduction"
|
||||
"sec:org60f23e3"
|
||||
"sec:org8b756e7"
|
||||
"sec:theory"
|
||||
"sec:orgd677659"
|
||||
"sec:orgbf4a596"
|
||||
"fig:rotating_xy_platform"
|
||||
"sec:orgaa8880a"
|
||||
"eq:energy_inertial_frame"
|
||||
"eq:lagrangian_inertial_frame"
|
||||
"sec:org754b644"
|
||||
"sec:org9cbf82a"
|
||||
"sec:org8d24de3"
|
||||
"sec:conclusion"
|
||||
"sec:orgf333899")
|
||||
"sec:orgb252937")
|
||||
(LaTeX-add-bibliographies
|
||||
"ref"))
|
||||
:latex)
|
||||
|
134
paper/paper.org
134
paper/paper.org
@@ -58,11 +58,145 @@
|
||||
* Theory
|
||||
<<sec:theory>>
|
||||
|
||||
** Rotating Positioning Stage
|
||||
|
||||
# Description of the system
|
||||
|
||||
- $k$: Actuator's Stiffness [N/m]
|
||||
- $m$: Payload's mass [kg]
|
||||
- $\omega_0 = \sqrt{\frac{k}{m}}$: Resonance of the (non-rotating) mass-spring system [rad/s]
|
||||
- $\omega_r = \dot{\theta}$: rotation speed [rad/s]
|
||||
|
||||
|
||||
#+name: fig:rotating_xy_platform
|
||||
#+caption: Figure caption
|
||||
#+attr_latex: :scale 1
|
||||
[[file:figs/rotating_xy_platform.pdf]]
|
||||
|
||||
|
||||
** Equation of Motion
|
||||
|
||||
Let's express the kinetic energy $T$ and the potential energy $V$ of the mass $m$ (neglecting the rotational energy):
|
||||
#+name: eq:energy_inertial_frame
|
||||
\begin{subequations}
|
||||
\begin{align}
|
||||
T & = \frac{1}{2} m \left( \dot{x}^2 + \dot{y}^2 \right) \\
|
||||
R & = \frac{1}{2} c \left( \dot{x}^2 + \dot{y}^2 \right) \\
|
||||
V & = \frac{1}{2} k \left( x^2 + y^2 \right)
|
||||
\end{align}
|
||||
\end{subequations}
|
||||
|
||||
The Lagrangian is the kinetic energy minus the potential energy:
|
||||
#+name: eq:lagrangian_inertial_frame
|
||||
\begin{equation}
|
||||
L = T-V = \frac{1}{2} m \left( \dot{x}^2 + \dot{y}^2 \right) - \frac{1}{2} k \left( x^2 + y^2 \right)
|
||||
\end{equation}
|
||||
|
||||
The external forces applied to the mass are:
|
||||
\begin{subequations}
|
||||
\begin{align}
|
||||
F_{\text{ext}, x} &= F_u \cos{\theta} - F_v \sin{\theta}\\
|
||||
F_{\text{ext}, y} &= F_u \sin{\theta} + F_v \cos{\theta}
|
||||
\end{align}
|
||||
\end{subequations}
|
||||
|
||||
|
||||
From the Lagrange's equations of the second kind eqref:eq:lagrange_second_kind, the equation of motion eqref:eq:eom_mixed is obtained.
|
||||
|
||||
#+name: eq:lagrange_second_kind
|
||||
\begin{equation}
|
||||
\frac{d}{dt} \left( \frac{\partial L}{\partial \dot{q}_j} \right) = \frac{\partial L}{\partial q_j}
|
||||
\end{equation}
|
||||
|
||||
#+name: eq:eom_mixed
|
||||
\begin{subequations}
|
||||
\begin{align}
|
||||
m\ddot{x} + kx = F_u \cos{\theta} - F_v \sin{\theta}\\
|
||||
m\ddot{y} + ky = F_u \sin{\theta} + F_v \cos{\theta}
|
||||
\end{align}
|
||||
\end{subequations}
|
||||
|
||||
Performing the change coordinates from $(x, y)$ to $(d_x, d_y, \theta)$:
|
||||
\begin{subequations}
|
||||
\begin{align}
|
||||
x & = d_u \cos{\theta} - d_v \sin{\theta}\\
|
||||
y & = d_u \sin{\theta} + d_v \cos{\theta}
|
||||
\end{align}
|
||||
\end{subequations}
|
||||
|
||||
Gives
|
||||
#+name: eq:oem_coupled
|
||||
\begin{subequations}
|
||||
\begin{align}
|
||||
m \ddot{d_u} + (k - m\dot{\theta}^2) d_u &= F_u + 2 m\dot{d_v}\dot{\theta} + m d_v\ddot{\theta} \label{eq:du_coupled} \\
|
||||
m \ddot{d_v} + (k \underbrace{-\ m\dot{\theta}^2}_{\text{Centrif.}}) d_v &= F_v \underbrace{-\ 2 m\dot{d_u}\dot{\theta}}_{\text{Coriolis}} \underbrace{-\ m d_u\ddot{\theta}}_{\text{Euler}} \label{eq:dv_coupled}
|
||||
\end{align}
|
||||
\end{subequations}
|
||||
|
||||
We obtain two differential equations that are coupled through:
|
||||
- *Euler forces*: $m d_v \ddot{\theta}$
|
||||
- *Coriolis forces*: $2 m \dot{d_v} \dot{\theta}$
|
||||
|
||||
Without the coupling terms, each equation is the equation of a one degree of freedom mass-spring system with mass $m$ and stiffness $k- m\dot{\theta}^2$.
|
||||
Thus, the term $- m\dot{\theta}^2$ acts like a negative stiffness (due to *centrifugal forces*).
|
||||
|
||||
** Constant Rotating Speed
|
||||
To simplify, let's consider a constant rotating speed $\dot{\theta} = \omega_r$ and thus $\ddot{\theta} = 0$.
|
||||
|
||||
#+NAME: eq:coupledplant
|
||||
\begin{equation}
|
||||
\begin{bmatrix} d_u \\ d_v \end{bmatrix} =
|
||||
\frac{1}{(m s^2 + (k - m{\omega_0}^2))^2 + (2 m {\omega_0} s)^2}
|
||||
\begin{bmatrix}
|
||||
ms^2 + (k-m{\omega_0}^2) & 2 m \omega_0 s \\
|
||||
-2 m \omega_0 s & ms^2 + (k-m{\omega_0}^2) \\
|
||||
\end{bmatrix}
|
||||
\begin{bmatrix} F_u \\ F_v \end{bmatrix}
|
||||
\end{equation}
|
||||
|
||||
#+NAME: eq:coupled_plant
|
||||
\begin{equation}
|
||||
\begin{bmatrix} d_u \\ d_v \end{bmatrix} =
|
||||
\frac{\frac{1}{k}}{\left( \frac{s^2}{{\omega_0}^2} + (1 - \frac{{\omega_r}^2}{{\omega_0}^2}) \right)^2 + \left( 2 \frac{{\omega_r} s}{{\omega_0}^2} \right)^2}
|
||||
\begin{bmatrix}
|
||||
\frac{s^2}{{\omega_0}^2} + 1 - \frac{{\omega_r}^2}{{\omega_0}^2} & 2 \frac{\omega_r s}{{\omega_0}^2} \\
|
||||
-2 \frac{\omega_r s}{{\omega_0}^2} & \frac{s^2}{{\omega_0}^2} + 1 - \frac{{\omega_r}^2}{{\omega_0}^2} \\
|
||||
\end{bmatrix}
|
||||
\begin{bmatrix} F_u \\ F_v \end{bmatrix}
|
||||
\end{equation}
|
||||
|
||||
When the rotation speed is null, the coupling terms are equal to zero and the diagonal terms corresponds to one degree of freedom mass spring system.
|
||||
#+NAME: eq:coupled_plant_no_rot
|
||||
\begin{equation}
|
||||
\begin{bmatrix} d_u \\ d_v \end{bmatrix} =
|
||||
\frac{\frac{1}{k}}{\frac{s^2}{{\omega_0}^2} + 1}
|
||||
\begin{bmatrix}
|
||||
1 & 0 \\
|
||||
0 & 1
|
||||
\end{bmatrix}
|
||||
\begin{bmatrix} F_u \\ F_v \end{bmatrix}
|
||||
\end{equation}
|
||||
|
||||
# Campbell Diagram
|
||||
|
||||
When the rotation speed in not null, the resonance frequency is duplicated into two pairs of complex conjugate poles.
|
||||
As the rotation speed increases, one of the two resonant frequency goes to lower frequencies as the other one goes to higher frequencies (Figure [[fig:campbell_diagram]]).
|
||||
|
||||
#+name: fig:campbell_diagram
|
||||
#+caption: Campbell Diagram
|
||||
[[file:figs/campbell_diagram.pdf]]
|
||||
|
||||
# Bode Plots for different ratio wr/w0
|
||||
|
||||
The magnitude of the coupling terms are increasing with the rotation speed.
|
||||
|
||||
|
||||
** Integral Force Feedback
|
||||
|
||||
|
||||
** Direct Velocity Feedback
|
||||
|
||||
|
||||
* Conclusion
|
||||
<<sec:conclusion>>
|
||||
|
||||
|
@@ -1,4 +1,4 @@
|
||||
% Created 2020-06-08 lun. 11:15
|
||||
% Created 2020-06-08 lun. 11:40
|
||||
% Intended LaTeX compiler: pdflatex
|
||||
\documentclass{ISMA_USD2020}
|
||||
\usepackage[utf8]{inputenc}
|
||||
@@ -49,27 +49,56 @@
|
||||
}
|
||||
|
||||
\section{Introduction}
|
||||
\label{sec:orgd787473}
|
||||
\label{sec:org335669b}
|
||||
\label{sec:introduction}
|
||||
|
||||
|
||||
\section{Theory}
|
||||
\label{sec:org808f338}
|
||||
\label{sec:org8b756e7}
|
||||
\label{sec:theory}
|
||||
|
||||
\subsection{Rotating Positioning Stage}
|
||||
\label{sec:orgbf4a596}
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[scale=1]{figs/rotating_xy_platform.pdf}
|
||||
\caption{\label{fig:figure_name}Figure caption}
|
||||
\caption{\label{fig:rotating_xy_platform}Figure caption}
|
||||
\end{figure}
|
||||
|
||||
|
||||
\subsection{Equation of Motion}
|
||||
\label{sec:orgaa8880a}
|
||||
|
||||
Let's express the kinetic energy \(T\) and the potential energy \(V\) of the mass \(m\):
|
||||
\begin{align}
|
||||
\label{eq:energy_inertial_frame}
|
||||
T & = \frac{1}{2} m \left( \dot{x}^2 + \dot{y}^2 \right) \\
|
||||
V & = \frac{1}{2} k \left( x^2 + y^2 \right)
|
||||
\end{align}
|
||||
|
||||
The Lagrangian is the kinetic energy minus the potential energy.
|
||||
\begin{equation}
|
||||
\label{eq:lagrangian_inertial_frame}
|
||||
L = T-V = \frac{1}{2} m \left( \dot{x}^2 + \dot{y}^2 \right) - \frac{1}{2} k \left( x^2 + y^2 \right)
|
||||
\end{equation}
|
||||
|
||||
|
||||
\subsection{Integral Force Feedback}
|
||||
\label{sec:org754b644}
|
||||
|
||||
|
||||
\subsection{Direct Velocity Feedback}
|
||||
\label{sec:org9cbf82a}
|
||||
|
||||
|
||||
\section{Conclusion}
|
||||
\label{sec:orgab2ddd2}
|
||||
\label{sec:org8d24de3}
|
||||
\label{sec:conclusion}
|
||||
|
||||
|
||||
\section{Acknowledgment}
|
||||
\label{sec:orga63f041}
|
||||
\label{sec:orgb252937}
|
||||
|
||||
|
||||
\bibliography{ref}
|
||||
|
Reference in New Issue
Block a user