<?xml version="1.0" encoding="utf-8"?> <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> <html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"> <head> <!-- 2021-11-30 mar. 15:17 --> <meta http-equiv="Content-Type" content="text/html;charset=utf-8" /> <title>ESRF Double Crystal Monochromator - Dynamical Multi-Body Model</title> <meta name="author" content="Dehaeze Thomas" /> <meta name="generator" content="Org Mode" /> <link rel="stylesheet" type="text/css" href="https://research.tdehaeze.xyz/css/style.css"/> <script type="text/javascript" src="https://research.tdehaeze.xyz/js/script.js"></script> <script> MathJax = { svg: { scale: 1, fontCache: "global" }, tex: { tags: "ams", multlineWidth: "%MULTLINEWIDTH", tagSide: "right", macros: {bm: ["\\boldsymbol{#1}",1],}, tagIndent: ".8em" } }; </script> <script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-svg.js"></script> </head> <body> <div id="org-div-home-and-up"> <a accesskey="h" href="../index.html"> UP </a> | <a accesskey="H" href="../index.html"> HOME </a> </div><div id="content" class="content"> <h1 class="title">ESRF Double Crystal Monochromator - Dynamical Multi-Body Model</h1> <div id="table-of-contents" role="doc-toc"> <h2>Table of Contents</h2> <div id="text-table-of-contents" role="doc-toc"> <ul> <li><a href="#org3fb7374">1. System Kinematics</a> <ul> <li><a href="#org1ef1423">1.1. Bragg Angle</a></li> <li><a href="#orgcd8fbe6">1.2. Kinematics (111 Crystal)</a> <ul> <li><a href="#org542b06e">1.2.1. Interferometers - 111 Crystal</a></li> <li><a href="#org52f68f7">1.2.2. Piezo - 111 Crystal</a></li> </ul> </li> <li><a href="#org616bb45">1.3. Save Kinematics</a></li> </ul> </li> <li><a href="#org0000e6d">2. Open Loop System Identification</a> <ul> <li><a href="#org16c8552">2.1. Identification</a></li> <li><a href="#orgc2236c5">2.2. Plant in the frame of the fastjacks</a></li> <li><a href="#orgb0e1668">2.3. Plant in the frame of the crystal</a></li> </ul> </li> <li><a href="#org4bda37c">3. Active Damping Plant (Strain gauges)</a> <ul> <li><a href="#orga8033f0">3.1. Identification</a></li> <li><a href="#org78fe7a9">3.2. Relative Active Damping</a></li> <li><a href="#org760bce8">3.3. Damped Plant</a></li> </ul> </li> <li><a href="#org09dff16">4. Active Damping Plant (Force Sensors)</a> <ul> <li><a href="#orgeb8c92e">4.1. Identification</a></li> <li><a href="#orgae5e7fb">4.2. Controller - Root Locus</a></li> <li><a href="#orgde5a8cd">4.3. Damped Plant</a></li> </ul> </li> <li><a href="#org27e3538">5. HAC-LAC (IFF) architecture</a> <ul> <li><a href="#org72519d4">5.1. System Identification</a></li> <li><a href="#org6919788">5.2. High Authority Controller</a></li> <li><a href="#orgc5ddfb6">5.3. Performances</a></li> </ul> </li> </ul> </div> </div> <hr> <p>This report is also available as a <a href="./dcm-simscape.pdf">pdf</a>.</p> <hr> <p> In this document, a Simscape (.e.g. multi-body) model of the ESRF Double Crystal Monochromator (DCM) is presented and used to develop and optimize the control strategy. </p> <p> It is structured as follow: </p> <ul class="org-ul"> <li>Section <a href="#org14dc352">1</a>: the kinematics of the DCM is presented, and Jacobian matrices which are used to solve the inverse and forward kinematics are computed.</li> <li>Section <a href="#orgc1f64db">2</a>: the system dynamics is identified in the absence of control.</li> <li>Section <a href="#org80ca2a0">3</a>: it is studied whether if the strain gauges fixed to the piezoelectric actuators can be used to actively damp the plant.</li> <li>Section <a href="#orgb029a8b">4</a>: piezoelectric force sensors are added in series with the piezoelectric actuators and are used to actively damp the plant using the Integral Force Feedback (IFF) control strategy.</li> <li>Section <a href="#orgee34a4d">5</a>: the High Authority Control - Low Authority Control (HAC-LAC) strategy is tested on the Simscape model.</li> </ul> <div id="outline-container-org3fb7374" class="outline-2"> <h2 id="org3fb7374"><span class="section-number-2">1.</span> System Kinematics</h2> <div class="outline-text-2" id="text-1"> <p> <a id="org14dc352"></a> </p> </div> <div id="outline-container-org1ef1423" class="outline-3"> <h3 id="org1ef1423"><span class="section-number-3">1.1.</span> Bragg Angle</h3> <div class="outline-text-3" id="text-1-1"> <div class="org-src-container"> <pre class="src src-matlab"><span class="org-matlab-cellbreak">%% Tested bragg angles</span> bragg = linspace(5, 80, 1000); <span class="org-comment-delimiter">% </span><span class="org-comment">Bragg angle [deg]</span> d_off = 10.5e<span class="org-builtin">-</span>3; <span class="org-comment-delimiter">% </span><span class="org-comment">Wanted offset between x-rays [m]</span> </pre> </div> <div class="org-src-container"> <pre class="src src-matlab"><span class="org-matlab-cellbreak">%% Vertical Jack motion as a function of Bragg angle</span> dz = d_off<span class="org-builtin">./</span>(2<span class="org-builtin">*</span>cos(bragg<span class="org-builtin">*</span><span class="org-matlab-math">pi</span><span class="org-builtin">/</span>180)); </pre> </div> <div id="org6064b2d" class="figure"> <p><img src="figs/jack_motion_bragg_angle.png" alt="jack_motion_bragg_angle.png" /> </p> <p><span class="figure-number">Figure 1: </span>Jack motion as a function of Bragg angle</p> </div> <div class="org-src-container"> <pre class="src src-matlab"><span class="org-matlab-cellbreak">%% Required Jack stroke</span> <span class="org-matlab-math">ans</span> = 1e3<span class="org-builtin">*</span>(dz(end) <span class="org-builtin">-</span> dz(1)) </pre> </div> <pre class="example"> 24.963 </pre> </div> </div> <div id="outline-container-orgcd8fbe6" class="outline-3"> <h3 id="orgcd8fbe6"><span class="section-number-3">1.2.</span> Kinematics (111 Crystal)</h3> <div class="outline-text-3" id="text-1-2"> <p> The reference frame is taken at the center of the 111 second crystal. </p> </div> <div id="outline-container-org542b06e" class="outline-4"> <h4 id="org542b06e"><span class="section-number-4">1.2.1.</span> Interferometers - 111 Crystal</h4> <div class="outline-text-4" id="text-1-2-1"> <p> Three interferometers are pointed to the bottom surface of the 111 crystal. </p> <p> The position of the measurement points are shown in Figure <a href="#org8f69a58">2</a> as well as the origin where the motion of the crystal is computed. </p> <div id="org8f69a58" class="figure"> <p><img src="figs/sensor_111_crystal_points.png" alt="sensor_111_crystal_points.png" /> </p> <p><span class="figure-number">Figure 2: </span>Bottom view of the second crystal 111. Position of the measurement points.</p> </div> <p> The inverse kinematics consisting of deriving the interferometer measurements from the motion of the crystal (see Figure <a href="#org6470cc1">3</a>): </p> \begin{equation} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \bm{J}_{s,111} \begin{bmatrix} d_z \\ r_y \\ r_x \end{bmatrix} \end{equation} <div id="org6470cc1" class="figure"> <p><img src="figs/schematic_sensor_jacobian_inverse_kinematics.png" alt="schematic_sensor_jacobian_inverse_kinematics.png" /> </p> <p><span class="figure-number">Figure 3: </span>Inverse Kinematics - Interferometers</p> </div> <p> From the Figure <a href="#org8f69a58">2</a>, the inverse kinematics can be solved as follow (for small motion): </p> \begin{equation} \bm{J}_{s,111} = \begin{bmatrix} 1 & 0.07 & -0.015 \\ 1 & 0 & 0.015 \\ 1 & -0.07 & -0.015 \end{bmatrix} \end{equation} <div class="org-src-container"> <pre class="src src-matlab"><span class="org-matlab-cellbreak">%% Sensor Jacobian matrix for 111 crystal</span> J_s_111 = [1, 0.07, <span class="org-builtin">-</span>0.015 1, 0, 0.015 1, <span class="org-builtin">-</span>0.07, <span class="org-builtin">-</span>0.015]; </pre> </div> <table id="org9ac8ea9" border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides"> <caption class="t-above"><span class="table-number">Table 1:</span> Sensor Jacobian \(\bm{J}_{s,111}\)</caption> <colgroup> <col class="org-right" /> <col class="org-right" /> <col class="org-right" /> </colgroup> <tbody> <tr> <td class="org-right">1.0</td> <td class="org-right">0.07</td> <td class="org-right">-0.015</td> </tr> <tr> <td class="org-right">1.0</td> <td class="org-right">0.0</td> <td class="org-right">0.015</td> </tr> <tr> <td class="org-right">1.0</td> <td class="org-right">-0.07</td> <td class="org-right">-0.015</td> </tr> </tbody> </table> <p> The forward kinematics is solved by inverting the Jacobian matrix (see Figure <a href="#orgacd4853">4</a>). </p> \begin{equation} \begin{bmatrix} d_z \\ r_y \\ r_x \end{bmatrix} = \bm{J}_{s,111}^{-1} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \end{equation} <div id="orgacd4853" class="figure"> <p><img src="figs/schematic_sensor_jacobian_forward_kinematics.png" alt="schematic_sensor_jacobian_forward_kinematics.png" /> </p> <p><span class="figure-number">Figure 4: </span>Forward Kinematics - Interferometers</p> </div> <table id="org1305abc" border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides"> <caption class="t-above"><span class="table-number">Table 2:</span> Inverse of the sensor Jacobian \(\bm{J}_{s,111}^{-1}\)</caption> <colgroup> <col class="org-right" /> <col class="org-right" /> <col class="org-right" /> </colgroup> <tbody> <tr> <td class="org-right">0.25</td> <td class="org-right">0.5</td> <td class="org-right">0.25</td> </tr> <tr> <td class="org-right">7.14</td> <td class="org-right">0.0</td> <td class="org-right">-7.14</td> </tr> <tr> <td class="org-right">-16.67</td> <td class="org-right">33.33</td> <td class="org-right">-16.67</td> </tr> </tbody> </table> </div> </div> <div id="outline-container-org52f68f7" class="outline-4"> <h4 id="org52f68f7"><span class="section-number-4">1.2.2.</span> Piezo - 111 Crystal</h4> <div class="outline-text-4" id="text-1-2-2"> <p> The location of the actuators with respect with the center of the 111 second crystal are shown in Figure <a href="#org6ddaa8b">5</a>. </p> <div id="org6ddaa8b" class="figure"> <p><img src="figs/actuator_jacobian_111_points.png" alt="actuator_jacobian_111_points.png" /> </p> <p><span class="figure-number">Figure 5: </span>Location of actuators with respect to the center of the 111 second crystal (bottom view)</p> </div> <p> Inverse Kinematics consist of deriving the axial (z) motion of the 3 actuators from the motion of the crystal’s center. </p> \begin{equation} \begin{bmatrix} d_{u_r} \\ d_{u_h} \\ d_{d} \end{bmatrix} = \bm{J}_{a,111} \begin{bmatrix} d_z \\ r_y \\ r_x \end{bmatrix} \end{equation} <div id="orgd947fd1" class="figure"> <p><img src="figs/schematic_actuator_jacobian_inverse_kinematics.png" alt="schematic_actuator_jacobian_inverse_kinematics.png" /> </p> <p><span class="figure-number">Figure 6: </span>Inverse Kinematics - Actuators</p> </div> <p> Based on the geometry in Figure <a href="#org6ddaa8b">5</a>, we obtain: </p> \begin{equation} \bm{J}_{a,111} = \begin{bmatrix} 1 & 0.14 & -0.1525 \\ 1 & 0.14 & 0.0675 \\ 1 & -0.14 & -0.0425 \end{bmatrix} \end{equation} <div class="org-src-container"> <pre class="src src-matlab"><span class="org-matlab-cellbreak">%% Actuator Jacobian - 111 crystal</span> J_a_111 = [1, 0.14, <span class="org-builtin">-</span>0.1525 1, 0.14, 0.0675 1, <span class="org-builtin">-</span>0.14, <span class="org-builtin">-</span>0.0425]; </pre> </div> <table id="org96d1229" border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides"> <caption class="t-above"><span class="table-number">Table 3:</span> Actuator Jacobian \(\bm{J}_{a,111}\)</caption> <colgroup> <col class="org-right" /> <col class="org-right" /> <col class="org-right" /> </colgroup> <tbody> <tr> <td class="org-right">1.0</td> <td class="org-right">0.14</td> <td class="org-right">-0.1525</td> </tr> <tr> <td class="org-right">1.0</td> <td class="org-right">0.14</td> <td class="org-right">0.0675</td> </tr> <tr> <td class="org-right">1.0</td> <td class="org-right">-0.14</td> <td class="org-right">-0.0425</td> </tr> </tbody> </table> <p> The forward Kinematics is solved by inverting the Jacobian matrix: </p> \begin{equation} \begin{bmatrix} d_z \\ r_y \\ r_x \end{bmatrix} = \bm{J}_{a,111}^{-1} \begin{bmatrix} d_{u_r} \\ d_{u_h} \\ d_{d} \end{bmatrix} \end{equation} <div id="orgbdeca35" class="figure"> <p><img src="figs/schematic_actuator_jacobian_forward_kinematics.png" alt="schematic_actuator_jacobian_forward_kinematics.png" /> </p> <p><span class="figure-number">Figure 7: </span>Forward Kinematics - Actuators for 111 crystal</p> </div> <table id="orgb28ebac" border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides"> <caption class="t-above"><span class="table-number">Table 4:</span> Inverse of the actuator Jacobian \(\bm{J}_{a,111}^{-1}\)</caption> <colgroup> <col class="org-right" /> <col class="org-right" /> <col class="org-right" /> </colgroup> <tbody> <tr> <td class="org-right">0.0568</td> <td class="org-right">0.4432</td> <td class="org-right">0.5</td> </tr> <tr> <td class="org-right">1.7857</td> <td class="org-right">1.7857</td> <td class="org-right">-3.5714</td> </tr> <tr> <td class="org-right">-4.5455</td> <td class="org-right">4.5455</td> <td class="org-right">0.0</td> </tr> </tbody> </table> </div> </div> </div> <div id="outline-container-org616bb45" class="outline-3"> <h3 id="org616bb45"><span class="section-number-3">1.3.</span> Save Kinematics</h3> <div class="outline-text-3" id="text-1-3"> <div class="org-src-container"> <pre class="src src-matlab">save(<span class="org-string">'mat/dcm_kinematics.mat'</span>, <span class="org-string">'J_a_111'</span>, <span class="org-string">'J_s_111'</span>) </pre> </div> </div> </div> </div> <div id="outline-container-org0000e6d" class="outline-2"> <h2 id="org0000e6d"><span class="section-number-2">2.</span> Open Loop System Identification</h2> <div class="outline-text-2" id="text-2"> <p> <a id="orgc1f64db"></a> </p> </div> <div id="outline-container-org16c8552" class="outline-3"> <h3 id="org16c8552"><span class="section-number-3">2.1.</span> Identification</h3> <div class="outline-text-3" id="text-2-1"> <p> Let’s considered the system \(\bm{G}(s)\) with: </p> <ul class="org-ul"> <li>3 inputs: force applied to the 3 fast jacks</li> <li>3 outputs: measured displacement by the 3 interferometers pointing at the 111 second crystal</li> </ul> <p> It is schematically shown in Figure <a href="#orga1c2462">8</a>. </p> <div id="orga1c2462" class="figure"> <p><img src="figs/schematic_system_inputs_outputs.png" alt="schematic_system_inputs_outputs.png" /> </p> <p><span class="figure-number">Figure 8: </span>Dynamical system with inputs and outputs</p> </div> <p> The system is identified from the Simscape model. </p> <div class="org-src-container"> <pre class="src src-matlab"><span class="org-matlab-cellbreak">%% Input/Output definition</span> clear io; io_i = 1; <span class="org-matlab-cellbreak">%% Inputs</span> <span class="org-comment-delimiter">% </span><span class="org-comment">Control Input {3x1} [N]</span> io(io_i) = linio([mdl, <span class="org-string">'/control_system'</span>], 1, <span class="org-string">'openinput'</span>); io_i = io_i <span class="org-builtin">+</span> 1; <span class="org-matlab-cellbreak">%% Outputs</span> <span class="org-comment-delimiter">% </span><span class="org-comment">Interferometers {3x1} [m]</span> io(io_i) = linio([mdl, <span class="org-string">'/DCM'</span>], 1, <span class="org-string">'openoutput'</span>); io_i = io_i <span class="org-builtin">+</span> 1; </pre> </div> <div class="org-src-container"> <pre class="src src-matlab"><span class="org-matlab-cellbreak">%% Extraction of the dynamics</span> G = linearize(mdl, io); </pre> </div> <div class="org-src-container"> <pre class="src src-matlab">size(G) </pre> </div> <pre class="example"> size(G) State-space model with 3 outputs, 3 inputs, and 24 states. </pre> </div> </div> <div id="outline-container-orgc2236c5" class="outline-3"> <h3 id="orgc2236c5"><span class="section-number-3">2.2.</span> Plant in the frame of the fastjacks</h3> <div class="outline-text-3" id="text-2-2"> <div class="org-src-container"> <pre class="src src-matlab">load(<span class="org-string">'dcm_kinematics.mat'</span>); </pre> </div> <p> Using the forward and inverse kinematics, we can computed the dynamics from piezo forces to axial motion of the 3 fastjacks (see Figure <a href="#org015dc10">9</a>). </p> <div id="org015dc10" class="figure"> <p><img src="figs/schematic_jacobian_frame_fastjack.png" alt="schematic_jacobian_frame_fastjack.png" /> </p> <p><span class="figure-number">Figure 9: </span>Use of Jacobian matrices to obtain the system in the frame of the fastjacks</p> </div> <div class="org-src-container"> <pre class="src src-matlab"><span class="org-matlab-cellbreak">%% Compute the system in the frame of the fastjacks</span> G_pz = J_a_111<span class="org-builtin">*</span>inv(J_s_111)<span class="org-builtin">*</span>G; </pre> </div> <p> The DC gain of the new system shows that the system is well decoupled at low frequency. </p> <div class="org-src-container"> <pre class="src src-matlab">dcgain(G_pz) </pre> </div> <table id="orgb47db5c" border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides"> <caption class="t-above"><span class="table-number">Table 5:</span> DC gain of the plant in the frame of the fast jacks \(\bm{G}_{\text{fj}}\)</caption> <colgroup> <col class="org-right" /> <col class="org-right" /> <col class="org-right" /> </colgroup> <tbody> <tr> <td class="org-right">4.4407e-09</td> <td class="org-right">2.7656e-12</td> <td class="org-right">1.0132e-12</td> </tr> <tr> <td class="org-right">2.7656e-12</td> <td class="org-right">4.4407e-09</td> <td class="org-right">1.0132e-12</td> </tr> <tr> <td class="org-right">1.0109e-12</td> <td class="org-right">1.0109e-12</td> <td class="org-right">4.4424e-09</td> </tr> </tbody> </table> <p> The bode plot of \(\bm{G}_{\text{fj}}(s)\) is shown in Figure <a href="#org3a99582">10</a>. </p> <div id="org3a99582" class="figure"> <p><img src="figs/bode_plot_plant_fj.png" alt="bode_plot_plant_fj.png" /> </p> <p><span class="figure-number">Figure 10: </span>Bode plot of the diagonal and off-diagonal elements of the plant in the frame of the fast jacks</p> </div> <div class="important" id="orge3e331d"> <p> Computing the system in the frame of the fastjack gives good decoupling at low frequency (until the first resonance of the system). </p> </div> </div> </div> <div id="outline-container-orgb0e1668" class="outline-3"> <h3 id="orgb0e1668"><span class="section-number-3">2.3.</span> Plant in the frame of the crystal</h3> <div class="outline-text-3" id="text-2-3"> <div id="orge8c1108" class="figure"> <p><img src="figs/schematic_jacobian_frame_crystal.png" alt="schematic_jacobian_frame_crystal.png" /> </p> <p><span class="figure-number">Figure 11: </span>Use of Jacobian matrices to obtain the system in the frame of the crystal</p> </div> <div class="org-src-container"> <pre class="src src-matlab">G_mr = inv(J_s_111)<span class="org-builtin">*</span>G<span class="org-builtin">*</span>inv(J_a_111<span class="org-builtin">'</span>); </pre> </div> <div class="org-src-container"> <pre class="src src-matlab">dcgain(G_mr) </pre> </div> <table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides"> <colgroup> <col class="org-right" /> <col class="org-right" /> <col class="org-right" /> </colgroup> <tbody> <tr> <td class="org-right">1.9978e-09</td> <td class="org-right">3.9657e-09</td> <td class="org-right">7.7944e-09</td> </tr> <tr> <td class="org-right">3.9656e-09</td> <td class="org-right">8.4979e-08</td> <td class="org-right">-1.5135e-17</td> </tr> <tr> <td class="org-right">7.7944e-09</td> <td class="org-right">-3.9252e-17</td> <td class="org-right">1.834e-07</td> </tr> </tbody> </table> <p> This results in a coupled system. The main reason is that, as we map forces to the center of the 111 crystal and not at the center of mass/stiffness of the moving part, vertical forces will induce rotation and torques will induce vertical motion. </p> </div> </div> </div> <div id="outline-container-org4bda37c" class="outline-2"> <h2 id="org4bda37c"><span class="section-number-2">3.</span> Active Damping Plant (Strain gauges)</h2> <div class="outline-text-2" id="text-3"> <p> <a id="org80ca2a0"></a> </p> <p> In this section, we wish to see whether if strain gauges fixed to the piezoelectric actuator can be used for active damping. </p> </div> <div id="outline-container-orga8033f0" class="outline-3"> <h3 id="orga8033f0"><span class="section-number-3">3.1.</span> Identification</h3> <div class="outline-text-3" id="text-3-1"> <div class="org-src-container"> <pre class="src src-matlab"><span class="org-matlab-cellbreak">%% Input/Output definition</span> clear io; io_i = 1; <span class="org-matlab-cellbreak">%% Inputs</span> <span class="org-comment-delimiter">% </span><span class="org-comment">Control Input {3x1} [N]</span> io(io_i) = linio([mdl, <span class="org-string">'/control_system'</span>], 1, <span class="org-string">'openinput'</span>); io_i = io_i <span class="org-builtin">+</span> 1; <span class="org-matlab-cellbreak">%% Outputs</span> <span class="org-comment-delimiter">% </span><span class="org-comment">Strain Gauges {3x1} [m]</span> io(io_i) = linio([mdl, <span class="org-string">'/DCM'</span>], 2, <span class="org-string">'openoutput'</span>); io_i = io_i <span class="org-builtin">+</span> 1; </pre> </div> <div class="org-src-container"> <pre class="src src-matlab"><span class="org-matlab-cellbreak">%% Extraction of the dynamics</span> G_sg = linearize(mdl, io); </pre> </div> <div class="org-src-container"> <pre class="src src-matlab">dcgain(G_sg) </pre> </div> <table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides"> <colgroup> <col class="org-right" /> <col class="org-right" /> <col class="org-right" /> </colgroup> <tbody> <tr> <td class="org-right">4.4443e-09</td> <td class="org-right">1.0339e-13</td> <td class="org-right">3.774e-14</td> </tr> <tr> <td class="org-right">1.0339e-13</td> <td class="org-right">4.4443e-09</td> <td class="org-right">3.774e-14</td> </tr> <tr> <td class="org-right">3.7792e-14</td> <td class="org-right">3.7792e-14</td> <td class="org-right">4.4444e-09</td> </tr> </tbody> </table> <div id="org8f04d26" class="figure"> <p><img src="figs/strain_gauge_plant_bode_plot.png" alt="strain_gauge_plant_bode_plot.png" /> </p> <p><span class="figure-number">Figure 12: </span>Bode Plot of the transfer functions from piezoelectric forces to strain gauges measuremed displacements</p> </div> <div class="important" id="orgd585bf5"> <p> As the distance between the poles and zeros in Figure <a href="#org11a1e17">15</a> is very small, little damping can be actively added using the strain gauges. This will be confirmed using a Root Locus plot. </p> </div> </div> </div> <div id="outline-container-org78fe7a9" class="outline-3"> <h3 id="org78fe7a9"><span class="section-number-3">3.2.</span> Relative Active Damping</h3> <div class="outline-text-3" id="text-3-2"> <div class="org-src-container"> <pre class="src src-matlab">Krad_g1 = eye(3)<span class="org-builtin">*</span>s<span class="org-builtin">/</span>(s<span class="org-builtin">^</span>2<span class="org-builtin">/</span>(2<span class="org-builtin">*</span><span class="org-matlab-math">pi</span><span class="org-builtin">*</span>500)<span class="org-builtin">^</span>2 <span class="org-builtin">+</span> 2<span class="org-builtin">*</span>s<span class="org-builtin">/</span>(2<span class="org-builtin">*</span><span class="org-matlab-math">pi</span><span class="org-builtin">*</span>500) <span class="org-builtin">+</span> 1); </pre> </div> <p> As can be seen in Figure <a href="#orgec235bb">13</a>, very little damping can be added using relative damping strategy using strain gauges. </p> <div id="orgec235bb" class="figure"> <p><img src="figs/relative_damping_root_locus.png" alt="relative_damping_root_locus.png" /> </p> <p><span class="figure-number">Figure 13: </span>Root Locus for the relative damping control</p> </div> <div class="org-src-container"> <pre class="src src-matlab">Krad = <span class="org-builtin">-</span>g<span class="org-builtin">*</span>Krad_g1; </pre> </div> </div> </div> <div id="outline-container-org760bce8" class="outline-3"> <h3 id="org760bce8"><span class="section-number-3">3.3.</span> Damped Plant</h3> <div class="outline-text-3" id="text-3-3"> <p> The controller is implemented on Simscape, and the damped plant is identified. </p> <div class="org-src-container"> <pre class="src src-matlab"><span class="org-matlab-cellbreak">%% Input/Output definition</span> clear io; io_i = 1; <span class="org-matlab-cellbreak">%% Inputs</span> <span class="org-comment-delimiter">% </span><span class="org-comment">Control Input {3x1} [N]</span> io(io_i) = linio([mdl, <span class="org-string">'/control_system'</span>], 1, <span class="org-string">'input'</span>); io_i = io_i <span class="org-builtin">+</span> 1; <span class="org-matlab-cellbreak">%% Outputs</span> <span class="org-comment-delimiter">% </span><span class="org-comment">Force Sensor {3x1} [m]</span> io(io_i) = linio([mdl, <span class="org-string">'/DCM'</span>], 1, <span class="org-string">'openoutput'</span>); io_i = io_i <span class="org-builtin">+</span> 1; </pre> </div> <div class="org-src-container"> <pre class="src src-matlab"><span class="org-matlab-cellbreak">%% DCM Kinematics</span> load(<span class="org-string">'dcm_kinematics.mat'</span>); </pre> </div> <div class="org-src-container"> <pre class="src src-matlab"><span class="org-matlab-cellbreak">%% Identification of the Open Loop plant</span> controller.type = 0; <span class="org-comment-delimiter">% </span><span class="org-comment">Open Loop</span> G_ol = J_a_111<span class="org-builtin">*</span>inv(J_s_111)<span class="org-builtin">*</span>linearize(mdl, io); G_ol.InputName = {<span class="org-string">'u_ur'</span>, <span class="org-string">'u_uh'</span>, <span class="org-string">'u_d'</span>}; G_ol.OutputName = {<span class="org-string">'d_ur'</span>, <span class="org-string">'d_uh'</span>, <span class="org-string">'d_d'</span>}; </pre> </div> <div class="org-src-container"> <pre class="src src-matlab"><span class="org-matlab-cellbreak">%% Identification of the damped plant with Relative Active Damping</span> controller.type = 2; <span class="org-comment-delimiter">% </span><span class="org-comment">RAD</span> G_dp = J_a_111<span class="org-builtin">*</span>inv(J_s_111)<span class="org-builtin">*</span>linearize(mdl, io); G_dp.InputName = {<span class="org-string">'u_ur'</span>, <span class="org-string">'u_uh'</span>, <span class="org-string">'u_d'</span>}; G_dp.OutputName = {<span class="org-string">'d_ur'</span>, <span class="org-string">'d_uh'</span>, <span class="org-string">'d_d'</span>}; </pre> </div> <div id="orgca0b154" class="figure"> <p><img src="figs/comp_damp_undamped_plant_rad_bode_plot.png" alt="comp_damp_undamped_plant_rad_bode_plot.png" /> </p> <p><span class="figure-number">Figure 14: </span>Bode plot of both the open-loop plant and the damped plant using relative active damping</p> </div> </div> </div> </div> <div id="outline-container-org09dff16" class="outline-2"> <h2 id="org09dff16"><span class="section-number-2">4.</span> Active Damping Plant (Force Sensors)</h2> <div class="outline-text-2" id="text-4"> <p> <a id="orgb029a8b"></a> </p> <p> Force sensors are added above the piezoelectric actuators. They can consists of a simple piezoelectric ceramic stack. See for instance <a href="fleming10_integ_strain_force_feedb_high">fleming10_integ_strain_force_feedb_high</a>. </p> </div> <div id="outline-container-orgeb8c92e" class="outline-3"> <h3 id="orgeb8c92e"><span class="section-number-3">4.1.</span> Identification</h3> <div class="outline-text-3" id="text-4-1"> <div class="org-src-container"> <pre class="src src-matlab"><span class="org-matlab-cellbreak">%% Input/Output definition</span> clear io; io_i = 1; <span class="org-matlab-cellbreak">%% Inputs</span> <span class="org-comment-delimiter">% </span><span class="org-comment">Control Input {3x1} [N]</span> io(io_i) = linio([mdl, <span class="org-string">'/control_system'</span>], 1, <span class="org-string">'openinput'</span>); io_i = io_i <span class="org-builtin">+</span> 1; <span class="org-matlab-cellbreak">%% Outputs</span> <span class="org-comment-delimiter">% </span><span class="org-comment">Force Sensor {3x1} [m]</span> io(io_i) = linio([mdl, <span class="org-string">'/DCM'</span>], 3, <span class="org-string">'openoutput'</span>); io_i = io_i <span class="org-builtin">+</span> 1; </pre> </div> <div class="org-src-container"> <pre class="src src-matlab"><span class="org-matlab-cellbreak">%% Extraction of the dynamics</span> G_fs = linearize(mdl, io); </pre> </div> <p> The Bode plot of the identified dynamics is shown in Figure <a href="#org11a1e17">15</a>. At high frequency, the diagonal terms are constants while the off-diagonal terms have some roll-off. </p> <div id="org11a1e17" class="figure"> <p><img src="figs/iff_plant_bode_plot.png" alt="iff_plant_bode_plot.png" /> </p> <p><span class="figure-number">Figure 15: </span>Bode plot of IFF Plant</p> </div> </div> </div> <div id="outline-container-orgae5e7fb" class="outline-3"> <h3 id="orgae5e7fb"><span class="section-number-3">4.2.</span> Controller - Root Locus</h3> <div class="outline-text-3" id="text-4-2"> <p> We want to have integral action around the resonances of the system, but we do not want to integrate at low frequency. Therefore, we can use a low pass filter. </p> <div class="org-src-container"> <pre class="src src-matlab"><span class="org-matlab-cellbreak">%% Integral Force Feedback Controller</span> Kiff_g1 = eye(3)<span class="org-builtin">*</span>1<span class="org-builtin">/</span>(1 <span class="org-builtin">+</span> s<span class="org-builtin">/</span>2<span class="org-builtin">/</span><span class="org-matlab-math">pi</span><span class="org-builtin">/</span>20); </pre> </div> <div id="org5b2bab0" class="figure"> <p><img src="figs/iff_root_locus.png" alt="iff_root_locus.png" /> </p> <p><span class="figure-number">Figure 16: </span>Root Locus plot for the IFF Control strategy</p> </div> <div class="org-src-container"> <pre class="src src-matlab"><span class="org-matlab-cellbreak">%% Integral Force Feedback Controller with optimal gain</span> Kiff = g<span class="org-builtin">*</span>Kiff_g1; </pre> </div> <div class="org-src-container"> <pre class="src src-matlab"><span class="org-matlab-cellbreak">%% Save the IFF controller</span> save(<span class="org-string">'mat/Kiff.mat'</span>, <span class="org-string">'Kiff'</span>); </pre> </div> </div> </div> <div id="outline-container-orgde5a8cd" class="outline-3"> <h3 id="orgde5a8cd"><span class="section-number-3">4.3.</span> Damped Plant</h3> <div class="outline-text-3" id="text-4-3"> <p> Both the Open Loop dynamics (see Figure <a href="#org015dc10">9</a>) and the dynamics with IFF (see Figure <a href="#org7a880a7">17</a>) are identified. </p> <p> We are here interested in the dynamics from \(\bm{u}^\prime = [u_{u_r}^\prime,\ u_{u_h}^\prime,\ u_d^\prime]\) (input of the damped plant) to \(\bm{d}_{\text{fj}} = [d_{u_r},\ d_{u_h},\ d_d]\) (motion of the crystal expressed in the frame of the fast-jacks). This is schematically represented in Figure <a href="#org7a880a7">17</a>. </p> <div id="org7a880a7" class="figure"> <p><img src="figs/schematic_jacobian_frame_fastjack_iff.png" alt="schematic_jacobian_frame_fastjack_iff.png" /> </p> <p><span class="figure-number">Figure 17: </span>Use of Jacobian matrices to obtain the system in the frame of the fastjacks</p> </div> <p> The dynamics from \(\bm{u}\) to \(\bm{d}_{\text{fj}}\) (open-loop dynamics) and from \(\bm{u}^\prime\) to \(\bm{d}_{\text{fs}}\) are compared in Figure <a href="#org9f5d048">18</a>. It is clear that the Integral Force Feedback control strategy is very effective in damping the resonances of the plant. </p> <div id="org9f5d048" class="figure"> <p><img src="figs/comp_damped_undamped_plant_iff_bode_plot.png" alt="comp_damped_undamped_plant_iff_bode_plot.png" /> </p> <p><span class="figure-number">Figure 18: </span>Bode plot of both the open-loop plant and the damped plant using IFF</p> </div> <div class="important" id="org8586fa6"> <p> The Integral Force Feedback control strategy is very effective in damping the modes present in the plant. </p> </div> </div> </div> </div> <div id="outline-container-org27e3538" class="outline-2"> <h2 id="org27e3538"><span class="section-number-2">5.</span> HAC-LAC (IFF) architecture</h2> <div class="outline-text-2" id="text-5"> <p> <a id="orgee34a4d"></a> </p> <p> The HAC-LAC architecture is shown in Figure <a href="#orgb03e1da">19</a>. </p> <div id="orgb03e1da" class="figure"> <p><img src="figs/schematic_jacobian_frame_fastjack_hac_iff.png" alt="schematic_jacobian_frame_fastjack_hac_iff.png" /> </p> <p><span class="figure-number">Figure 19: </span>HAC-LAC architecture</p> </div> </div> <div id="outline-container-org72519d4" class="outline-3"> <h3 id="org72519d4"><span class="section-number-3">5.1.</span> System Identification</h3> <div class="outline-text-3" id="text-5-1"> <p> Let’s identify the damped plant. </p> <div id="org022508f" class="figure"> <p><img src="figs/bode_plot_hac_iff_plant.png" alt="bode_plot_hac_iff_plant.png" /> </p> <p><span class="figure-number">Figure 20: </span>Bode Plot of the plant for the High Authority Controller (transfer function from \(\bm{u}^\prime\) to \(\bm{\epsilon}_d\))</p> </div> </div> </div> <div id="outline-container-org6919788" class="outline-3"> <h3 id="org6919788"><span class="section-number-3">5.2.</span> High Authority Controller</h3> <div class="outline-text-3" id="text-5-2"> <p> Let’s design a controller with a bandwidth of 100Hz. As the plant is well decoupled and well approximated by a constant at low frequency, the high authority controller can easily be designed with SISO loop shaping. </p> <div class="org-src-container"> <pre class="src src-matlab"><span class="org-matlab-cellbreak">%% Controller design</span> wc = 2<span class="org-builtin">*</span><span class="org-matlab-math">pi</span><span class="org-builtin">*</span>100; <span class="org-comment-delimiter">% </span><span class="org-comment">Wanted crossover frequency [rad/s]</span> a = 2; <span class="org-comment-delimiter">% </span><span class="org-comment">Lead parameter</span> Khac = diag(1<span class="org-builtin">./</span>diag(abs(evalfr(G_dp, 1<span class="org-constant">j</span><span class="org-builtin">*</span>wc)))) <span class="org-builtin">*</span> <span class="org-comment-delimiter">.</span><span class="org-comment">.. % Diagonal controller</span> wc<span class="org-builtin">/</span>s <span class="org-builtin">*</span> <span class="org-comment-delimiter">.</span><span class="org-comment">.. % Integrator</span> 1<span class="org-builtin">/</span>(sqrt(a))<span class="org-builtin">*</span>(1 <span class="org-builtin">+</span> s<span class="org-builtin">/</span>(wc<span class="org-builtin">/</span>sqrt(a)))<span class="org-builtin">/</span>(1 <span class="org-builtin">+</span> s<span class="org-builtin">/</span>(wc<span class="org-builtin">*</span>sqrt(a))) <span class="org-builtin">*</span> <span class="org-comment-delimiter">.</span><span class="org-comment">.. % Lead</span> 1<span class="org-builtin">/</span>(s<span class="org-builtin">^</span>2<span class="org-builtin">/</span>(4<span class="org-builtin">*</span>wc)<span class="org-builtin">^</span>2 <span class="org-builtin">+</span> 2<span class="org-builtin">*</span>s<span class="org-builtin">/</span>(4<span class="org-builtin">*</span>wc) <span class="org-builtin">+</span> 1); <span class="org-comment-delimiter">% </span><span class="org-comment">Low pass filter</span> </pre> </div> <div class="org-src-container"> <pre class="src src-matlab"><span class="org-matlab-cellbreak">%% Save the HAC controller</span> save(<span class="org-string">'mat/Khac_iff.mat'</span>, <span class="org-string">'Khac'</span>); </pre> </div> <div class="org-src-container"> <pre class="src src-matlab"><span class="org-matlab-cellbreak">%% Loop Gain</span> L_hac_lac = G_dp <span class="org-builtin">*</span> Khac; </pre> </div> <div id="org1eefea2" class="figure"> <p><img src="figs/hac_iff_loop_gain_bode_plot.png" alt="hac_iff_loop_gain_bode_plot.png" /> </p> <p><span class="figure-number">Figure 21: </span>Bode Plot of the Loop gain for the High Authority Controller</p> </div> <p> As shown in the Root Locus plot in Figure <a href="#orgc90ee63">22</a>, the closed loop system should be stable. </p> <div id="orgc90ee63" class="figure"> <p><img src="figs/loci_hac_iff_fast_jack.png" alt="loci_hac_iff_fast_jack.png" /> </p> <p><span class="figure-number">Figure 22: </span>Root Locus for the High Authority Controller</p> </div> </div> </div> <div id="outline-container-orgc5ddfb6" class="outline-3"> <h3 id="orgc5ddfb6"><span class="section-number-3">5.3.</span> Performances</h3> <div class="outline-text-3" id="text-5-3"> <p> In order to estimate the performances of the HAC-IFF control strategy, the transfer function from motion errors of the stepper motors to the motion error of the crystal is identified both in open loop and with the HAC-IFF strategy. </p> <p> It is first verified that the closed-loop system is stable: </p> <div class="org-src-container"> <pre class="src src-matlab">isstable(T_hl) </pre> </div> <pre class="example"> 1 </pre> <p> And both transmissibilities are compared in Figure <a href="#org152d7e8">23</a>. </p> <div id="org152d7e8" class="figure"> <p><img src="figs/stepper_transmissibility_comp_ol_hac_iff.png" alt="stepper_transmissibility_comp_ol_hac_iff.png" /> </p> <p><span class="figure-number">Figure 23: </span>Comparison of the transmissibility of errors from vibrations of the stepper motor between the open-loop case and the hac-iff case.</p> </div> <div class="important" id="org755e221"> <p> The HAC-IFF control strategy can effectively reduce the transmissibility of the motion errors of the stepper motors. This reduction is effective inside the bandwidth of the controller. </p> </div> </div> </div> </div> </div> <div id="postamble" class="status"> <p class="author">Author: Dehaeze Thomas</p> <p class="date">Created: 2021-11-30 mar. 15:17</p> </div> </body> </html>