Add HAC-IFF strategy and analysis
This commit is contained in:
@@ -3,9 +3,9 @@
|
||||
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
|
||||
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
|
||||
<head>
|
||||
<!-- 2021-11-30 mar. 11:44 -->
|
||||
<!-- 2021-11-30 mar. 15:17 -->
|
||||
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
|
||||
<title>DCM - Dynamical Multi-Body Model</title>
|
||||
<title>ESRF Double Crystal Monochromator - Dynamical Multi-Body Model</title>
|
||||
<meta name="author" content="Dehaeze Thomas" />
|
||||
<meta name="generator" content="Org Mode" />
|
||||
<link rel="stylesheet" type="text/css" href="https://research.tdehaeze.xyz/css/style.css"/>
|
||||
@@ -34,46 +34,51 @@
|
||||
|
|
||||
<a accesskey="H" href="../index.html"> HOME </a>
|
||||
</div><div id="content" class="content">
|
||||
<h1 class="title">DCM - Dynamical Multi-Body Model</h1>
|
||||
<h1 class="title">ESRF Double Crystal Monochromator - Dynamical Multi-Body Model</h1>
|
||||
<div id="table-of-contents" role="doc-toc">
|
||||
<h2>Table of Contents</h2>
|
||||
<div id="text-table-of-contents" role="doc-toc">
|
||||
<ul>
|
||||
<li><a href="#orgcb7822a">1. System Kinematics</a>
|
||||
<li><a href="#org3fb7374">1. System Kinematics</a>
|
||||
<ul>
|
||||
<li><a href="#orgc4b429c">1.1. Bragg Angle</a></li>
|
||||
<li><a href="#orga30e667">1.2. Kinematics (111 Crystal)</a>
|
||||
<li><a href="#org1ef1423">1.1. Bragg Angle</a></li>
|
||||
<li><a href="#orgcd8fbe6">1.2. Kinematics (111 Crystal)</a>
|
||||
<ul>
|
||||
<li><a href="#org390c6c1">1.2.1. Interferometers - 111 Crystal</a></li>
|
||||
<li><a href="#org4c00d94">1.2.2. Piezo - 111 Crystal</a></li>
|
||||
<li><a href="#org542b06e">1.2.1. Interferometers - 111 Crystal</a></li>
|
||||
<li><a href="#org52f68f7">1.2.2. Piezo - 111 Crystal</a></li>
|
||||
</ul>
|
||||
</li>
|
||||
<li><a href="#org82434d5">1.3. Save Kinematics</a></li>
|
||||
<li><a href="#org616bb45">1.3. Save Kinematics</a></li>
|
||||
</ul>
|
||||
</li>
|
||||
<li><a href="#orgd95f56d">2. Open Loop System Identification</a>
|
||||
<li><a href="#org0000e6d">2. Open Loop System Identification</a>
|
||||
<ul>
|
||||
<li><a href="#org49ca34a">2.1. Identification</a></li>
|
||||
<li><a href="#org170173c">2.2. Plant in the frame of the fastjacks</a></li>
|
||||
<li><a href="#orge372095">2.3. Plant in the frame of the crystal</a></li>
|
||||
<li><a href="#org16c8552">2.1. Identification</a></li>
|
||||
<li><a href="#orgc2236c5">2.2. Plant in the frame of the fastjacks</a></li>
|
||||
<li><a href="#orgb0e1668">2.3. Plant in the frame of the crystal</a></li>
|
||||
</ul>
|
||||
</li>
|
||||
<li><a href="#org00855cb">3. Active Damping Plant (Strain gauges)</a>
|
||||
<li><a href="#org4bda37c">3. Active Damping Plant (Strain gauges)</a>
|
||||
<ul>
|
||||
<li><a href="#org6886aa9">3.1. Identification</a></li>
|
||||
<li><a href="#orgd1754c8">3.2. Relative Active Damping</a></li>
|
||||
<li><a href="#orgf6e5d1c">3.3. Damped Plant</a></li>
|
||||
<li><a href="#orga8033f0">3.1. Identification</a></li>
|
||||
<li><a href="#org78fe7a9">3.2. Relative Active Damping</a></li>
|
||||
<li><a href="#org760bce8">3.3. Damped Plant</a></li>
|
||||
</ul>
|
||||
</li>
|
||||
<li><a href="#org3953e07">4. Active Damping Plant (Force Sensors)</a>
|
||||
<li><a href="#org09dff16">4. Active Damping Plant (Force Sensors)</a>
|
||||
<ul>
|
||||
<li><a href="#org243bdc3">4.1. Identification</a></li>
|
||||
<li><a href="#orga2bc3f0">4.2. Controller - Root Locus</a></li>
|
||||
<li><a href="#org63d6a74">4.3. Damped Plant</a></li>
|
||||
<li><a href="#org8c22e6e">4.4. Save</a></li>
|
||||
<li><a href="#orgeb8c92e">4.1. Identification</a></li>
|
||||
<li><a href="#orgae5e7fb">4.2. Controller - Root Locus</a></li>
|
||||
<li><a href="#orgde5a8cd">4.3. Damped Plant</a></li>
|
||||
</ul>
|
||||
</li>
|
||||
<li><a href="#org27e3538">5. HAC-LAC (IFF) architecture</a>
|
||||
<ul>
|
||||
<li><a href="#org72519d4">5.1. System Identification</a></li>
|
||||
<li><a href="#org6919788">5.2. High Authority Controller</a></li>
|
||||
<li><a href="#orgc5ddfb6">5.3. Performances</a></li>
|
||||
</ul>
|
||||
</li>
|
||||
<li><a href="#org053c75c">5. HAC-LAC (IFF) architecture</a></li>
|
||||
</ul>
|
||||
</div>
|
||||
</div>
|
||||
@@ -89,22 +94,23 @@ In this document, a Simscape (.e.g. multi-body) model of the ESRF Double Crystal
|
||||
It is structured as follow:
|
||||
</p>
|
||||
<ul class="org-ul">
|
||||
<li>Section <a href="#org0fd3e9f">1</a>: the kinematics of the DCM is presented, and Jacobian matrices which are used to solve the inverse and forward kinematics are computed.</li>
|
||||
<li>Section <a href="#orgd4eb6dd">2</a>: the system dynamics is identified in the absence of control.</li>
|
||||
<li>Section <a href="#orgdb80cfb">3</a>: it is studied whether if the strain gauges fixed to the piezoelectric actuators can be used to actively damp the plant.</li>
|
||||
<li>Section <a href="#org8e736b1">4</a>: piezoelectric force sensors are added in series with the piezoelectric actuators and are used to actively damp the plant using the Integral Force Feedback (IFF) control strategy.</li>
|
||||
<li>Section <a href="#orga68bafc">5</a>: the High Authority Control - Low Authority Control (HAC-LAC) strategy is tested on the Simscape model.</li>
|
||||
<li>Section <a href="#org14dc352">1</a>: the kinematics of the DCM is presented, and Jacobian matrices which are used to solve the inverse and forward kinematics are computed.</li>
|
||||
<li>Section <a href="#orgc1f64db">2</a>: the system dynamics is identified in the absence of control.</li>
|
||||
<li>Section <a href="#org80ca2a0">3</a>: it is studied whether if the strain gauges fixed to the piezoelectric actuators can be used to actively damp the plant.</li>
|
||||
<li>Section <a href="#orgb029a8b">4</a>: piezoelectric force sensors are added in series with the piezoelectric actuators and are used to actively damp the plant using the Integral Force Feedback (IFF) control strategy.</li>
|
||||
<li>Section <a href="#orgee34a4d">5</a>: the High Authority Control - Low Authority Control (HAC-LAC) strategy is tested on the Simscape model.</li>
|
||||
</ul>
|
||||
|
||||
<div id="outline-container-orgcb7822a" class="outline-2">
|
||||
<h2 id="orgcb7822a"><span class="section-number-2">1.</span> System Kinematics</h2>
|
||||
<div id="outline-container-org3fb7374" class="outline-2">
|
||||
<h2 id="org3fb7374"><span class="section-number-2">1.</span> System Kinematics</h2>
|
||||
<div class="outline-text-2" id="text-1">
|
||||
<p>
|
||||
<a id="org0fd3e9f"></a>
|
||||
<a id="org14dc352"></a>
|
||||
</p>
|
||||
</div>
|
||||
<div id="outline-container-orgc4b429c" class="outline-3">
|
||||
<h3 id="orgc4b429c"><span class="section-number-3">1.1.</span> Bragg Angle</h3>
|
||||
|
||||
<div id="outline-container-org1ef1423" class="outline-3">
|
||||
<h3 id="org1ef1423"><span class="section-number-3">1.1.</span> Bragg Angle</h3>
|
||||
<div class="outline-text-3" id="text-1-1">
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab"><span class="org-matlab-cellbreak">%% Tested bragg angles</span>
|
||||
@@ -120,7 +126,7 @@ dz = d_off<span class="org-builtin">./</span>(2<span class="org-builtin">*</span
|
||||
</div>
|
||||
|
||||
|
||||
<div id="org122820c" class="figure">
|
||||
<div id="org6064b2d" class="figure">
|
||||
<p><img src="figs/jack_motion_bragg_angle.png" alt="jack_motion_bragg_angle.png" />
|
||||
</p>
|
||||
<p><span class="figure-number">Figure 1: </span>Jack motion as a function of Bragg angle</p>
|
||||
@@ -138,34 +144,34 @@ dz = d_off<span class="org-builtin">./</span>(2<span class="org-builtin">*</span
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-orga30e667" class="outline-3">
|
||||
<h3 id="orga30e667"><span class="section-number-3">1.2.</span> Kinematics (111 Crystal)</h3>
|
||||
<div id="outline-container-orgcd8fbe6" class="outline-3">
|
||||
<h3 id="orgcd8fbe6"><span class="section-number-3">1.2.</span> Kinematics (111 Crystal)</h3>
|
||||
<div class="outline-text-3" id="text-1-2">
|
||||
<p>
|
||||
The reference frame is taken at the center of the 111 second crystal.
|
||||
</p>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org390c6c1" class="outline-4">
|
||||
<h4 id="org390c6c1"><span class="section-number-4">1.2.1.</span> Interferometers - 111 Crystal</h4>
|
||||
<div id="outline-container-org542b06e" class="outline-4">
|
||||
<h4 id="org542b06e"><span class="section-number-4">1.2.1.</span> Interferometers - 111 Crystal</h4>
|
||||
<div class="outline-text-4" id="text-1-2-1">
|
||||
<p>
|
||||
Three interferometers are pointed to the bottom surface of the 111 crystal.
|
||||
</p>
|
||||
|
||||
<p>
|
||||
The position of the measurement points are shown in Figure <a href="#org7147d17">2</a> as well as the origin where the motion of the crystal is computed.
|
||||
The position of the measurement points are shown in Figure <a href="#org8f69a58">2</a> as well as the origin where the motion of the crystal is computed.
|
||||
</p>
|
||||
|
||||
|
||||
<div id="org7147d17" class="figure">
|
||||
<div id="org8f69a58" class="figure">
|
||||
<p><img src="figs/sensor_111_crystal_points.png" alt="sensor_111_crystal_points.png" />
|
||||
</p>
|
||||
<p><span class="figure-number">Figure 2: </span>Bottom view of the second crystal 111. Position of the measurement points.</p>
|
||||
</div>
|
||||
|
||||
<p>
|
||||
The inverse kinematics consisting of deriving the interferometer measurements from the motion of the crystal (see Figure <a href="#org8e47ad4">3</a>):
|
||||
The inverse kinematics consisting of deriving the interferometer measurements from the motion of the crystal (see Figure <a href="#org6470cc1">3</a>):
|
||||
</p>
|
||||
\begin{equation}
|
||||
\begin{bmatrix}
|
||||
@@ -179,7 +185,7 @@ d_z \\ r_y \\ r_x
|
||||
\end{equation}
|
||||
|
||||
|
||||
<div id="org8e47ad4" class="figure">
|
||||
<div id="org6470cc1" class="figure">
|
||||
<p><img src="figs/schematic_sensor_jacobian_inverse_kinematics.png" alt="schematic_sensor_jacobian_inverse_kinematics.png" />
|
||||
</p>
|
||||
<p><span class="figure-number">Figure 3: </span>Inverse Kinematics - Interferometers</p>
|
||||
@@ -187,7 +193,7 @@ d_z \\ r_y \\ r_x
|
||||
|
||||
|
||||
<p>
|
||||
From the Figure <a href="#org7147d17">2</a>, the inverse kinematics can be solved as follow (for small motion):
|
||||
From the Figure <a href="#org8f69a58">2</a>, the inverse kinematics can be solved as follow (for small motion):
|
||||
</p>
|
||||
\begin{equation}
|
||||
\bm{J}_{s,111}
|
||||
@@ -207,7 +213,7 @@ J_s_111 = [1, 0.07, <span class="org-builtin">-</span>0.015
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
<table id="org8c13b9a" border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
|
||||
<table id="org9ac8ea9" border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
|
||||
<caption class="t-above"><span class="table-number">Table 1:</span> Sensor Jacobian \(\bm{J}_{s,111}\)</caption>
|
||||
|
||||
<colgroup>
|
||||
@@ -239,7 +245,7 @@ J_s_111 = [1, 0.07, <span class="org-builtin">-</span>0.015
|
||||
</table>
|
||||
|
||||
<p>
|
||||
The forward kinematics is solved by inverting the Jacobian matrix (see Figure <a href="#org700c4d4">4</a>).
|
||||
The forward kinematics is solved by inverting the Jacobian matrix (see Figure <a href="#orgacd4853">4</a>).
|
||||
</p>
|
||||
\begin{equation}
|
||||
\begin{bmatrix}
|
||||
@@ -253,13 +259,13 @@ x_1 \\ x_2 \\ x_3
|
||||
\end{equation}
|
||||
|
||||
|
||||
<div id="org700c4d4" class="figure">
|
||||
<div id="orgacd4853" class="figure">
|
||||
<p><img src="figs/schematic_sensor_jacobian_forward_kinematics.png" alt="schematic_sensor_jacobian_forward_kinematics.png" />
|
||||
</p>
|
||||
<p><span class="figure-number">Figure 4: </span>Forward Kinematics - Interferometers</p>
|
||||
</div>
|
||||
|
||||
<table id="org65d7338" border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
|
||||
<table id="org1305abc" border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
|
||||
<caption class="t-above"><span class="table-number">Table 2:</span> Inverse of the sensor Jacobian \(\bm{J}_{s,111}^{-1}\)</caption>
|
||||
|
||||
<colgroup>
|
||||
@@ -292,15 +298,15 @@ x_1 \\ x_2 \\ x_3
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org4c00d94" class="outline-4">
|
||||
<h4 id="org4c00d94"><span class="section-number-4">1.2.2.</span> Piezo - 111 Crystal</h4>
|
||||
<div id="outline-container-org52f68f7" class="outline-4">
|
||||
<h4 id="org52f68f7"><span class="section-number-4">1.2.2.</span> Piezo - 111 Crystal</h4>
|
||||
<div class="outline-text-4" id="text-1-2-2">
|
||||
<p>
|
||||
The location of the actuators with respect with the center of the 111 second crystal are shown in Figure <a href="#orgd329873">5</a>.
|
||||
The location of the actuators with respect with the center of the 111 second crystal are shown in Figure <a href="#org6ddaa8b">5</a>.
|
||||
</p>
|
||||
|
||||
|
||||
<div id="orgd329873" class="figure">
|
||||
<div id="org6ddaa8b" class="figure">
|
||||
<p><img src="figs/actuator_jacobian_111_points.png" alt="actuator_jacobian_111_points.png" />
|
||||
</p>
|
||||
<p><span class="figure-number">Figure 5: </span>Location of actuators with respect to the center of the 111 second crystal (bottom view)</p>
|
||||
@@ -321,14 +327,14 @@ d_z \\ r_y \\ r_x
|
||||
\end{equation}
|
||||
|
||||
|
||||
<div id="orga74633d" class="figure">
|
||||
<div id="orgd947fd1" class="figure">
|
||||
<p><img src="figs/schematic_actuator_jacobian_inverse_kinematics.png" alt="schematic_actuator_jacobian_inverse_kinematics.png" />
|
||||
</p>
|
||||
<p><span class="figure-number">Figure 6: </span>Inverse Kinematics - Actuators</p>
|
||||
</div>
|
||||
|
||||
<p>
|
||||
Based on the geometry in Figure <a href="#orgd329873">5</a>, we obtain:
|
||||
Based on the geometry in Figure <a href="#org6ddaa8b">5</a>, we obtain:
|
||||
</p>
|
||||
\begin{equation}
|
||||
\bm{J}_{a,111}
|
||||
@@ -348,7 +354,7 @@ J_a_111 = [1, 0.14, <span class="org-builtin">-</span>0.1525
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
<table id="org363311b" border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
|
||||
<table id="org96d1229" border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
|
||||
<caption class="t-above"><span class="table-number">Table 3:</span> Actuator Jacobian \(\bm{J}_{a,111}\)</caption>
|
||||
|
||||
<colgroup>
|
||||
@@ -394,13 +400,13 @@ d_{u_r} \\ d_{u_h} \\ d_{d}
|
||||
\end{equation}
|
||||
|
||||
|
||||
<div id="orgeeec18d" class="figure">
|
||||
<div id="orgbdeca35" class="figure">
|
||||
<p><img src="figs/schematic_actuator_jacobian_forward_kinematics.png" alt="schematic_actuator_jacobian_forward_kinematics.png" />
|
||||
</p>
|
||||
<p><span class="figure-number">Figure 7: </span>Forward Kinematics - Actuators for 111 crystal</p>
|
||||
</div>
|
||||
|
||||
<table id="org19c3313" border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
|
||||
<table id="orgb28ebac" border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
|
||||
<caption class="t-above"><span class="table-number">Table 4:</span> Inverse of the actuator Jacobian \(\bm{J}_{a,111}^{-1}\)</caption>
|
||||
|
||||
<colgroup>
|
||||
@@ -434,8 +440,8 @@ d_{u_r} \\ d_{u_h} \\ d_{d}
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org82434d5" class="outline-3">
|
||||
<h3 id="org82434d5"><span class="section-number-3">1.3.</span> Save Kinematics</h3>
|
||||
<div id="outline-container-org616bb45" class="outline-3">
|
||||
<h3 id="org616bb45"><span class="section-number-3">1.3.</span> Save Kinematics</h3>
|
||||
<div class="outline-text-3" id="text-1-3">
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">save(<span class="org-string">'mat/dcm_kinematics.mat'</span>, <span class="org-string">'J_a_111'</span>, <span class="org-string">'J_s_111'</span>)
|
||||
@@ -445,15 +451,15 @@ d_{u_r} \\ d_{u_h} \\ d_{d}
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-orgd95f56d" class="outline-2">
|
||||
<h2 id="orgd95f56d"><span class="section-number-2">2.</span> Open Loop System Identification</h2>
|
||||
<div id="outline-container-org0000e6d" class="outline-2">
|
||||
<h2 id="org0000e6d"><span class="section-number-2">2.</span> Open Loop System Identification</h2>
|
||||
<div class="outline-text-2" id="text-2">
|
||||
<p>
|
||||
<a id="orgd4eb6dd"></a>
|
||||
<a id="orgc1f64db"></a>
|
||||
</p>
|
||||
</div>
|
||||
<div id="outline-container-org49ca34a" class="outline-3">
|
||||
<h3 id="org49ca34a"><span class="section-number-3">2.1.</span> Identification</h3>
|
||||
<div id="outline-container-org16c8552" class="outline-3">
|
||||
<h3 id="org16c8552"><span class="section-number-3">2.1.</span> Identification</h3>
|
||||
<div class="outline-text-3" id="text-2-1">
|
||||
<p>
|
||||
Let’s considered the system \(\bm{G}(s)\) with:
|
||||
@@ -464,11 +470,11 @@ Let’s considered the system \(\bm{G}(s)\) with:
|
||||
</ul>
|
||||
|
||||
<p>
|
||||
It is schematically shown in Figure <a href="#org52a4b7c">8</a>.
|
||||
It is schematically shown in Figure <a href="#orga1c2462">8</a>.
|
||||
</p>
|
||||
|
||||
|
||||
<div id="org52a4b7c" class="figure">
|
||||
<div id="orga1c2462" class="figure">
|
||||
<p><img src="figs/schematic_system_inputs_outputs.png" alt="schematic_system_inputs_outputs.png" />
|
||||
</p>
|
||||
<p><span class="figure-number">Figure 8: </span>Dynamical system with inputs and outputs</p>
|
||||
@@ -510,20 +516,20 @@ State-space model with 3 outputs, 3 inputs, and 24 states.
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org170173c" class="outline-3">
|
||||
<h3 id="org170173c"><span class="section-number-3">2.2.</span> Plant in the frame of the fastjacks</h3>
|
||||
<div id="outline-container-orgc2236c5" class="outline-3">
|
||||
<h3 id="orgc2236c5"><span class="section-number-3">2.2.</span> Plant in the frame of the fastjacks</h3>
|
||||
<div class="outline-text-3" id="text-2-2">
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">load(<span class="org-string">'mat/dcm_kinematics.mat'</span>);
|
||||
<pre class="src src-matlab">load(<span class="org-string">'dcm_kinematics.mat'</span>);
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
<p>
|
||||
Using the forward and inverse kinematics, we can computed the dynamics from piezo forces to axial motion of the 3 fastjacks (see Figure <a href="#orgf9b4903">9</a>).
|
||||
Using the forward and inverse kinematics, we can computed the dynamics from piezo forces to axial motion of the 3 fastjacks (see Figure <a href="#org015dc10">9</a>).
|
||||
</p>
|
||||
|
||||
|
||||
<div id="orgf9b4903" class="figure">
|
||||
<div id="org015dc10" class="figure">
|
||||
<p><img src="figs/schematic_jacobian_frame_fastjack.png" alt="schematic_jacobian_frame_fastjack.png" />
|
||||
</p>
|
||||
<p><span class="figure-number">Figure 9: </span>Use of Jacobian matrices to obtain the system in the frame of the fastjacks</p>
|
||||
@@ -544,7 +550,7 @@ The DC gain of the new system shows that the system is well decoupled at low fre
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
<table id="org19e4a7e" border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
|
||||
<table id="orgb47db5c" border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
|
||||
<caption class="t-above"><span class="table-number">Table 5:</span> DC gain of the plant in the frame of the fast jacks \(\bm{G}_{\text{fj}}\)</caption>
|
||||
|
||||
<colgroup>
|
||||
@@ -576,17 +582,17 @@ The DC gain of the new system shows that the system is well decoupled at low fre
|
||||
</table>
|
||||
|
||||
<p>
|
||||
The bode plot of \(\bm{G}_{\text{fj}}(s)\) is shown in Figure <a href="#org6777e66">10</a>.
|
||||
The bode plot of \(\bm{G}_{\text{fj}}(s)\) is shown in Figure <a href="#org3a99582">10</a>.
|
||||
</p>
|
||||
|
||||
|
||||
<div id="org6777e66" class="figure">
|
||||
<div id="org3a99582" class="figure">
|
||||
<p><img src="figs/bode_plot_plant_fj.png" alt="bode_plot_plant_fj.png" />
|
||||
</p>
|
||||
<p><span class="figure-number">Figure 10: </span>Bode plot of the diagonal and off-diagonal elements of the plant in the frame of the fast jacks</p>
|
||||
</div>
|
||||
|
||||
<div class="important" id="orgcdf2cc1">
|
||||
<div class="important" id="orge3e331d">
|
||||
<p>
|
||||
Computing the system in the frame of the fastjack gives good decoupling at low frequency (until the first resonance of the system).
|
||||
</p>
|
||||
@@ -595,11 +601,11 @@ Computing the system in the frame of the fastjack gives good decoupling at low f
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-orge372095" class="outline-3">
|
||||
<h3 id="orge372095"><span class="section-number-3">2.3.</span> Plant in the frame of the crystal</h3>
|
||||
<div id="outline-container-orgb0e1668" class="outline-3">
|
||||
<h3 id="orgb0e1668"><span class="section-number-3">2.3.</span> Plant in the frame of the crystal</h3>
|
||||
<div class="outline-text-3" id="text-2-3">
|
||||
|
||||
<div id="org4377a93" class="figure">
|
||||
<div id="orge8c1108" class="figure">
|
||||
<p><img src="figs/schematic_jacobian_frame_crystal.png" alt="schematic_jacobian_frame_crystal.png" />
|
||||
</p>
|
||||
<p><span class="figure-number">Figure 11: </span>Use of Jacobian matrices to obtain the system in the frame of the crystal</p>
|
||||
@@ -654,18 +660,18 @@ The main reason is that, as we map forces to the center of the 111 crystal and n
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org00855cb" class="outline-2">
|
||||
<h2 id="org00855cb"><span class="section-number-2">3.</span> Active Damping Plant (Strain gauges)</h2>
|
||||
<div id="outline-container-org4bda37c" class="outline-2">
|
||||
<h2 id="org4bda37c"><span class="section-number-2">3.</span> Active Damping Plant (Strain gauges)</h2>
|
||||
<div class="outline-text-2" id="text-3">
|
||||
<p>
|
||||
<a id="orgdb80cfb"></a>
|
||||
<a id="org80ca2a0"></a>
|
||||
</p>
|
||||
<p>
|
||||
In this section, we wish to see whether if strain gauges fixed to the piezoelectric actuator can be used for active damping.
|
||||
</p>
|
||||
</div>
|
||||
<div id="outline-container-org6886aa9" class="outline-3">
|
||||
<h3 id="org6886aa9"><span class="section-number-3">3.1.</span> Identification</h3>
|
||||
<div id="outline-container-orga8033f0" class="outline-3">
|
||||
<h3 id="orga8033f0"><span class="section-number-3">3.1.</span> Identification</h3>
|
||||
<div class="outline-text-3" id="text-3-1">
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab"><span class="org-matlab-cellbreak">%% Input/Output definition</span>
|
||||
@@ -724,15 +730,15 @@ G_sg = linearize(mdl, io);
|
||||
</table>
|
||||
|
||||
|
||||
<div id="org72b48ee" class="figure">
|
||||
<div id="org8f04d26" class="figure">
|
||||
<p><img src="figs/strain_gauge_plant_bode_plot.png" alt="strain_gauge_plant_bode_plot.png" />
|
||||
</p>
|
||||
<p><span class="figure-number">Figure 12: </span>Bode Plot of the transfer functions from piezoelectric forces to strain gauges measuremed displacements</p>
|
||||
</div>
|
||||
|
||||
<div class="important" id="org070666c">
|
||||
<div class="important" id="orgd585bf5">
|
||||
<p>
|
||||
As the distance between the poles and zeros in Figure <a href="#org16f0105">15</a> is very small, little damping can be actively added using the strain gauges.
|
||||
As the distance between the poles and zeros in Figure <a href="#org11a1e17">15</a> is very small, little damping can be actively added using the strain gauges.
|
||||
This will be confirmed using a Root Locus plot.
|
||||
</p>
|
||||
|
||||
@@ -740,8 +746,8 @@ This will be confirmed using a Root Locus plot.
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-orgd1754c8" class="outline-3">
|
||||
<h3 id="orgd1754c8"><span class="section-number-3">3.2.</span> Relative Active Damping</h3>
|
||||
<div id="outline-container-org78fe7a9" class="outline-3">
|
||||
<h3 id="org78fe7a9"><span class="section-number-3">3.2.</span> Relative Active Damping</h3>
|
||||
<div class="outline-text-3" id="text-3-2">
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">Krad_g1 = eye(3)<span class="org-builtin">*</span>s<span class="org-builtin">/</span>(s<span class="org-builtin">^</span>2<span class="org-builtin">/</span>(2<span class="org-builtin">*</span><span class="org-matlab-math">pi</span><span class="org-builtin">*</span>500)<span class="org-builtin">^</span>2 <span class="org-builtin">+</span> 2<span class="org-builtin">*</span>s<span class="org-builtin">/</span>(2<span class="org-builtin">*</span><span class="org-matlab-math">pi</span><span class="org-builtin">*</span>500) <span class="org-builtin">+</span> 1);
|
||||
@@ -749,11 +755,11 @@ This will be confirmed using a Root Locus plot.
|
||||
</div>
|
||||
|
||||
<p>
|
||||
As can be seen in Figure <a href="#org16a4fc0">13</a>, very little damping can be added using relative damping strategy using strain gauges.
|
||||
As can be seen in Figure <a href="#orgec235bb">13</a>, very little damping can be added using relative damping strategy using strain gauges.
|
||||
</p>
|
||||
|
||||
|
||||
<div id="org16a4fc0" class="figure">
|
||||
<div id="orgec235bb" class="figure">
|
||||
<p><img src="figs/relative_damping_root_locus.png" alt="relative_damping_root_locus.png" />
|
||||
</p>
|
||||
<p><span class="figure-number">Figure 13: </span>Root Locus for the relative damping control</p>
|
||||
@@ -766,8 +772,8 @@ As can be seen in Figure <a href="#org16a4fc0">13</a>, very little damping can b
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-orgf6e5d1c" class="outline-3">
|
||||
<h3 id="orgf6e5d1c"><span class="section-number-3">3.3.</span> Damped Plant</h3>
|
||||
<div id="outline-container-org760bce8" class="outline-3">
|
||||
<h3 id="org760bce8"><span class="section-number-3">3.3.</span> Damped Plant</h3>
|
||||
<div class="outline-text-3" id="text-3-3">
|
||||
<p>
|
||||
The controller is implemented on Simscape, and the damped plant is identified.
|
||||
@@ -789,7 +795,7 @@ io(io_i) = linio([mdl, <span class="org-string">'/DCM'</span>], 1, <span class="
|
||||
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab"><span class="org-matlab-cellbreak">%% DCM Kinematics</span>
|
||||
load(<span class="org-string">'mat/dcm_kinematics.mat'</span>);
|
||||
load(<span class="org-string">'dcm_kinematics.mat'</span>);
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
@@ -812,7 +818,7 @@ G_dp.OutputName = {<span class="org-string">'d_ur'</span>, <span class="org-str
|
||||
</div>
|
||||
|
||||
|
||||
<div id="org908c24c" class="figure">
|
||||
<div id="orgca0b154" class="figure">
|
||||
<p><img src="figs/comp_damp_undamped_plant_rad_bode_plot.png" alt="comp_damp_undamped_plant_rad_bode_plot.png" />
|
||||
</p>
|
||||
<p><span class="figure-number">Figure 14: </span>Bode plot of both the open-loop plant and the damped plant using relative active damping</p>
|
||||
@@ -821,11 +827,11 @@ G_dp.OutputName = {<span class="org-string">'d_ur'</span>, <span class="org-str
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org3953e07" class="outline-2">
|
||||
<h2 id="org3953e07"><span class="section-number-2">4.</span> Active Damping Plant (Force Sensors)</h2>
|
||||
<div id="outline-container-org09dff16" class="outline-2">
|
||||
<h2 id="org09dff16"><span class="section-number-2">4.</span> Active Damping Plant (Force Sensors)</h2>
|
||||
<div class="outline-text-2" id="text-4">
|
||||
<p>
|
||||
<a id="org8e736b1"></a>
|
||||
<a id="orgb029a8b"></a>
|
||||
</p>
|
||||
<p>
|
||||
Force sensors are added above the piezoelectric actuators.
|
||||
@@ -833,8 +839,8 @@ They can consists of a simple piezoelectric ceramic stack.
|
||||
See for instance <a href="fleming10_integ_strain_force_feedb_high">fleming10_integ_strain_force_feedb_high</a>.
|
||||
</p>
|
||||
</div>
|
||||
<div id="outline-container-org243bdc3" class="outline-3">
|
||||
<h3 id="org243bdc3"><span class="section-number-3">4.1.</span> Identification</h3>
|
||||
<div id="outline-container-orgeb8c92e" class="outline-3">
|
||||
<h3 id="orgeb8c92e"><span class="section-number-3">4.1.</span> Identification</h3>
|
||||
<div class="outline-text-3" id="text-4-1">
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab"><span class="org-matlab-cellbreak">%% Input/Output definition</span>
|
||||
@@ -856,44 +862,13 @@ G_fs = linearize(mdl, io);
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">dcgain(G_fs)
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
<table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
|
||||
<p>
|
||||
The Bode plot of the identified dynamics is shown in Figure <a href="#org11a1e17">15</a>.
|
||||
At high frequency, the diagonal terms are constants while the off-diagonal terms have some roll-off.
|
||||
</p>
|
||||
|
||||
|
||||
<colgroup>
|
||||
<col class="org-right" />
|
||||
|
||||
<col class="org-right" />
|
||||
|
||||
<col class="org-right" />
|
||||
</colgroup>
|
||||
<tbody>
|
||||
<tr>
|
||||
<td class="org-right">-1.4113e-13</td>
|
||||
<td class="org-right">1.0339e-13</td>
|
||||
<td class="org-right">3.774e-14</td>
|
||||
</tr>
|
||||
|
||||
<tr>
|
||||
<td class="org-right">1.0339e-13</td>
|
||||
<td class="org-right">-1.4113e-13</td>
|
||||
<td class="org-right">3.774e-14</td>
|
||||
</tr>
|
||||
|
||||
<tr>
|
||||
<td class="org-right">3.7792e-14</td>
|
||||
<td class="org-right">3.7792e-14</td>
|
||||
<td class="org-right">-7.5585e-14</td>
|
||||
</tr>
|
||||
</tbody>
|
||||
</table>
|
||||
|
||||
|
||||
<div id="org16f0105" class="figure">
|
||||
<div id="org11a1e17" class="figure">
|
||||
<p><img src="figs/iff_plant_bode_plot.png" alt="iff_plant_bode_plot.png" />
|
||||
</p>
|
||||
<p><span class="figure-number">Figure 15: </span>Bode plot of IFF Plant</p>
|
||||
@@ -901,109 +876,213 @@ G_fs = linearize(mdl, io);
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-orga2bc3f0" class="outline-3">
|
||||
<h3 id="orga2bc3f0"><span class="section-number-3">4.2.</span> Controller - Root Locus</h3>
|
||||
<div id="outline-container-orgae5e7fb" class="outline-3">
|
||||
<h3 id="orgae5e7fb"><span class="section-number-3">4.2.</span> Controller - Root Locus</h3>
|
||||
<div class="outline-text-3" id="text-4-2">
|
||||
<p>
|
||||
We want to have integral action around the resonances of the system, but we do not want to integrate at low frequency.
|
||||
Therefore, we can use a low pass filter.
|
||||
</p>
|
||||
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">Kiff_g1 = eye(3)<span class="org-builtin">*</span>1<span class="org-builtin">/</span>(1 <span class="org-builtin">+</span> s<span class="org-builtin">/</span>2<span class="org-builtin">/</span><span class="org-matlab-math">pi</span><span class="org-builtin">/</span>20);
|
||||
<pre class="src src-matlab"><span class="org-matlab-cellbreak">%% Integral Force Feedback Controller</span>
|
||||
Kiff_g1 = eye(3)<span class="org-builtin">*</span>1<span class="org-builtin">/</span>(1 <span class="org-builtin">+</span> s<span class="org-builtin">/</span>2<span class="org-builtin">/</span><span class="org-matlab-math">pi</span><span class="org-builtin">/</span>20);
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
|
||||
<div id="org4041645" class="figure">
|
||||
<div id="org5b2bab0" class="figure">
|
||||
<p><img src="figs/iff_root_locus.png" alt="iff_root_locus.png" />
|
||||
</p>
|
||||
<p><span class="figure-number">Figure 16: </span>Root Locus plot for the IFF Control strategy</p>
|
||||
</div>
|
||||
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab"><span class="org-matlab-cellbreak">%% Integral Force Feedback Controller</span>
|
||||
<pre class="src src-matlab"><span class="org-matlab-cellbreak">%% Integral Force Feedback Controller with optimal gain</span>
|
||||
Kiff = g<span class="org-builtin">*</span>Kiff_g1;
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab"><span class="org-matlab-cellbreak">%% Save the IFF controller</span>
|
||||
save(<span class="org-string">'mat/Kiff.mat'</span>, <span class="org-string">'Kiff'</span>);
|
||||
</pre>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org63d6a74" class="outline-3">
|
||||
<h3 id="org63d6a74"><span class="section-number-3">4.3.</span> Damped Plant</h3>
|
||||
<div id="outline-container-orgde5a8cd" class="outline-3">
|
||||
<h3 id="orgde5a8cd"><span class="section-number-3">4.3.</span> Damped Plant</h3>
|
||||
<div class="outline-text-3" id="text-4-3">
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab"><span class="org-matlab-cellbreak">%% Input/Output definition</span>
|
||||
clear io; io_i = 1;
|
||||
<p>
|
||||
Both the Open Loop dynamics (see Figure <a href="#org015dc10">9</a>) and the dynamics with IFF (see Figure <a href="#org7a880a7">17</a>) are identified.
|
||||
</p>
|
||||
|
||||
<span class="org-matlab-cellbreak">%% Inputs</span>
|
||||
<span class="org-comment-delimiter">% </span><span class="org-comment">Control Input {3x1} [N]</span>
|
||||
io(io_i) = linio([mdl, <span class="org-string">'/control_system'</span>], 1, <span class="org-string">'input'</span>); io_i = io_i <span class="org-builtin">+</span> 1;
|
||||
<p>
|
||||
We are here interested in the dynamics from \(\bm{u}^\prime = [u_{u_r}^\prime,\ u_{u_h}^\prime,\ u_d^\prime]\) (input of the damped plant) to \(\bm{d}_{\text{fj}} = [d_{u_r},\ d_{u_h},\ d_d]\) (motion of the crystal expressed in the frame of the fast-jacks).
|
||||
This is schematically represented in Figure <a href="#org7a880a7">17</a>.
|
||||
</p>
|
||||
|
||||
<span class="org-matlab-cellbreak">%% Outputs</span>
|
||||
<span class="org-comment-delimiter">% </span><span class="org-comment">Force Sensor {3x1} [m]</span>
|
||||
io(io_i) = linio([mdl, <span class="org-string">'/DCM'</span>], 1, <span class="org-string">'openoutput'</span>); io_i = io_i <span class="org-builtin">+</span> 1;
|
||||
</pre>
|
||||
|
||||
<div id="org7a880a7" class="figure">
|
||||
<p><img src="figs/schematic_jacobian_frame_fastjack_iff.png" alt="schematic_jacobian_frame_fastjack_iff.png" />
|
||||
</p>
|
||||
<p><span class="figure-number">Figure 17: </span>Use of Jacobian matrices to obtain the system in the frame of the fastjacks</p>
|
||||
</div>
|
||||
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab"><span class="org-matlab-cellbreak">%% DCM Kinematics</span>
|
||||
load(<span class="org-string">'mat/dcm_kinematics.mat'</span>);
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab"><span class="org-matlab-cellbreak">%% Identification of the Open Loop plant</span>
|
||||
controller.type = 0; <span class="org-comment-delimiter">% </span><span class="org-comment">Open Loop</span>
|
||||
G_ol = J_a_111<span class="org-builtin">*</span>inv(J_s_111)<span class="org-builtin">*</span>linearize(mdl, io);
|
||||
G_ol.InputName = {<span class="org-string">'u_ur'</span>, <span class="org-string">'u_uh'</span>, <span class="org-string">'u_d'</span>};
|
||||
G_ol.OutputName = {<span class="org-string">'d_ur'</span>, <span class="org-string">'d_uh'</span>, <span class="org-string">'d_d'</span>};
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab"><span class="org-matlab-cellbreak">%% Identification of the damped plant with IFF</span>
|
||||
controller.type = 1; <span class="org-comment-delimiter">% </span><span class="org-comment">IFF</span>
|
||||
G_dp = J_a_111<span class="org-builtin">*</span>inv(J_s_111)<span class="org-builtin">*</span>linearize(mdl, io);
|
||||
G_dp.InputName = {<span class="org-string">'u_ur'</span>, <span class="org-string">'u_uh'</span>, <span class="org-string">'u_d'</span>};
|
||||
G_dp.OutputName = {<span class="org-string">'d_ur'</span>, <span class="org-string">'d_uh'</span>, <span class="org-string">'d_d'</span>};
|
||||
</pre>
|
||||
</div>
|
||||
<p>
|
||||
The dynamics from \(\bm{u}\) to \(\bm{d}_{\text{fj}}\) (open-loop dynamics) and from \(\bm{u}^\prime\) to \(\bm{d}_{\text{fs}}\) are compared in Figure <a href="#org9f5d048">18</a>.
|
||||
It is clear that the Integral Force Feedback control strategy is very effective in damping the resonances of the plant.
|
||||
</p>
|
||||
|
||||
|
||||
<div id="org8455151" class="figure">
|
||||
<div id="org9f5d048" class="figure">
|
||||
<p><img src="figs/comp_damped_undamped_plant_iff_bode_plot.png" alt="comp_damped_undamped_plant_iff_bode_plot.png" />
|
||||
</p>
|
||||
<p><span class="figure-number">Figure 17: </span>Bode plot of both the open-loop plant and the damped plant using IFF</p>
|
||||
<p><span class="figure-number">Figure 18: </span>Bode plot of both the open-loop plant and the damped plant using IFF</p>
|
||||
</div>
|
||||
|
||||
<div class="important" id="orgebe4b09">
|
||||
<div class="important" id="org8586fa6">
|
||||
<p>
|
||||
The Integral Force Feedback control strategy is very effective in damping the suspension modes of the DCM.
|
||||
The Integral Force Feedback control strategy is very effective in damping the modes present in the plant.
|
||||
</p>
|
||||
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org8c22e6e" class="outline-3">
|
||||
<h3 id="org8c22e6e"><span class="section-number-3">4.4.</span> Save</h3>
|
||||
<div class="outline-text-3" id="text-4-4">
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">save(<span class="org-string">'mat/Kiff.mat'</span>, <span class="org-string">'Kiff'</span>);
|
||||
</pre>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org053c75c" class="outline-2">
|
||||
<h2 id="org053c75c"><span class="section-number-2">5.</span> HAC-LAC (IFF) architecture</h2>
|
||||
<div id="outline-container-org27e3538" class="outline-2">
|
||||
<h2 id="org27e3538"><span class="section-number-2">5.</span> HAC-LAC (IFF) architecture</h2>
|
||||
<div class="outline-text-2" id="text-5">
|
||||
<p>
|
||||
<a id="orga68bafc"></a>
|
||||
<a id="orgee34a4d"></a>
|
||||
</p>
|
||||
<p>
|
||||
The HAC-LAC architecture is shown in Figure <a href="#orgb03e1da">19</a>.
|
||||
</p>
|
||||
|
||||
|
||||
<div id="orgb03e1da" class="figure">
|
||||
<p><img src="figs/schematic_jacobian_frame_fastjack_hac_iff.png" alt="schematic_jacobian_frame_fastjack_hac_iff.png" />
|
||||
</p>
|
||||
<p><span class="figure-number">Figure 19: </span>HAC-LAC architecture</p>
|
||||
</div>
|
||||
</div>
|
||||
<div id="outline-container-org72519d4" class="outline-3">
|
||||
<h3 id="org72519d4"><span class="section-number-3">5.1.</span> System Identification</h3>
|
||||
<div class="outline-text-3" id="text-5-1">
|
||||
<p>
|
||||
Let’s identify the damped plant.
|
||||
</p>
|
||||
|
||||
|
||||
<div id="org022508f" class="figure">
|
||||
<p><img src="figs/bode_plot_hac_iff_plant.png" alt="bode_plot_hac_iff_plant.png" />
|
||||
</p>
|
||||
<p><span class="figure-number">Figure 20: </span>Bode Plot of the plant for the High Authority Controller (transfer function from \(\bm{u}^\prime\) to \(\bm{\epsilon}_d\))</p>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org6919788" class="outline-3">
|
||||
<h3 id="org6919788"><span class="section-number-3">5.2.</span> High Authority Controller</h3>
|
||||
<div class="outline-text-3" id="text-5-2">
|
||||
<p>
|
||||
Let’s design a controller with a bandwidth of 100Hz.
|
||||
As the plant is well decoupled and well approximated by a constant at low frequency, the high authority controller can easily be designed with SISO loop shaping.
|
||||
</p>
|
||||
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab"><span class="org-matlab-cellbreak">%% Controller design</span>
|
||||
wc = 2<span class="org-builtin">*</span><span class="org-matlab-math">pi</span><span class="org-builtin">*</span>100; <span class="org-comment-delimiter">% </span><span class="org-comment">Wanted crossover frequency [rad/s]</span>
|
||||
a = 2; <span class="org-comment-delimiter">% </span><span class="org-comment">Lead parameter</span>
|
||||
|
||||
Khac = diag(1<span class="org-builtin">./</span>diag(abs(evalfr(G_dp, 1<span class="org-constant">j</span><span class="org-builtin">*</span>wc)))) <span class="org-builtin">*</span> <span class="org-comment-delimiter">.</span><span class="org-comment">.. % Diagonal controller</span>
|
||||
wc<span class="org-builtin">/</span>s <span class="org-builtin">*</span> <span class="org-comment-delimiter">.</span><span class="org-comment">.. % Integrator</span>
|
||||
1<span class="org-builtin">/</span>(sqrt(a))<span class="org-builtin">*</span>(1 <span class="org-builtin">+</span> s<span class="org-builtin">/</span>(wc<span class="org-builtin">/</span>sqrt(a)))<span class="org-builtin">/</span>(1 <span class="org-builtin">+</span> s<span class="org-builtin">/</span>(wc<span class="org-builtin">*</span>sqrt(a))) <span class="org-builtin">*</span> <span class="org-comment-delimiter">.</span><span class="org-comment">.. % Lead</span>
|
||||
1<span class="org-builtin">/</span>(s<span class="org-builtin">^</span>2<span class="org-builtin">/</span>(4<span class="org-builtin">*</span>wc)<span class="org-builtin">^</span>2 <span class="org-builtin">+</span> 2<span class="org-builtin">*</span>s<span class="org-builtin">/</span>(4<span class="org-builtin">*</span>wc) <span class="org-builtin">+</span> 1); <span class="org-comment-delimiter">% </span><span class="org-comment">Low pass filter</span>
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab"><span class="org-matlab-cellbreak">%% Save the HAC controller</span>
|
||||
save(<span class="org-string">'mat/Khac_iff.mat'</span>, <span class="org-string">'Khac'</span>);
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab"><span class="org-matlab-cellbreak">%% Loop Gain</span>
|
||||
L_hac_lac = G_dp <span class="org-builtin">*</span> Khac;
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
|
||||
<div id="org1eefea2" class="figure">
|
||||
<p><img src="figs/hac_iff_loop_gain_bode_plot.png" alt="hac_iff_loop_gain_bode_plot.png" />
|
||||
</p>
|
||||
<p><span class="figure-number">Figure 21: </span>Bode Plot of the Loop gain for the High Authority Controller</p>
|
||||
</div>
|
||||
|
||||
<p>
|
||||
As shown in the Root Locus plot in Figure <a href="#orgc90ee63">22</a>, the closed loop system should be stable.
|
||||
</p>
|
||||
|
||||
|
||||
<div id="orgc90ee63" class="figure">
|
||||
<p><img src="figs/loci_hac_iff_fast_jack.png" alt="loci_hac_iff_fast_jack.png" />
|
||||
</p>
|
||||
<p><span class="figure-number">Figure 22: </span>Root Locus for the High Authority Controller</p>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-orgc5ddfb6" class="outline-3">
|
||||
<h3 id="orgc5ddfb6"><span class="section-number-3">5.3.</span> Performances</h3>
|
||||
<div class="outline-text-3" id="text-5-3">
|
||||
<p>
|
||||
In order to estimate the performances of the HAC-IFF control strategy, the transfer function from motion errors of the stepper motors to the motion error of the crystal is identified both in open loop and with the HAC-IFF strategy.
|
||||
</p>
|
||||
|
||||
<p>
|
||||
It is first verified that the closed-loop system is stable:
|
||||
</p>
|
||||
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">isstable(T_hl)
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
<pre class="example">
|
||||
1
|
||||
</pre>
|
||||
|
||||
|
||||
<p>
|
||||
And both transmissibilities are compared in Figure <a href="#org152d7e8">23</a>.
|
||||
</p>
|
||||
|
||||
|
||||
<div id="org152d7e8" class="figure">
|
||||
<p><img src="figs/stepper_transmissibility_comp_ol_hac_iff.png" alt="stepper_transmissibility_comp_ol_hac_iff.png" />
|
||||
</p>
|
||||
<p><span class="figure-number">Figure 23: </span>Comparison of the transmissibility of errors from vibrations of the stepper motor between the open-loop case and the hac-iff case.</p>
|
||||
</div>
|
||||
|
||||
<div class="important" id="org755e221">
|
||||
<p>
|
||||
The HAC-IFF control strategy can effectively reduce the transmissibility of the motion errors of the stepper motors.
|
||||
This reduction is effective inside the bandwidth of the controller.
|
||||
</p>
|
||||
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
<div id="postamble" class="status">
|
||||
<p class="author">Author: Dehaeze Thomas</p>
|
||||
<p class="date">Created: 2021-11-30 mar. 11:44</p>
|
||||
<p class="date">Created: 2021-11-30 mar. 15:17</p>
|
||||
</div>
|
||||
</body>
|
||||
</html>
|
||||
|
Reference in New Issue
Block a user