Removed DVF from the study (replace with passive)
This commit is contained in:
@@ -516,70 +516,6 @@ The overall stiffness $k$ stays constant:
|
||||
| file:figs/root_locus_iff_kps.pdf | file:figs/root_locus_opt_gain_iff_kp.pdf |
|
||||
| <<fig:root_locus_iff_kps>> Three values of $k_p$ | <<fig:root_locus_opt_gain_iff_kp>> $k_p = 5 m \Omega^2$, optimal damping is shown |
|
||||
|
||||
* Direct Velocity Feedback :noexport:
|
||||
** System Schematic and Control Architecture
|
||||
# Basic Idea of DVF
|
||||
|
||||
|
||||
# Equation with the control law: pure gain
|
||||
\begin{equation}
|
||||
K_V(s) = g
|
||||
\end{equation}
|
||||
|
||||
#+name: fig:system_dvf
|
||||
#+caption: System with relative velocity sensors and with decentralized controllers $K_V$
|
||||
#+attr_latex: :scale 1
|
||||
[[file:figs/system_dvf.pdf]]
|
||||
|
||||
# Equivalent System is the same as Figure 1 (as increasing "c")
|
||||
|
||||
# Thus very much equivalent as adding passive elements such as dashpot
|
||||
|
||||
** Equations
|
||||
|
||||
# Write the equations
|
||||
|
||||
\begin{equation}
|
||||
\begin{bmatrix} v_u \\ v_v \end{bmatrix} =
|
||||
\bm{G}_v
|
||||
\begin{bmatrix} F_u \\ F_v \end{bmatrix}
|
||||
\end{equation}
|
||||
|
||||
\begin{equation}
|
||||
\begin{bmatrix} v_u \\ v_v \end{bmatrix} =
|
||||
\frac{1}{k} \frac{1}{G_{vp}}
|
||||
\begin{bmatrix}
|
||||
G_{vz} & G_{vc} \\
|
||||
-G_{vc} & G_{vz}
|
||||
\end{bmatrix}
|
||||
\begin{bmatrix} F_u \\ F_v \end{bmatrix}
|
||||
\end{equation}
|
||||
With:
|
||||
\begin{subequations}
|
||||
\begin{align}
|
||||
G_{vp} &= \left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2 \\
|
||||
G_{vz} &= s \left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right) \\
|
||||
G_{vc} &= 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0}
|
||||
\end{align}
|
||||
\end{subequations}
|
||||
|
||||
# Show that the rotation have somehow less impact on the plant than for IFF
|
||||
|
||||
|
||||
# Eventually add a bode plot to show the effect of the rotation speed
|
||||
|
||||
|
||||
** Relative Direct Velocity Feedback
|
||||
|
||||
# Unconditionally stable
|
||||
|
||||
# Arbitrary Damping can be added to the poles
|
||||
|
||||
#+name: fig:root_locus_dvf
|
||||
#+caption: Root Locus for Decentralized Direct Velocity Feedback for several rotational speeds $\Omega$
|
||||
#+attr_latex: :scale 1
|
||||
[[file:figs/root_locus_dvf.pdf]]
|
||||
|
||||
* Comparison of the Proposed Active Damping Techniques for Rotating Positioning Stages
|
||||
** Physical Comparison
|
||||
|
||||
|
BIN
paper/paper.pdf
BIN
paper/paper.pdf
Binary file not shown.
102
paper/paper.tex
102
paper/paper.tex
@@ -1,4 +1,4 @@
|
||||
% Created 2020-06-26 ven. 17:28
|
||||
% Created 2020-06-29 lun. 10:22
|
||||
% Intended LaTeX compiler: pdflatex
|
||||
\documentclass{ISMA_USD2020}
|
||||
\usepackage[utf8]{inputenc}
|
||||
@@ -53,7 +53,7 @@
|
||||
}
|
||||
|
||||
\section{Introduction}
|
||||
\label{sec:org4effc95}
|
||||
\label{sec:org8a431d3}
|
||||
\label{sec:introduction}
|
||||
Controller Poles are shown by black crosses (
|
||||
\begin{tikzpicture} \node[cross out, draw=black, minimum size=1ex, line width=2pt, inner sep=0pt, outer sep=0pt] at (0, 0){}; \end{tikzpicture}
|
||||
@@ -64,9 +64,9 @@ This paper has been published
|
||||
The Matlab code that was use to obtain the results are available in \cite{dehaeze20_activ_dampin_rotat_posit_platf}.
|
||||
|
||||
\section{Dynamics of Rotating Positioning Platforms}
|
||||
\label{sec:org5eef93b}
|
||||
\label{sec:org6c19606}
|
||||
\subsection{Model of a Rotating Positioning Platform}
|
||||
\label{sec:org905e0e5}
|
||||
\label{sec:orga59b20f}
|
||||
To study how the rotation of positioning platforms does affect the use of force feedback, a simple model is developed.
|
||||
|
||||
It represents an X-Y positioning stage on top of a Rotating Stage and is schematically represented in Figure \ref{fig:system}.
|
||||
@@ -96,7 +96,7 @@ The position of the payload is represented by \((d_u, d_v)\) expressed in the ro
|
||||
\end{figure}
|
||||
|
||||
\subsection{Equations of Motion}
|
||||
\label{sec:org08efe1c}
|
||||
\label{sec:orgad9d82d}
|
||||
To obtain of equation of motion for the system represented in Figure \ref{fig:system}, the Lagrangian equations are used:
|
||||
\begin{equation}
|
||||
\label{eq:lagrangian_equations}
|
||||
@@ -129,13 +129,12 @@ The rotation of the XY positioning platform induces two Gyroscopic effects:
|
||||
\end{itemize}
|
||||
|
||||
\subsection{Transfer Functions in the Laplace domain}
|
||||
\label{sec:org6daa125}
|
||||
\label{sec:orgb80a7b8}
|
||||
To study the dynamics of the system, the differential equations of motions \eqref{eq:eom_coupled} are transformed in the Laplace domain and the transfer functions from \([F_u,\ F_v]\) to \([d_u,\ d_v]\) are obtained:
|
||||
\begin{equation}
|
||||
\label{eq:Gd_mimo_tf}
|
||||
\begin{bmatrix} d_u \\ d_v \end{bmatrix} = \bm{G}_d \begin{bmatrix} F_u \\ F_v \end{bmatrix}
|
||||
\end{equation}
|
||||
|
||||
with \(\bm{G}_d\) a \(2 \times 2\) transfer function matrix
|
||||
\begin{equation}
|
||||
\label{eq:Gd_m_k_c}
|
||||
@@ -156,11 +155,11 @@ One can verify that without rotation (\(\Omega = 0\)) the system becomes equival
|
||||
\end{subequations}
|
||||
|
||||
\subsection{Change of Variables / Parameters for the study}
|
||||
\label{sec:orgda057f2}
|
||||
\label{sec:org97136f3}
|
||||
|
||||
In order to make this study less dependent on the system parameters, the following change of variable is performed:
|
||||
\begin{itemize}
|
||||
\item \(\omega_0 = \sqrt{\frac{k}{m}}\): Natural frequency of the mass-spring system in \(\si{\radian/\s}\)
|
||||
\item \(\omega_0 = \sqrt{\frac{k}{m}}\): Undamped natural frequency of the mass-spring system in \(\si{\radian/\s}\)
|
||||
\item \(\xi = \frac{c}{2 \sqrt{k m}}\): Damping ratio
|
||||
\end{itemize}
|
||||
|
||||
@@ -182,7 +181,7 @@ During the rest of this study, the following parameters are used for numerical a
|
||||
\end{itemize}
|
||||
|
||||
\subsection{System Dynamics and Campbell Diagram}
|
||||
\label{sec:org9c94a4d}
|
||||
\label{sec:orgf368845}
|
||||
The poles of \(\bm{G}_d\) are the complex solutions \(p\) of
|
||||
\begin{equation}
|
||||
\left( \frac{p^2}{{\omega_0}^2} + 2 \xi \frac{p}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{p}{\omega_0} \right)^2 = 0
|
||||
@@ -192,19 +191,17 @@ Supposing small damping (\(\xi \ll 1\)), two pairs of complex conjugate poles ar
|
||||
\begin{subequations}
|
||||
\label{eq:pole_values}
|
||||
\begin{align}
|
||||
p_{+} &= - \xi \omega_0 \left( 1 + \frac{\Omega}{\omega_0} \right) \pm j \left( \omega_0 + \Omega \right) \\
|
||||
p_{-} &= - \xi \omega_0 \left( 1 - \frac{\Omega}{\omega_0} \right) \pm j \left( \omega_0 - \Omega \right)
|
||||
p_{+} &= - \xi \omega_0 \left( 1 + \frac{\Omega}{\omega_0} \right) \pm j \omega_0 \left( 1 + \frac{\Omega}{\omega_0} \right) \\
|
||||
p_{-} &= - \xi \omega_0 \left( 1 - \frac{\Omega}{\omega_0} \right) \pm j \omega_0 \left( 1 - \frac{\Omega}{\omega_0} \right)
|
||||
\end{align}
|
||||
\end{subequations}
|
||||
|
||||
When the rotation speed in non-null, the resonance frequency is split into two pairs of complex conjugate poles.
|
||||
The real part and complex part of these two pairs of complex conjugate poles are represented in Figure \ref{fig:campbell_diagram} as a function of the rotational speed \(\Omega\).
|
||||
|
||||
As the rotation speed increases, \(p_{+}\) goes to higher frequencies and \(p_{-}\) to lower frequencies.
|
||||
|
||||
When the rotational speed \(\Omega\) reaches \(\omega_0\), the real part \(p_{-}\) is positive meaning the system becomes unstable.
|
||||
The stiffness of the X-Y stage is too low to hold to rotating payload hence the instability.
|
||||
Stiff positioning platforms should be used if high rotational speeds or heavy payloads are used.
|
||||
|
||||
This is graphically represented with the Campbell Diagram in Figure \ref{fig:campbell_diagram}.
|
||||
When the rotational speed \(\Omega\) reaches \(\omega_0\), the real part \(p_{-}\) becomes positive rendering the system unstable.
|
||||
Physically, the negative stiffness term induced by centrifugal forces exceeds the spring stiffness.
|
||||
Thus, stiff positioning platforms should be used when working at high rotational speeds.
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\begin{subfigure}[c]{0.4\linewidth}
|
||||
@@ -221,8 +218,8 @@ This is graphically represented with the Campbell Diagram in Figure \ref{fig:cam
|
||||
|
||||
Looking at the transfer function matrix \(\bm{G}_d\) \eqref{eq:Gd_w0_xi_k}, one can see it has two distinct terms that can be studied separately:
|
||||
\begin{itemize}
|
||||
\item the direct (diagonal) terms
|
||||
\item the coupling (off-diagonal) terms
|
||||
\item the direct (diagonal) terms (Figure \ref{fig:plant_compare_rotating_speed_direct})
|
||||
\item the coupling (off-diagonal) terms (Figure \ref{fig:plant_compare_rotating_speed_coupling})
|
||||
\end{itemize}
|
||||
|
||||
The bode plot of the direct and coupling terms are shown in Figure \ref{fig:plant_compare_rotating_speed} for several rotational speed \(\Omega\).
|
||||
@@ -244,13 +241,13 @@ When the
|
||||
\centering
|
||||
\end{figure}
|
||||
|
||||
In the rest of this study, \(\Omega < \omega_0\)
|
||||
In the rest of this study, rotational speeds smaller than the undamped natural frequency of the system are used (\(\Omega < \omega_0\)).
|
||||
|
||||
\section{Decentralized Integral Force Feedback}
|
||||
\label{sec:org729cd5f}
|
||||
\subsection{System Schematic and Control Architecture}
|
||||
\label{sec:org87ee3ad}
|
||||
Force Sensors are added in series with the actuators as shown in Figure \ref{fig:system_iff}.
|
||||
\label{sec:orge7b2b3c}
|
||||
\subsection{Force Sensors and Control Architecture}
|
||||
\label{sec:org2b4254d}
|
||||
In order to apply Decentralized Integral Force Feedback to the system, force sensors are added in series of the two actuators (Figure \ref{fig:system_iff}).
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
@@ -259,7 +256,7 @@ Force Sensors are added in series with the actuators as shown in Figure \ref{fig
|
||||
\end{figure}
|
||||
|
||||
\subsection{Plant Dynamics}
|
||||
\label{sec:orge10a341}
|
||||
\label{sec:org59a4f35}
|
||||
The forces measured by the force sensors are equal to:
|
||||
\begin{equation}
|
||||
\label{eq:measured_force}
|
||||
@@ -315,13 +312,13 @@ It increases with the rotational speed \(\Omega\).
|
||||
\end{figure}
|
||||
|
||||
\subsection{Decentralized Integral Force Feedback}
|
||||
\label{sec:org1d15108}
|
||||
\label{sec:orgf040b7e}
|
||||
|
||||
\begin{equation}
|
||||
K_F(s) = g \cdot \frac{1}{s}
|
||||
\end{equation}
|
||||
|
||||
Also, as one zero has a positive real part, the \textbf{IFF control is no more unconditionally stable}.
|
||||
Also, as one zero has a positive real part, the IFF control is no more unconditionally stable.
|
||||
This is due to the fact that the zeros of the plant are the poles of the closed loop system with an infinite gain.
|
||||
Thus, for some finite IFF gain, one pole will have a positive real part and the system will be unstable.
|
||||
|
||||
@@ -335,20 +332,20 @@ At low frequency, the gain is very large and thus no force is transmitted betwee
|
||||
This means that at low frequency, the system is decoupled (the force sensor removed) and thus the system is unstable.
|
||||
|
||||
\section{Integral Force Feedback with High Pass Filters}
|
||||
\label{sec:org95ed1b6}
|
||||
\label{sec:org5533f47}
|
||||
\subsection{Modification of the Control Low}
|
||||
\label{sec:orgfadc2c2}
|
||||
\label{sec:orge3f4cc0}
|
||||
\begin{equation}
|
||||
K_{F}(s) = g \cdot \frac{1}{s} \cdot \underbrace{\frac{s/\omega_i}{1 + s/\omega_i}}_{\text{HPF}} = g \cdot \frac{1}{s + \omega_i}
|
||||
\end{equation}
|
||||
|
||||
|
||||
\subsection{Feedback Analysis}
|
||||
\label{sec:org6ef2134}
|
||||
\label{sec:orgd0fed6b}
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[scale=1]{figs/loop_gain_modified_iff.pdf}
|
||||
\caption{\label{fig:loop_gain_modified_iff}Bode Plot of the Loop Gain for IFF with and without the HPF}
|
||||
\caption{\label{fig:loop_gain_modified_iff}Bode Plot of the Loop Gain for IFF with and without the HPF, \(\Omega = 0.1 \omega_0\)}
|
||||
\end{figure}
|
||||
|
||||
\begin{equation}
|
||||
@@ -358,16 +355,16 @@ This means that at low frequency, the system is decoupled (the force sensor remo
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[scale=1]{figs/root_locus_modified_iff.pdf}
|
||||
\caption{\label{fig:root_locus_modified_iff}Root Locus for IFF with and without the HPF}
|
||||
\caption{\label{fig:root_locus_modified_iff}Root Locus for IFF with and without the HPF, \(\Omega = 0.1 \omega_0\)}
|
||||
\end{figure}
|
||||
|
||||
\subsection{Optimal Cut-Off Frequency}
|
||||
\label{sec:org23e0758}
|
||||
\label{sec:org4740973}
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[scale=1]{figs/root_locus_wi_modified_iff.pdf}
|
||||
\caption{\label{fig:root_locus_wi_modified_iff}Root Locus for several HPF cut-off frequencies \(\omega_i\)}
|
||||
\caption{\label{fig:root_locus_wi_modified_iff}Root Locus for several HPF cut-off frequencies \(\omega_i\), \(\Omega = 0.1 \omega_0\)}
|
||||
\end{figure}
|
||||
|
||||
\begin{figure}[htbp]
|
||||
@@ -377,9 +374,9 @@ This means that at low frequency, the system is decoupled (the force sensor remo
|
||||
\end{figure}
|
||||
|
||||
\section{Integral Force Feedback with Parallel Springs}
|
||||
\label{sec:org6947a77}
|
||||
\label{sec:org1b53815}
|
||||
\subsection{Stiffness in Parallel with the Force Sensor}
|
||||
\label{sec:org9a80ee7}
|
||||
\label{sec:org3a8c426}
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[scale=1]{figs/system_parallel_springs.pdf}
|
||||
@@ -387,7 +384,7 @@ This means that at low frequency, the system is decoupled (the force sensor remo
|
||||
\end{figure}
|
||||
|
||||
\subsection{Plant Dynamics}
|
||||
\label{sec:org14f5b78}
|
||||
\label{sec:orgf26a6f4}
|
||||
|
||||
We define an adimensional parameter \(\alpha\), \(0 \le \alpha < 1\), that describes the proportion of the stiffness in parallel with the actuator and force sensor:
|
||||
\begin{subequations}
|
||||
@@ -419,7 +416,7 @@ The overall stiffness \(k\) stays constant:
|
||||
\end{equation}
|
||||
|
||||
\subsection{Effect of the Parallel Stiffness on the Plant Dynamics}
|
||||
\label{sec:org4b26266}
|
||||
\label{sec:org6a55282}
|
||||
\begin{equation}
|
||||
\begin{aligned}
|
||||
\alpha > \frac{\Omega^2}{{\omega_0}^2} \\
|
||||
@@ -430,17 +427,17 @@ The overall stiffness \(k\) stays constant:
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[scale=1]{figs/plant_iff_kp.pdf}
|
||||
\caption{\label{fig:plant_iff_kp}Bode Plot of \(f_u/F_u\) without parallel spring, with parallel springs with stiffness \(k_p < m \Omega^2\) and \(k_p > m \Omega^2\)}
|
||||
\caption{\label{fig:plant_iff_kp}Bode Plot of \(f_u/F_u\) without parallel spring, with parallel springs with stiffness \(k_p < m \Omega^2\) and \(k_p > m \Omega^2\), \(\Omega = 0.1 \omega_0\)}
|
||||
\end{figure}
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[scale=1]{figs/root_locus_iff_kp.pdf}
|
||||
\caption{\label{fig:root_locus_iff_kp}Root Locus for IFF without parallel spring, with parallel springs with stiffness \(k_p < m \Omega^2\) and \(k_p > m \Omega^2\)}
|
||||
\caption{\label{fig:root_locus_iff_kp}Root Locus for IFF without parallel spring, with parallel springs with stiffness \(k_p < m \Omega^2\) and \(k_p > m \Omega^2\), \(\Omega = 0.1 \omega_0\)}
|
||||
\end{figure}
|
||||
|
||||
\subsection{Optimal Parallel Stiffness}
|
||||
\label{sec:orgfd42bdb}
|
||||
\label{sec:org358dd73}
|
||||
\begin{figure}[htbp]
|
||||
\begin{subfigure}[c]{0.49\linewidth}
|
||||
\includegraphics[width=\linewidth]{figs/root_locus_iff_kps.pdf}
|
||||
@@ -450,30 +447,29 @@ The overall stiffness \(k\) stays constant:
|
||||
\includegraphics[width=\linewidth]{figs/root_locus_opt_gain_iff_kp.pdf}
|
||||
\caption{\label{fig:root_locus_opt_gain_iff_kp} \(k_p = 5 m \Omega^2\), optimal damping is shown}
|
||||
\end{subfigure}
|
||||
\caption{\label{fig:root_locus_iff_kps_opt}Root Locus for IFF when parallel stiffness is used}
|
||||
\caption{\label{fig:root_locus_iff_kps_opt}Root Locus for IFF when parallel stiffness is used, \(\Omega = 0.1 \omega_0\)}
|
||||
\centering
|
||||
\end{figure}
|
||||
|
||||
|
||||
\section{Comparison of the Proposed Active Damping Techniques for Rotating Positioning Stages}
|
||||
\label{sec:org67dd4e8}
|
||||
\label{sec:org3cc6699}
|
||||
\subsection{Physical Comparison}
|
||||
\label{sec:orgf742b29}
|
||||
\label{sec:orgc34b986}
|
||||
|
||||
|
||||
|
||||
\subsection{Attainable Damping}
|
||||
\label{sec:orgdb615c3}
|
||||
\label{sec:org993a1d7}
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[scale=1]{figs/comp_root_locus.pdf}
|
||||
\caption{\label{fig:comp_root_locus}Root Locus for the three proposed decentralized active damping techniques: IFF with HFP, IFF with parallel springs, and relative DVF}
|
||||
\caption{\label{fig:comp_root_locus}Root Locus for the three proposed decentralized active damping techniques: IFF with HFP, IFF with parallel springs, and relative DVF, \(\Omega = 0.1 \omega_0\)}
|
||||
\end{figure}
|
||||
|
||||
|
||||
\subsection{Transmissibility and Compliance}
|
||||
\label{sec:org59532ce}
|
||||
\label{sec:org0674052}
|
||||
|
||||
|
||||
\begin{figure}[htbp]
|
||||
@@ -485,16 +481,16 @@ The overall stiffness \(k\) stays constant:
|
||||
\includegraphics[width=\linewidth]{figs/comp_transmissibility.pdf}
|
||||
\caption{\label{fig:comp_transmissibility} Compliance}
|
||||
\end{subfigure}
|
||||
\caption{\label{fig:comp_active_damping}Comparison of the three proposed Active Damping Techniques}
|
||||
\caption{\label{fig:comp_active_damping}Comparison of the two proposed Active Damping Techniques, \(\Omega = 0.1 \omega_0\)}
|
||||
\centering
|
||||
\end{figure}
|
||||
|
||||
\section{Conclusion}
|
||||
\label{sec:orgde4f24d}
|
||||
\label{sec:orgba18ca5}
|
||||
\label{sec:conclusion}
|
||||
|
||||
\section*{Acknowledgment}
|
||||
\label{sec:org3284e1c}
|
||||
\label{sec:org4c68ce2}
|
||||
|
||||
\bibliography{ref.bib}
|
||||
\end{document}
|
||||
|
Reference in New Issue
Block a user