203 lines
5.3 KiB
Matlab
203 lines
5.3 KiB
Matlab
% Matlab Init :noexport:ignore:
|
|
|
|
%% dcm_identification.m
|
|
% Extraction of system dynamics using Simscape model
|
|
|
|
%% Clear Workspace and Close figures
|
|
clear; close all; clc;
|
|
|
|
%% Intialize Laplace variable
|
|
s = zpk('s');
|
|
|
|
%% Path for functions, data and scripts
|
|
addpath('./mat/'); % Path for data
|
|
|
|
%% Simscape Model - Nano Hexapod
|
|
addpath('./STEPS/')
|
|
|
|
%% Initialize Parameters for Simscape model
|
|
controller.type = 0; % Open Loop Control
|
|
|
|
%% Options for Linearization
|
|
options = linearizeOptions;
|
|
options.SampleTime = 0;
|
|
|
|
%% Open Simulink Model
|
|
mdl = 'simscape_dcm';
|
|
|
|
open(mdl)
|
|
|
|
%% Colors for the figures
|
|
colors = colororder;
|
|
|
|
%% Frequency Vector
|
|
freqs = logspace(1, 3, 1000);
|
|
|
|
|
|
|
|
% #+name: fig:schematic_system_inputs_outputs
|
|
% #+caption: Dynamical system with inputs and outputs
|
|
% #+RESULTS:
|
|
% [[file:figs/schematic_system_inputs_outputs.png]]
|
|
|
|
% The system is identified from the Simscape model.
|
|
|
|
|
|
%% Input/Output definition
|
|
clear io; io_i = 1;
|
|
|
|
%% Inputs
|
|
% Control Input {3x1} [N]
|
|
io(io_i) = linio([mdl, '/control_system'], 1, 'openinput'); io_i = io_i + 1;
|
|
|
|
%% Outputs
|
|
% Interferometers {3x1} [m]
|
|
io(io_i) = linio([mdl, '/DCM'], 1, 'openoutput'); io_i = io_i + 1;
|
|
|
|
%% Extraction of the dynamics
|
|
G = linearize(mdl, io);
|
|
|
|
%% Input and Output names
|
|
G.InputName = {'u_ur', 'u_uh', 'u_d'};
|
|
G.OutputName = {'int_111_1', 'int_111_2', 'int_111_3'};
|
|
|
|
% Plant in the frame of the fastjacks
|
|
|
|
load('mat/dcm_kinematics.mat');
|
|
|
|
|
|
|
|
% #+name: fig:schematic_jacobian_frame_fastjack
|
|
% #+caption: Use of Jacobian matrices to obtain the system in the frame of the fastjacks
|
|
% #+RESULTS:
|
|
% [[file:figs/schematic_jacobian_frame_fastjack.png]]
|
|
|
|
|
|
|
|
%% Compute the system in the frame of the fastjacks
|
|
G_pz = J_a_111*inv(J_s_111)*G;
|
|
|
|
|
|
|
|
% #+name: tab:dc_gain_plan_fj
|
|
% #+caption: DC gain of the plant in the frame of the fast jacks $\bm{G}_{\text{fj}}$
|
|
% #+attr_latex: :environment tabularx :width 0.5\linewidth :align ccc
|
|
% #+attr_latex: :center t :booktabs t
|
|
% #+RESULTS:
|
|
% | 4.4407e-09 | 2.7656e-12 | 1.0132e-12 |
|
|
% | 2.7656e-12 | 4.4407e-09 | 1.0132e-12 |
|
|
% | 1.0109e-12 | 1.0109e-12 | 4.4424e-09 |
|
|
|
|
% The bode plot of $\bm{G}_{\text{fj}}(s)$ is shown in Figure [[fig:bode_plot_plant_fj]].
|
|
|
|
|
|
%% Bode plot for the plant
|
|
figure;
|
|
tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None');
|
|
|
|
ax1 = nexttile([2,1]);
|
|
hold on;
|
|
plot(freqs, abs(squeeze(freqresp(G_pz(1,1), freqs, 'Hz'))), ...
|
|
'DisplayName', 'd');
|
|
plot(freqs, abs(squeeze(freqresp(G_pz(2,2), freqs, 'Hz'))), ...
|
|
'DisplayName', 'uh');
|
|
plot(freqs, abs(squeeze(freqresp(G_pz(3,3), freqs, 'Hz'))), ...
|
|
'DisplayName', 'ur');
|
|
for i = 1:2
|
|
for j = i+1:3
|
|
plot(freqs, abs(squeeze(freqresp(G_pz(i,j), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2], ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
|
|
legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 3);
|
|
ylim([1e-13, 1e-6]);
|
|
|
|
ax2 = nexttile;
|
|
hold on;
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(G_pz(1,1), freqs, 'Hz'))));
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(G_pz(2,2), freqs, 'Hz'))));
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(G_pz(3,3), freqs, 'Hz'))));
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
|
hold off;
|
|
yticks(-360:90:360);
|
|
ylim([-180, 180]);
|
|
|
|
linkaxes([ax1,ax2],'x');
|
|
xlim([freqs(1), freqs(end)]);
|
|
|
|
|
|
|
|
% #+name: fig:schematic_jacobian_frame_crystal
|
|
% #+caption: Use of Jacobian matrices to obtain the system in the frame of the crystal
|
|
% #+RESULTS:
|
|
% [[file:figs/schematic_jacobian_frame_crystal.png]]
|
|
|
|
|
|
G_mr = inv(J_s_111)*G*inv(J_a_111');
|
|
|
|
|
|
|
|
% #+RESULTS:
|
|
% | 1.9978e-09 | 3.9657e-09 | 7.7944e-09 |
|
|
% | 3.9656e-09 | 8.4979e-08 | -1.5135e-17 |
|
|
% | 7.7944e-09 | -3.9252e-17 | 1.834e-07 |
|
|
|
|
|
|
%% Bode plot for the plant
|
|
figure;
|
|
tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None');
|
|
|
|
ax1 = nexttile([2,1]);
|
|
hold on;
|
|
plot(freqs, abs(squeeze(freqresp(G_mr(1,1), freqs, 'Hz'))), ...
|
|
'DisplayName', 'd');
|
|
plot(freqs, abs(squeeze(freqresp(G_mr(2,2), freqs, 'Hz'))), ...
|
|
'DisplayName', 'uh');
|
|
plot(freqs, abs(squeeze(freqresp(G_mr(3,3), freqs, 'Hz'))), ...
|
|
'DisplayName', 'ur');
|
|
for i = 1:2
|
|
for j = i+1:3
|
|
plot(freqs, abs(squeeze(freqresp(G_mr(i,j), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2], ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
|
|
legend('location', 'southwest', 'FontSize', 8, 'NumColumns', 2);
|
|
|
|
ax2 = nexttile;
|
|
hold on;
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(G_mr(1,1), freqs, 'Hz'))));
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(G_mr(2,2), freqs, 'Hz'))));
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(G_mr(3,3), freqs, 'Hz'))));
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
|
hold off;
|
|
yticks(-360:90:360);
|
|
ylim([-180, 180]);
|
|
|
|
linkaxes([ax1,ax2],'x');
|
|
xlim([freqs(1), freqs(end)]);
|
|
|
|
%% Bode plot for the plant
|
|
fig = figure;
|
|
tiledlayout(3, 3, 'TileSpacing', 'Compact', 'Padding', 'None');
|
|
|
|
for i_out = 1:3
|
|
for i_in = 1:3
|
|
ax = nexttile;
|
|
plot(freqs, abs(squeeze(freqresp(G_mr(i_out, i_in), freqs, 'Hz'))));
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
end
|
|
end
|
|
|
|
linkaxes(findall(fig, 'type', 'axes'),'xy');
|
|
xlim([freqs(1), freqs(end)]);
|