dcm-simscape-model/matlab/dcm_active_damping_iff.m

241 lines
7.0 KiB
Matlab

% Matlab Init :noexport:ignore:
%% dcm_active_damping_iff.m
% Test of Integral Force Feedback Strategy
%% Clear Workspace and Close figures
clear; close all; clc;
%% Intialize Laplace variable
s = zpk('s');
%% Path for functions, data and scripts
addpath('./mat/'); % Path for data
%% Simscape Model - Nano Hexapod
addpath('./STEPS/')
%% Initialize Parameters for Simscape model
controller.type = 0; % Open Loop Control
%% Options for Linearization
options = linearizeOptions;
options.SampleTime = 0;
%% Open Simulink Model
mdl = 'simscape_dcm';
open(mdl)
%% Colors for the figures
colors = colororder;
%% Frequency Vector
freqs = logspace(1, 3, 1000);
% Identification
%% Input/Output definition
clear io; io_i = 1;
%% Inputs
% Control Input {3x1} [N]
io(io_i) = linio([mdl, '/control_system'], 1, 'openinput'); io_i = io_i + 1;
%% Outputs
% Force Sensor {3x1} [m]
io(io_i) = linio([mdl, '/DCM'], 3, 'openoutput'); io_i = io_i + 1;
%% Extraction of the dynamics
G_fs = linearize(mdl, io);
G_fs.InputName = {'u_ur', 'u_uh', 'u_d'};
G_fs.OutputName = {'fs_ur', 'fs_uh', 'fs_d'};
% The Bode plot of the identified dynamics is shown in Figure [[fig:iff_plant_bode_plot]].
% At high frequency, the diagonal terms are constants while the off-diagonal terms have some roll-off.
%% Bode plot for the plant
figure;
tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None');
ax1 = nexttile([2,1]);
hold on;
plot(freqs, abs(squeeze(freqresp(G_fs(1,1), freqs, 'Hz'))), ...
'DisplayName', 'd');
plot(freqs, abs(squeeze(freqresp(G_fs(2,2), freqs, 'Hz'))), ...
'DisplayName', 'uh');
plot(freqs, abs(squeeze(freqresp(G_fs(3,3), freqs, 'Hz'))), ...
'DisplayName', 'ur');
plot(freqs, abs(squeeze(freqresp(G_fs(1,2), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2], ...
'DisplayName', 'off-diag');
for i = 1:2
for j = i+1:3
plot(freqs, abs(squeeze(freqresp(G_fs(i,j), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2], ...
'HandleVisibility', 'off');
end
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude'); set(gca, 'XTickLabel',[]);
legend('location', 'northwest', 'FontSize', 8, 'NumColumns', 2);
ylim([1e-13, 1e-7]);
ax2 = nexttile;
hold on;
plot(freqs, 180/pi*angle(squeeze(freqresp(G_fs(1,1), freqs, 'Hz'))));
plot(freqs, 180/pi*angle(squeeze(freqresp(G_fs(2,2), freqs, 'Hz'))));
plot(freqs, 180/pi*angle(squeeze(freqresp(G_fs(3,3), freqs, 'Hz'))));
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
hold off;
yticks(-360:90:360);
ylim([-180, 180]);
linkaxes([ax1,ax2],'x');
xlim([freqs(1), freqs(end)]);
% Controller - Root Locus
% We want to have integral action around the resonances of the system, but we do not want to integrate at low frequency.
% Therefore, we can use a low pass filter.
%% Integral Force Feedback Controller
Kiff_g1 = eye(3)*1/(1 + s/2/pi/20);
%% Root Locus for IFF
gains = logspace(9, 12, 200);
figure;
hold on;
plot(real(pole(G_fs)), imag(pole(G_fs)), 'x', 'color', colors(1,:), ...
'DisplayName', '$g = 0$');
plot(real(tzero(G_fs)), imag(tzero(G_fs)), 'o', 'color', colors(1,:), ...
'HandleVisibility', 'off');
for g = gains
clpoles = pole(feedback(G_fs, g*Kiff_g1, +1));
plot(real(clpoles), imag(clpoles), '.', 'color', colors(1,:), ...
'HandleVisibility', 'off');
end
% Optimal gain
g = 8e10;
clpoles = pole(feedback(G_fs, g*Kiff_g1, +1));
plot(real(clpoles), imag(clpoles), 'x', 'color', colors(2,:), ...
'DisplayName', sprintf('$g=%.0e$', g));
hold off;
axis square;
xlim([-2700, 0]); ylim([0, 2700]);
xlabel('Real Part'); ylabel('Imaginary Part');
legend('location', 'northwest');
% #+name: fig:iff_root_locus
% #+caption: Root Locus plot for the IFF Control strategy
% #+RESULTS:
% [[file:figs/iff_root_locus.png]]
%% Integral Force Feedback Controller with optimal gain
Kiff = g*Kiff_g1;
%% Save the IFF controller
save('mat/Kiff.mat', 'Kiff');
% #+name: fig:schematic_jacobian_frame_fastjack_iff
% #+caption: Use of Jacobian matrices to obtain the system in the frame of the fastjacks
% #+RESULTS:
% [[file:figs/schematic_jacobian_frame_fastjack_iff.png]]
%% Input/Output definition
clear io; io_i = 1;
%% Inputs
% Control Input {3x1} [N]
io(io_i) = linio([mdl, '/control_system'], 1, 'input'); io_i = io_i + 1;
%% Outputs
% Force Sensor {3x1} [m]
io(io_i) = linio([mdl, '/DCM'], 1, 'openoutput'); io_i = io_i + 1;
%% Load DCM Kinematics
load('dcm_kinematics.mat');
%% Identification of the Open Loop plant
controller.type = 0; % Open Loop
G_ol = J_a_111*inv(J_s_111)*linearize(mdl, io);
G_ol.InputName = {'u_ur', 'u_uh', 'u_d'};
G_ol.OutputName = {'d_ur', 'd_uh', 'd_d'};
%% Identification of the damped plant with IFF
controller.type = 1; % IFF
G_dp = J_a_111*inv(J_s_111)*linearize(mdl, io);
G_dp.InputName = {'u_ur', 'u_uh', 'u_d'};
G_dp.OutputName = {'d_ur', 'd_uh', 'd_d'};
% The dynamics from $\bm{u}$ to $\bm{d}_{\text{fj}}$ (open-loop dynamics) and from $\bm{u}^\prime$ to $\bm{d}_{\text{fs}}$ are compared in Figure [[fig:comp_damped_undamped_plant_iff_bode_plot]].
% It is clear that the Integral Force Feedback control strategy is very effective in damping the resonances of the plant.
%% Comparison of the damped and undamped plant
figure;
tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None');
ax1 = nexttile([2,1]);
hold on;
plot(freqs, abs(squeeze(freqresp(G_ol(1,1), freqs, 'Hz'))), ...
'DisplayName', 'd - OL');
plot(freqs, abs(squeeze(freqresp(G_ol(2,2), freqs, 'Hz'))), ...
'DisplayName', 'uh - OL');
plot(freqs, abs(squeeze(freqresp(G_ol(3,3), freqs, 'Hz'))), ...
'DisplayName', 'ur - OL');
set(gca,'ColorOrderIndex',1)
plot(freqs, abs(squeeze(freqresp(G_dp(1,1), freqs, 'Hz'))), '--', ...
'DisplayName', 'd - IFF');
plot(freqs, abs(squeeze(freqresp(G_dp(2,2), freqs, 'Hz'))), '--', ...
'DisplayName', 'uh - IFF');
plot(freqs, abs(squeeze(freqresp(G_dp(3,3), freqs, 'Hz'))), '--', ...
'DisplayName', 'ur - IFF');
for i = 1:2
for j = i+1:3
plot(freqs, abs(squeeze(freqresp(G_dp(i,j), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2], ...
'HandleVisibility', 'off');
end
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 2);
ylim([1e-12, 1e-6]);
ax2 = nexttile;
hold on;
plot(freqs, 180/pi*angle(squeeze(freqresp(G_ol(1,1), freqs, 'Hz'))));
plot(freqs, 180/pi*angle(squeeze(freqresp(G_ol(2,2), freqs, 'Hz'))));
plot(freqs, 180/pi*angle(squeeze(freqresp(G_ol(3,3), freqs, 'Hz'))));
set(gca,'ColorOrderIndex',1)
plot(freqs, 180/pi*angle(squeeze(freqresp(G_dp(1,1), freqs, 'Hz'))), '--');
plot(freqs, 180/pi*angle(squeeze(freqresp(G_dp(2,2), freqs, 'Hz'))), '--');
plot(freqs, 180/pi*angle(squeeze(freqresp(G_dp(3,3), freqs, 'Hz'))), '--');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
hold off;
yticks(-360:90:360);
ylim([-180, 0]);
linkaxes([ax1,ax2],'x');
xlim([freqs(1), freqs(end)]);