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In this document, a Simscape (.e.g. multi-body) model of the ESRF Double Crystal Monochromator
(DCM) is presented and used to develop and optimize the control strategy.

It is structured as follow:

• Section 1: the kinematics of the DCM is presented, and Jacobian matrices which are used to solve
the inverse and forward kinematics are computed.

• Section 2: the system dynamics is identified in the absence of control.

• Section 3: it is studied whether if the strain gauges fixed to the piezoelectric actuators can be
used to actively damp the plant.

• Section 4: piezoelectric force sensors are added in series with the piezoelectric actuators and are
used to actively damp the plant using the Integral Force Feedback (IFF) control strategy.

• Section 5: the High Authority Control - Low Authority Control (HAC-LAC) strategy is tested on
the Simscape model.
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1 System Kinematics

1.1 Bragg Angle

Matlab
%% Tested bragg angles
bragg = linspace(5, 80, 1000); % Bragg angle [deg]
d_off = 10.5e-3; % Wanted offset between x-rays [m]

Matlab
%% Vertical Jack motion as a function of Bragg angle
dz = d_off./(2*cos(bragg*pi/180));
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Figure 1.1: Jack motion as a function of Bragg angle
Matlab

%% Required Jack stroke
ans = 1e3*(dz(end) - dz(1))

Results
24.963

1.2 Kinematics (111 Crystal)

The reference frame is taken at the center of the 111 second crystal.
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1.2.1 Interferometers - 111 Crystal

Three interferometers are pointed to the bottom surface of the 111 crystal.

The position of the measurement points are shown in Figure 1.2 as well as the origin where the motion
of the crystal is computed.

O1 = (−0.07,−0.015)

O2 = (0, 0.015)

O3 = (0.07,−0.015)

x

y

O111

Figure 1.2: Bottom view of the second crystal 111. Position of the measurement points.

The inverse kinematics consisting of deriving the interferometer measurements from the motion of the
crystal (see Figure 1.6): x1

x2

x3

 = Js,111

dzry
rx

 (1.1)
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Figure 1.3: Inverse Kinematics - Interferometers

From the Figure 1.2, the inverse kinematics can be solved as follow (for small motion):

Js,111 =

1 0.07 −0.015
1 0 0.015
1 −0.07 −0.015

 (1.2)

Matlab
%% Sensor Jacobian matrix for 111 crystal
J_s_111 = [1, 0.07, -0.015

1, 0, 0.015
1, -0.07, -0.015];

Table 1.1: Sensor Jacobian Js,111

1.0 0.07 -0.015
1.0 0.0 0.015
1.0 -0.07 -0.015
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The forward kinematics is solved by inverting the Jacobian matrix (see Figure 1.4).dzry
rx

 = J−1s,111

x1

x2

x3

 (1.3)
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Figure 1.4: Forward Kinematics - Interferometers

Table 1.2: Inverse of the sensor Jacobian J−1s,111

0.25 0.5 0.25
7.14 0.0 -7.14
-16.67 33.33 -16.67

1.2.2 Piezo - 111 Crystal

The location of the actuators with respect with the center of the 111 second crystal are shown in Figure
1.5.

Inverse Kinematics consist of deriving the axial (z) motion of the 3 actuators from the motion of the
crystal’s center. dur

duh

dd

 = Ja,111

dzry
rx

 (1.4)

Based on the geometry in Figure 1.5, we obtain:

Ja,111 =

1 0.14 −0.1525
1 0.14 0.0675
1 −0.14 −0.0425

 (1.5)

Matlab
%% Actuator Jacobian - 111 crystal
J_a_111 = [1, 0.14, -0.1525

1, 0.14, 0.0675
1, -0.14, -0.0425];

Table 1.3: Actuator Jacobian Ja,111

1.0 0.14 -0.1525
1.0 0.14 0.0675
1.0 -0.14 -0.0425
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Figure 1.5: Location of actuators with respect to the center of the 111 second crystal (bottom view)
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Figure 1.6: Inverse Kinematics - Actuators
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The forward Kinematics is solved by inverting the Jacobian matrix:dzry
rx

 = J−1a,111

dur

duh

dd

 (1.6)

J−1
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Figure 1.7: Forward Kinematics - Actuators for 111 crystal

Table 1.4: Inverse of the actuator Jacobian J−1a,111

0.0568 0.4432 0.5
1.7857 1.7857 -3.5714
-4.5455 4.5455 0.0

1.3 Save Kinematics

Matlab
save('mat/dcm_kinematics.mat', 'J_a_111', 'J_s_111')
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2 Open Loop System Identification

2.1 Identification

Let’s considered the system G(s) with:

• 3 inputs: force applied to the 3 fast jacks

• 3 outputs: measured displacement by the 3 interferometers pointing at the 111 second crystal

It is schematically shown in Figure 2.1.

G(s)




uur

uuh

ud







x1
x2
x3




Figure 2.1: Dynamical system with inputs and outputs

The system is identified from the Simscape model.

Matlab
%% Input/Output definition
clear io; io_i = 1;

%% Inputs
% Control Input {3x1} [N]
io(io_i) = linio([mdl, '/control_system'], 1, 'openinput'); io_i = io_i + 1;

%% Outputs
% Interferometers {3x1} [m]
io(io_i) = linio([mdl, '/DCM'], 1, 'openoutput'); io_i = io_i + 1;

Matlab
%% Extraction of the dynamics
G = linearize(mdl, io);

Matlab
size(G)

Results
size(G)
State-space model with 3 outputs, 3 inputs, and 24 states.
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2.2 Plant in the frame of the fastjacks

Matlab
load('dcm_kinematics.mat');

Using the forward and inverse kinematics, we can computed the dynamics from piezo forces to axial
motion of the 3 fastjacks (see Figure 2.2).
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G(s) J−1
s Ja




uur

uuh

ud







x1
x2
x3







dz

ry

rx







dur

duh

dd




Figure 2.2: Use of Jacobian matrices to obtain the system in the frame of the fastjacks

Matlab
%% Compute the system in the frame of the fastjacks
G_pz = J_a_111*inv(J_s_111)*G;

The DC gain of the new system shows that the system is well decoupled at low frequency.

Matlab
dcgain(G_pz)

Table 2.1: DC gain of the plant in the frame of the fast jacks Gfj

4.4407e-09 2.7656e-12 1.0132e-12
2.7656e-12 4.4407e-09 1.0132e-12
1.0109e-12 1.0109e-12 4.4424e-09

The bode plot of Gfj(s) is shown in Figure 2.3.

Important

Computing the system in the frame of the fastjack gives good decoupling at low frequency (until
the first resonance of the system).

2.3 Plant in the frame of the crystal
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Figure 2.3: Bode plot of the diagonal and off-diagonal elements of the plant in the frame of the fast
jacks
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Figure 2.4: Use of Jacobian matrices to obtain the system in the frame of the crystal
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Matlab
G_mr = inv(J_s_111)*G*inv(J_a_111');

Matlab
dcgain(G_mr)

1.9978e-09 3.9657e-09 7.7944e-09
3.9656e-09 8.4979e-08 -1.5135e-17
7.7944e-09 -3.9252e-17 1.834e-07

This results in a coupled system. The main reason is that, as we map forces to the center of the 111
crystal and not at the center of mass/stiffness of the moving part, vertical forces will induce rotation
and torques will induce vertical motion.
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3 Active Damping Plant (Strain gauges)

In this section, we wish to see whether if strain gauges fixed to the piezoelectric actuator can be used
for active damping.

3.1 Identification

Matlab
%% Input/Output definition
clear io; io_i = 1;

%% Inputs
% Control Input {3x1} [N]
io(io_i) = linio([mdl, '/control_system'], 1, 'openinput'); io_i = io_i + 1;

%% Outputs
% Strain Gauges {3x1} [m]
io(io_i) = linio([mdl, '/DCM'], 2, 'openoutput'); io_i = io_i + 1;

Matlab
%% Extraction of the dynamics
G_sg = linearize(mdl, io);

Matlab
dcgain(G_sg)

4.4443e-09 1.0339e-13 3.774e-14
1.0339e-13 4.4443e-09 3.774e-14
3.7792e-14 3.7792e-14 4.4444e-09

Important

As the distance between the poles and zeros in Figure 4.1 is very small, little damping can be
actively added using the strain gauges. This will be confirmed using a Root Locus plot.

3.2 Relative Active Damping
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Figure 3.1: Bode Plot of the transfer functions from piezoelectric forces to strain gauges measuremed
displacements
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Matlab
Krad_g1 = eye(3)*s/(s^2/(2*pi*500)^2 + 2*s/(2*pi*500) + 1);

As can be seen in Figure 3.2, very little damping can be added using relative damping strategy using
strain gauges.
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Figure 3.2: Root Locus for the relative damping control
Matlab

Krad = -g*Krad_g1;

3.3 Damped Plant

The controller is implemented on Simscape, and the damped plant is identified.
Matlab

%% Input/Output definition
clear io; io_i = 1;

%% Inputs
% Control Input {3x1} [N]
io(io_i) = linio([mdl, '/control_system'], 1, 'input'); io_i = io_i + 1;

%% Outputs
% Force Sensor {3x1} [m]
io(io_i) = linio([mdl, '/DCM'], 1, 'openoutput'); io_i = io_i + 1;
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Matlab
%% DCM Kinematics
load('dcm_kinematics.mat');

Matlab
%% Identification of the Open Loop plant
controller.type = 0; % Open Loop
G_ol = J_a_111*inv(J_s_111)*linearize(mdl, io);
G_ol.InputName = {'u_ur', 'u_uh', 'u_d'};
G_ol.OutputName = {'d_ur', 'd_uh', 'd_d'};

Matlab
%% Identification of the damped plant with Relative Active Damping
controller.type = 2; % RAD
G_dp = J_a_111*inv(J_s_111)*linearize(mdl, io);
G_dp.InputName = {'u_ur', 'u_uh', 'u_d'};
G_dp.OutputName = {'d_ur', 'd_uh', 'd_d'};
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Figure 3.3: Bode plot of both the open-loop plant and the damped plant using relative active damping
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4 Active Damping Plant (Force Sensors)

Force sensors are added above the piezoelectric actuators. They can consists of a simple piezoelectric
ceramic stack. See for instance [1].

4.1 Identification

Matlab
%% Input/Output definition
clear io; io_i = 1;

%% Inputs
% Control Input {3x1} [N]
io(io_i) = linio([mdl, '/control_system'], 1, 'openinput'); io_i = io_i + 1;

%% Outputs
% Force Sensor {3x1} [m]
io(io_i) = linio([mdl, '/DCM'], 3, 'openoutput'); io_i = io_i + 1;

Matlab
%% Extraction of the dynamics
G_fs = linearize(mdl, io);

The Bode plot of the identified dynamics is shown in Figure 4.1. At high frequency, the diagonal terms
are constants while the off-diagonal terms have some roll-off.

4.2 Controller - Root Locus

We want to have integral action around the resonances of the system, but we do not want to integrate
at low frequency. Therefore, we can use a low pass filter.

Matlab
%% Integral Force Feedback Controller
Kiff_g1 = eye(3)*1/(1 + s/2/pi/20);

Matlab
%% Integral Force Feedback Controller with optimal gain
Kiff = g*Kiff_g1;
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Figure 4.1: Bode plot of IFF Plant
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Figure 4.2: Root Locus plot for the IFF Control strategy
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Matlab
%% Save the IFF controller
save('mat/Kiff.mat', 'Kiff');

4.3 Damped Plant

Both the Open Loop dynamics (see Figure 2.2) and the dynamics with IFF (see Figure 4.3) are identi-
fied.

We are here interested in the dynamics from u′ = [u′ur
, u′uh

, u′d] (input of the damped plant) to
dfj = [dur

, duh
, dd] (motion of the crystal expressed in the frame of the fast-jacks). This is schematically

represented in Figure 4.3.

Gfj,IFF(s)

G(s)

J−1
s Ja

+

KIFF(s)
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τd






x1
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x3






dz

ry

rx






dur

duh

dd




Figure 4.3: Use of Jacobian matrices to obtain the system in the frame of the fastjacks

The dynamics from u to dfj (open-loop dynamics) and from u′ to dfs are compared in Figure 4.4. It
is clear that the Integral Force Feedback control strategy is very effective in damping the resonances of
the plant.

Important

The Integral Force Feedback control strategy is very effective in damping the modes present in
the plant.
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Figure 4.4: Bode plot of both the open-loop plant and the damped plant using IFF
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5 HAC-LAC (IFF) architecture

The HAC-LAC architecture is shown in Figure 5.1.
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Figure 5.1: HAC-LAC architecture

5.1 System Identification

Let’s identify the damped plant.

5.2 High Authority Controller

Let’s design a controller with a bandwidth of 100Hz. As the plant is well decoupled and well approxi-
mated by a constant at low frequency, the high authority controller can easily be designed with SISO
loop shaping.

Matlab
%% Controller design
wc = 2*pi*100; % Wanted crossover frequency [rad/s]
a = 2; % Lead parameter

Khac = diag(1./diag(abs(evalfr(G_dp, 1j*wc)))) * ... % Diagonal controller
wc/s * ... % Integrator
1/(sqrt(a))*(1 + s/(wc/sqrt(a)))/(1 + s/(wc*sqrt(a))) * ... % Lead
1/(s^2/(4*wc)^2 + 2*s/(4*wc) + 1); % Low pass filter

Matlab
%% Save the HAC controller
save('mat/Khac_iff.mat', 'Khac');
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Figure 5.2: Bode Plot of the plant for the High Authority Controller (transfer function from u′ to εd)
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Matlab
%% Loop Gain
L_hac_lac = G_dp * Khac;
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Figure 5.3: Bode Plot of the Loop gain for the High Authority Controller

As shown in the Root Locus plot in Figure 5.4, the closed loop system should be stable.

5.3 Performances

In order to estimate the performances of the HAC-IFF control strategy, the transfer function from
motion errors of the stepper motors to the motion error of the crystal is identified both in open loop
and with the HAC-IFF strategy.

It is first verified that the closed-loop system is stable:

Matlab
isstable(T_hl)

Results
1
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And both transmissibilities are compared in Figure 5.5.
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Figure 5.5: Comparison of the transmissibility of errors from vibrations of the stepper motor between
the open-loop case and the hac-iff case.

Important

The HAC-IFF control strategy can effectively reduce the transmissibility of the motion errors of
the stepper motors. This reduction is effective inside the bandwidth of the controller.
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