dcm-metrology/dcm_metrology.html
2022-02-15 14:24:11 +01:00

1185 lines
52 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
<head>
<!-- 2022-02-15 mar. 14:24 -->
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
<title>ESRF Double Crystal Monochromator - Metrology</title>
<meta name="author" content="Dehaeze Thomas" />
<meta name="generator" content="Org Mode" />
<link rel="stylesheet" type="text/css" href="https://research.tdehaeze.xyz/css/style.css"/>
<script type="text/javascript" src="https://research.tdehaeze.xyz/js/script.js"></script>
<script>
MathJax = {
svg: {
scale: 1,
fontCache: "global"
},
tex: {
tags: "ams",
multlineWidth: "%MULTLINEWIDTH",
tagSide: "right",
macros: {bm: ["\\boldsymbol{#1}",1],},
tagIndent: ".8em"
}
};
</script>
<script id="MathJax-script" async
src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-svg.js"></script>
</head>
<body>
<div id="org-div-home-and-up">
<a accesskey="h" href="../index.html"> UP </a>
|
<a accesskey="H" href="../index.html"> HOME </a>
</div><div id="content" class="content">
<h1 class="title">ESRF Double Crystal Monochromator - Metrology</h1>
<div id="table-of-contents" role="doc-toc">
<h2>Table of Contents</h2>
<div id="text-table-of-contents" role="doc-toc">
<ul>
<li><a href="#orgaef5215">1. Metrology Concept</a>
<ul>
<li><a href="#orgf37f320">1.1. Sensor Topology</a></li>
<li><a href="#org5885e87">1.2. Crystal&rsquo;s motion computation</a></li>
</ul>
</li>
<li><a href="#orgbd4189c">2. Relation Between Crystal position and X-ray measured displacement</a>
<ul>
<li><a href="#org4354fd2">2.1. Setup</a></li>
<li><a href="#org5f1afb1">2.2. Relation between second crystal motion and beam motion</a>
<ul>
<li><a href="#orgb32e3d5">2.2.1. Axial motion of second crystal</a></li>
<li><a href="#org0384f71">2.2.2. Ry motion of second crystal</a></li>
<li><a href="#orgd24e210">2.2.3. Rx motion of second crystal</a></li>
</ul>
</li>
</ul>
</li>
<li><a href="#org6a22c1e">3. Deformations of the Metrology Frame</a>
<ul>
<li><a href="#orgcce8dad">3.1. Measurement Setup</a></li>
<li><a href="#orgb46a706">3.2. Simulations</a></li>
<li><a href="#org558e635">3.3. Comparison</a></li>
<li><a href="#org761444e">3.4. Test</a></li>
<li><a href="#org62fbba2">3.5. Measured frame deformation</a></li>
<li><a href="#org74b4de2">3.6. Test</a></li>
<li><a href="#org0717d49">3.7. Repeatability of frame deformation</a></li>
</ul>
</li>
<li><a href="#orga9f44b6">4. Attocube - Periodic Non-Linearity</a>
<ul>
<li><a href="#org0260dd3">4.1. Measurement Setup</a></li>
<li><a href="#org4d2d3da">4.2. Choice of the reference signal</a></li>
<li><a href="#orge3e9949">4.3. Repeatability of the non-linearity</a></li>
<li><a href="#orgf603009">4.4. Simulation</a></li>
<li><a href="#org5650b5e">4.5. Measurements</a></li>
</ul>
</li>
<li><a href="#orgd3e86f0">Bibliography</a></li>
</ul>
</div>
</div>
<hr>
<p>This report is also available as a <a href="./dcm-metrology.pdf">pdf</a>.</p>
<hr>
<p>
In this document, the metrology system is studied.
First, in Section <a href="#org87bd702">1</a> the goal of the metrology system is stated and the proposed concept is described.
In order to increase the accuracy of the metrology system, two problems are to be dealt with:
</p>
<ul class="org-ul">
<li>The deformation of the metrology frame under the action of gravity (Section <a href="#org53634bb">3</a>)</li>
<li>The periodic non-linearity of the interferometers (Section <a href="#orgb874772">4</a>)</li>
</ul>
<div id="outline-container-orgaef5215" class="outline-2">
<h2 id="orgaef5215"><span class="section-number-2">1.</span> Metrology Concept</h2>
<div class="outline-text-2" id="text-1">
<p>
<a id="org87bd702"></a>
</p>
<p>
The goal of the metrology system is to measure the distance and default of parallelism orientation between the first and second crystals
</p>
<p>
Only 3 degrees of freedom are of interest:
</p>
<ul class="org-ul">
<li>\(d_z\)</li>
<li>\(r_y\)</li>
<li>\(r_x\)</li>
</ul>
</div>
<div id="outline-container-orgf37f320" class="outline-3">
<h3 id="orgf37f320"><span class="section-number-3">1.1.</span> Sensor Topology</h3>
<div class="outline-text-3" id="text-1-1">
<p>
In order to measure the relative pose of the two crystals, instead of performing a direct measurement which is complicated, the pose of the two crystals are measured from a metrology frame.
Three interferometers are used to measured the 3dof of interest for each crystals.
Three additional interferometers are used to measured the relative motion of the metrology frame.
</p>
<table id="org3d1cf86" border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
<caption class="t-above"><span class="table-number">Table 1:</span> Notations for the metrology frame</caption>
<colgroup>
<col class="org-left" />
<col class="org-left" />
</colgroup>
<thead>
<tr>
<th scope="col" class="org-left">Notation</th>
<th scope="col" class="org-left">Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td class="org-left"><code>d</code></td>
<td class="org-left">&ldquo;Downstream&rdquo;: Positive X</td>
</tr>
<tr>
<td class="org-left"><code>u</code></td>
<td class="org-left">&ldquo;Upstream&rdquo;: Negative X</td>
</tr>
<tr>
<td class="org-left"><code>h</code></td>
<td class="org-left">&ldquo;Hall&rdquo;: Positive Y</td>
</tr>
<tr>
<td class="org-left"><code>r</code></td>
<td class="org-left">&ldquo;Ring&rdquo;: Negative Y</td>
</tr>
<tr>
<td class="org-left"><code>f</code></td>
<td class="org-left">&ldquo;Frame&rdquo;</td>
</tr>
<tr>
<td class="org-left"><code>1</code></td>
<td class="org-left">&ldquo;First Crystals&rdquo;</td>
</tr>
<tr>
<td class="org-left"><code>2</code></td>
<td class="org-left">&ldquo;Second Crystals&rdquo;</td>
</tr>
</tbody>
</table>
<div id="org9711544" class="figure">
<p><img src="figs/metrology_schematic.png" alt="metrology_schematic.png" />
</p>
<p><span class="figure-number">Figure 1: </span>Schematic of the Metrology System</p>
</div>
</div>
</div>
<div id="outline-container-org5885e87" class="outline-3">
<h3 id="org5885e87"><span class="section-number-3">1.2.</span> Crystal&rsquo;s motion computation</h3>
<div class="outline-text-3" id="text-1-2">
<p>
From the raw interferometric measurements, the pose between the first and second crystals can be computed.
</p>
<p>
First, Jacobian matrices can be used to convert raw interferometer measurements to axial displacement and orientation of the crystals and metrology frame.
</p>
<p>
For the 311 crystals:
</p>
<table id="orge404fa7" border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
<caption class="t-above"><span class="table-number">Table 2:</span> Table caption</caption>
<colgroup>
<col class="org-left" />
<col class="org-left" />
</colgroup>
<thead>
<tr>
<th scope="col" class="org-left">Notation</th>
<th scope="col" class="org-left">Description</th>
</tr>
</thead>
<tbody>
<tr>
<td class="org-left"><code>um</code></td>
<td class="org-left">Metrology Frame - Upstream</td>
</tr>
<tr>
<td class="org-left"><code>dhm</code></td>
<td class="org-left">Metrology Frame - Downstream Hall</td>
</tr>
<tr>
<td class="org-left"><code>drm</code></td>
<td class="org-left">Metrology Frame - Downstream Ring</td>
</tr>
</tbody>
<tbody>
<tr>
<td class="org-left"><code>ur1</code></td>
<td class="org-left">First Crystal - Upstream Ring</td>
</tr>
<tr>
<td class="org-left"><code>h1</code></td>
<td class="org-left">First Crystal - Hall</td>
</tr>
<tr>
<td class="org-left"><code>dr1</code></td>
<td class="org-left">First Crystal - Downstream Ring</td>
</tr>
</tbody>
<tbody>
<tr>
<td class="org-left"><code>ur2</code></td>
<td class="org-left">First Crystal - Upstream Ring</td>
</tr>
<tr>
<td class="org-left"><code>h2</code></td>
<td class="org-left">First Crystal - Hall</td>
</tr>
<tr>
<td class="org-left"><code>dr2</code></td>
<td class="org-left">First Crystal - Downstream Ring</td>
</tr>
</tbody>
</table>
<table id="org63e9b24" border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
<caption class="t-above"><span class="table-number">Table 3:</span> Table caption</caption>
<colgroup>
<col class="org-left" />
<col class="org-left" />
</colgroup>
<thead>
<tr>
<th scope="col" class="org-left">Notation</th>
<th scope="col" class="org-left">Description</th>
</tr>
</thead>
<tbody>
<tr>
<td class="org-left"><code>dzm</code></td>
<td class="org-left">Positive: increase of distance</td>
</tr>
<tr>
<td class="org-left"><code>rym</code></td>
<td class="org-left">&#xa0;</td>
</tr>
<tr>
<td class="org-left"><code>rxm</code></td>
<td class="org-left">&#xa0;</td>
</tr>
</tbody>
<tbody>
<tr>
<td class="org-left"><code>dz1</code></td>
<td class="org-left">Positive: decrease of distance</td>
</tr>
<tr>
<td class="org-left"><code>ry1</code></td>
<td class="org-left">&#xa0;</td>
</tr>
<tr>
<td class="org-left"><code>rx1</code></td>
<td class="org-left">&#xa0;</td>
</tr>
</tbody>
<tbody>
<tr>
<td class="org-left"><code>dz2</code></td>
<td class="org-left">Positive: increase of distance</td>
</tr>
<tr>
<td class="org-left"><code>ry2</code></td>
<td class="org-left">&#xa0;</td>
</tr>
<tr>
<td class="org-left"><code>rx2</code></td>
<td class="org-left">&#xa0;</td>
</tr>
</tbody>
</table>
<div id="orge037408" class="figure">
<p><img src="figs/schematic_sensor_jacobian_forward_kinematics_m.png" alt="schematic_sensor_jacobian_forward_kinematics_m.png" />
</p>
<p><span class="figure-number">Figure 2: </span>Forward Kinematics for the Metrology frame</p>
</div>
<div id="org1a9f1c4" class="figure">
<p><img src="figs/schematic_sensor_jacobian_forward_kinematics_1.png" alt="schematic_sensor_jacobian_forward_kinematics_1.png" />
</p>
<p><span class="figure-number">Figure 3: </span>Forward Kinematics for the 1st crystal</p>
</div>
<div id="org0f56bf7" class="figure">
<p><img src="figs/schematic_sensor_jacobian_forward_kinematics_2.png" alt="schematic_sensor_jacobian_forward_kinematics_2.png" />
</p>
<p><span class="figure-number">Figure 4: </span>Forward Kinematics for the 2nd crystal</p>
</div>
<p>
Then, the displacement and orientations can be combined as follows:
</p>
\begin{align}
d_{z} &= + d_{z1} - d_{z2} + d_{zm} \\
d_{r_y} &= - r_{y1} + r_{y2} - r_{ym} \\
d_{r_x} &= - r_{x1} + r_{x2} - r_{xm}
\end{align}
<p>
Therefore:
</p>
<ul class="org-ul">
<li>\(d_z\) represents the distance between the two crystals</li>
<li>\(d_{r_y}\) represents the rotation of the second crystal w.r.t. the first crystal around \(y\) axis</li>
<li>\(d_{r_x}\) represents the rotation of the second crystal w.r.t. the first crystal around \(x\) axis</li>
</ul>
<p>
If \(d_{r_y}\) is positive, the second crystal has a positive rotation around \(y\) w.r.t. the first crystal.
Therefore, the second crystal should be actuated such that it is making a negative rotation around \(y\) w.r.t. metrology frame.
</p>
<p>
The Jacobian matrices are defined as follow:
</p>
<div class="org-src-container">
<pre class="src src-matlab"><span class="org-matlab-cellbreak">%% Sensor Jacobian matrix for the metrology frame</span>
J_m = [1, 0.102, 0
1, <span class="org-builtin">-</span>0.088, 0.1275
1, <span class="org-builtin">-</span>0.088, <span class="org-builtin">-</span>0.1275];
<span class="org-matlab-cellbreak">%% Sensor Jacobian matrix for 1st "111" crystal</span>
J_s_111_1 = [<span class="org-builtin">-</span>1, <span class="org-builtin">-</span>0.036, <span class="org-builtin">-</span>0.015
<span class="org-builtin">-</span>1, 0, 0.015
<span class="org-builtin">-</span>1, 0.036, <span class="org-builtin">-</span>0.015];
<span class="org-matlab-cellbreak">%% Sensor Jacobian matrix for 2nd "111" crystal</span>
J_s_111_2 = [1, 0.07, 0.015
1, 0, <span class="org-builtin">-</span>0.015
1, <span class="org-builtin">-</span>0.07, 0.015];
</pre>
</div>
<p>
Therefore, the matrix that gives the relative pose of the crystal from the 9 interferometers is:
</p>
<div class="org-src-container">
<pre class="src src-matlab"><span class="org-matlab-cellbreak">%% Compute the transformation matrix</span>
G_111_t = [<span class="org-builtin">-</span>inv(J_s_111_1), inv(J_s_111_2), <span class="org-builtin">-</span>inv(J_m)];
<span class="org-comment-delimiter">% </span><span class="org-comment">Sign convention for the axial motion</span>
G_111_t(1,<span class="org-builtin">:</span>) = <span class="org-builtin">-</span>G_111_t(1,<span class="org-builtin">:</span>);
</pre>
</div>
<table id="org86cb035" border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
<caption class="t-above"><span class="table-number">Table 4:</span> Transformation Matrix</caption>
<colgroup>
<col class="org-left" />
<col class="org-right" />
<col class="org-right" />
<col class="org-right" />
<col class="org-right" />
<col class="org-right" />
<col class="org-right" />
<col class="org-right" />
<col class="org-right" />
<col class="org-right" />
</colgroup>
<thead>
<tr>
<th scope="col" class="org-left">&#xa0;</th>
<th scope="col" class="org-right"><code>ur1</code> [nm]</th>
<th scope="col" class="org-right"><code>h1</code> [nm]</th>
<th scope="col" class="org-right"><code>dr1</code> [nm]</th>
<th scope="col" class="org-right"><code>ur2</code> [nm]</th>
<th scope="col" class="org-right"><code>h2</code> [nm]</th>
<th scope="col" class="org-right"><code>dr1</code> [nm]</th>
<th scope="col" class="org-right"><code>um</code> [nm]</th>
<th scope="col" class="org-right"><code>dhm</code> [nm]</th>
<th scope="col" class="org-right"><code>drm</code> [nm]</th>
</tr>
</thead>
<tbody>
<tr>
<td class="org-left"><code>dz</code> [nm]</td>
<td class="org-right">-0.25</td>
<td class="org-right">-0.5</td>
<td class="org-right">-0.25</td>
<td class="org-right">-0.25</td>
<td class="org-right">-0.5</td>
<td class="org-right">-0.25</td>
<td class="org-right">0.463</td>
<td class="org-right">0.268</td>
<td class="org-right">0.268</td>
</tr>
<tr>
<td class="org-left"><code>rx</code> [nrad]</td>
<td class="org-right">13.889</td>
<td class="org-right">0.0</td>
<td class="org-right">-13.889</td>
<td class="org-right">7.143</td>
<td class="org-right">0.0</td>
<td class="org-right">-7.143</td>
<td class="org-right">-5.263</td>
<td class="org-right">2.632</td>
<td class="org-right">2.632</td>
</tr>
<tr>
<td class="org-left"><code>ry</code> [nrad]</td>
<td class="org-right">16.667</td>
<td class="org-right">-33.333</td>
<td class="org-right">16.667</td>
<td class="org-right">16.667</td>
<td class="org-right">-33.333</td>
<td class="org-right">16.667</td>
<td class="org-right">0.0</td>
<td class="org-right">-3.922</td>
<td class="org-right">3.922</td>
</tr>
</tbody>
</table>
<p>
From table <a href="#org0f56bf7">4</a>, we can determine the effect of each interferometer on the estimated relative pose between the crystals.
For instance, an error on <code>dr1</code> will have much greater impact on <code>ry</code> than an error on <code>drm</code>.
</p>
</div>
</div>
</div>
<div id="outline-container-orgbd4189c" class="outline-2">
<h2 id="orgbd4189c"><span class="section-number-2">2.</span> Relation Between Crystal position and X-ray measured displacement</h2>
<div class="outline-text-2" id="text-2">
</div>
<div id="outline-container-org4354fd2" class="outline-3">
<h3 id="org4354fd2"><span class="section-number-3">2.1.</span> Setup</h3>
<div class="outline-text-3" id="text-2-1">
<div id="orgda607d7" class="figure">
<p><img src="figs/calibration_setup.png" alt="calibration_setup.png" />
</p>
<p><span class="figure-number">Figure 5: </span>Schematic of the setup</p>
</div>
<p>
Detector:
</p>
<p>
<a href="https://www.baslerweb.com/en/products/cameras/area-scan-cameras/ace/aca1920-40gc/">https://www.baslerweb.com/en/products/cameras/area-scan-cameras/ace/aca1920-40gc/</a>
</p>
<p>
Pixel size depends on the magnification used (1x, 6x, 12x).
</p>
<p>
Pixel size of camera is 5.86 um x 5.86 um.
With typical magnification of 6x, pixel size is ~1.44um x 1.44um
</p>
<p>
Frame rate is: 42 fps
</p>
</div>
</div>
<div id="outline-container-org5f1afb1" class="outline-3">
<h3 id="org5f1afb1"><span class="section-number-3">2.2.</span> Relation between second crystal motion and beam motion</h3>
<div class="outline-text-3" id="text-2-2">
</div>
<div id="outline-container-orgb32e3d5" class="outline-4">
<h4 id="orgb32e3d5"><span class="section-number-4">2.2.1.</span> Axial motion of second crystal</h4>
<div class="outline-text-4" id="text-2-2-1">
<p>
Let&rsquo;s consider the relation between the \([y, z]\) motion of the beam and the motion of the second crystal \([z^\prime, R_{y^\prime}, R_{x^\prime}]\).
</p>
<div id="org4f4a872" class="figure">
<p><img src="figs/relation_dz_output_beam.png" alt="relation_dz_output_beam.png" />
</p>
<p><span class="figure-number">Figure 6: </span>Relation between \(d_{z^\prime}\) motion of the second crystal and vertical motion of the beam</p>
</div>
\begin{equation}
d_z = d_{z^\prime} 2 \cos \theta
\end{equation}
<div id="orge98fcce" class="figure">
<p><img src="figs/relation_vert_motion_crystal_beam.png" alt="relation_vert_motion_crystal_beam.png" />
</p>
<p><span class="figure-number">Figure 7: </span>Relation between vertical motion of the second crystal and vertical motion of the output beam</p>
</div>
</div>
</div>
<div id="outline-container-org0384f71" class="outline-4">
<h4 id="org0384f71"><span class="section-number-4">2.2.2.</span> Ry motion of second crystal</h4>
<div class="outline-text-4" id="text-2-2-2">
\begin{equation}
d_z = D_{\text{vlm}} d_{R_y^\prime}
\end{equation}
<p>
with \(D_{\text{vlm}} \approx 10\,m\).
</p>
</div>
</div>
<div id="outline-container-orgd24e210" class="outline-4">
<h4 id="orgd24e210"><span class="section-number-4">2.2.3.</span> Rx motion of second crystal</h4>
<div class="outline-text-4" id="text-2-2-3">
\begin{equation}
d_y = 2 D_{\text{vlm}} \sin \theta \cdot d_{R_x^\prime}
\end{equation}
</div>
</div>
</div>
</div>
<div id="outline-container-org6a22c1e" class="outline-2">
<h2 id="org6a22c1e"><span class="section-number-2">3.</span> Deformations of the Metrology Frame</h2>
<div class="outline-text-2" id="text-3">
<p>
<a id="org53634bb"></a>
</p>
<p>
The transformation matrix in Table <a href="#org86cb035">4</a> is valid only if the metrology frames are solid bodies.
</p>
<p>
The metrology frame itself is experiencing some deformations due to the gravity.
When the bragg axis is scanned, the effect of gravity on the metrology frame is changing and this introduce some measurement errors.
</p>
<p>
This can be calibrated.
</p>
</div>
<div id="outline-container-orgcce8dad" class="outline-3">
<h3 id="orgcce8dad"><span class="section-number-3">3.1.</span> Measurement Setup</h3>
<div class="outline-text-3" id="text-3-1">
<p>
Two beam viewers:
</p>
<ul class="org-ul">
<li>one close to the DCM to measure position of the beam</li>
<li>one far away to the DCM to measure orientation of the beam</li>
</ul>
<p>
For each Bragg angle, the Fast Jacks are actuated to that the beam is at the center of the beam viewer.
Then, then position of the crystals as measured by the interferometers is recorded.
This position is the wanted position for a given Bragg angle.
</p>
</div>
</div>
<div id="outline-container-orgb46a706" class="outline-3">
<h3 id="orgb46a706"><span class="section-number-3">3.2.</span> Simulations</h3>
<div class="outline-text-3" id="text-3-2">
<p>
The deformations of the metrology frame and therefore the expected interferometric measurements can be computed as a function of the Bragg angle.
This may be done using FE software.
</p>
</div>
</div>
<div id="outline-container-org558e635" class="outline-3">
<h3 id="org558e635"><span class="section-number-3">3.3.</span> Comparison</h3>
</div>
<div id="outline-container-org761444e" class="outline-3">
<h3 id="org761444e"><span class="section-number-3">3.4.</span> Test</h3>
<div class="outline-text-3" id="text-3-4">
<div class="org-src-container">
<pre class="src src-matlab">aa = importdata(<span class="org-string">"correctInterf-vlm-220201.dat"</span>);
</pre>
</div>
<div class="org-src-container">
<pre class="src src-matlab"><span class="org-builtin">figure</span>;
<span class="org-builtin">plot</span>(aa.data(<span class="org-builtin">:</span>,1), aa.data(<span class="org-builtin">:</span>,24))
</pre>
</div>
</div>
</div>
<div id="outline-container-org62fbba2" class="outline-3">
<h3 id="org62fbba2"><span class="section-number-3">3.5.</span> Measured frame deformation</h3>
<div class="outline-text-3" id="text-3-5">
<div class="org-src-container">
<pre class="src src-matlab">data = table2array(readtable(<span class="org-string">'itf_polynom.csv'</span>,<span class="org-string">'NumHeaderLines'</span>,1));
th = <span class="org-matlab-math">pi</span><span class="org-builtin">/</span>180<span class="org-builtin">*</span>data(<span class="org-builtin">:</span>,1); <span class="org-comment-delimiter">% </span><span class="org-comment">[rad]</span>
fj = 0.030427 <span class="org-builtin">-</span> 10.51e<span class="org-builtin">-</span>3<span class="org-builtin">./</span>(2<span class="org-builtin">*</span>cos(th)); <span class="org-comment-delimiter">% </span><span class="org-comment">[m]</span>
rx2 = 1e<span class="org-builtin">-</span>9<span class="org-builtin">*</span>data(<span class="org-builtin">:</span>,2); <span class="org-comment-delimiter">% </span><span class="org-comment">[rad]</span>
ry2 = 1e<span class="org-builtin">-</span>9<span class="org-builtin">*</span>data(<span class="org-builtin">:</span>,3); <span class="org-comment-delimiter">% </span><span class="org-comment">[rad]</span>
rx1 = 1e<span class="org-builtin">-</span>9<span class="org-builtin">*</span>data(<span class="org-builtin">:</span>,4); <span class="org-comment-delimiter">% </span><span class="org-comment">[rad]</span>
ry1 = 1e<span class="org-builtin">-</span>9<span class="org-builtin">*</span>data(<span class="org-builtin">:</span>,5); <span class="org-comment-delimiter">% </span><span class="org-comment">[rad]</span>
</pre>
</div>
<div class="org-src-container">
<pre class="src src-matlab"><span class="org-builtin">figure</span>;
<span class="org-builtin">hold</span> <span class="org-matlab-commanddual-string">on;</span>
<span class="org-builtin">plot</span>(180<span class="org-builtin">/</span><span class="org-matlab-math">pi</span><span class="org-builtin">*</span>th, 1e6<span class="org-builtin">*</span>detrend(<span class="org-builtin">-</span>rx2, 1), <span class="org-string">'.'</span>)
<span class="org-comment-delimiter">% </span><span class="org-comment">plot(180/pi*th, detrend(ry2, 1))</span>
<span class="org-comment-delimiter">% </span><span class="org-comment">plot(180/pi*th, detrend(rx1, 1))</span>
<span class="org-comment-delimiter">% </span><span class="org-comment">plot(180/pi*th, detrend(ry1, 1))</span>
<span class="org-builtin">hold</span> <span class="org-matlab-commanddual-string">off;</span>
<span class="org-builtin">xlabel</span>(<span class="org-string">'Bragg Angle [deg]'</span>);
<span class="org-builtin">ylabel</span>(<span class="org-string">'Measured $R_x$ [$\mu$rad]'</span>)
<span class="org-builtin">xlim</span>([10, 75]);
</pre>
</div>
<div id="org5208242" class="figure">
<p><img src="figs/calibration_drx_pres.png" alt="calibration_drx_pres.png" />
</p>
<p><span class="figure-number">Figure 8: </span>description</p>
</div>
<p>
Strange that there is correlation between Rx and Ry.
</p>
<div class="org-src-container">
<pre class="src src-matlab"><span class="org-builtin">figure</span>;
<span class="org-builtin">hold</span> <span class="org-matlab-commanddual-string">on;</span>
<span class="org-builtin">plot</span>(108<span class="org-builtin">/</span><span class="org-matlab-math">pi</span><span class="org-builtin">*</span>th, 1e9<span class="org-builtin">*</span>detrend(rx1, 0), <span class="org-string">'-'</span>, <span class="org-string">'DisplayName'</span>, <span class="org-string">'$Rx_1$'</span>)
<span class="org-builtin">plot</span>(108<span class="org-builtin">/</span><span class="org-matlab-math">pi</span><span class="org-builtin">*</span>th, 1e9<span class="org-builtin">*</span>detrend(ry1, 0), <span class="org-string">'-'</span>, <span class="org-string">'DisplayName'</span>, <span class="org-string">'$Ry_1$'</span>)
<span class="org-builtin">hold</span> <span class="org-matlab-commanddual-string">off;</span>
<span class="org-builtin">xlabel</span>(<span class="org-string">'Bragg Angle [deg]'</span>); <span class="org-builtin">ylabel</span>(<span class="org-string">'Angle Offset [nrad]'</span>);
<span class="org-builtin">legend</span>()
</pre>
</div>
<div class="org-src-container">
<pre class="src src-matlab"><span class="org-builtin">figure</span>;
<span class="org-builtin">hold</span> <span class="org-matlab-commanddual-string">on;</span>
<span class="org-builtin">plot</span>(1e3<span class="org-builtin">*</span>fj, detrend(rx2, 1), <span class="org-string">'DisplayName'</span>, <span class="org-string">'$Rx_1$'</span>)
<span class="org-builtin">plot</span>(1e3<span class="org-builtin">*</span>fj, detrend(ry2, 1), <span class="org-string">'DisplayName'</span>, <span class="org-string">'$Ry_1$'</span>)
<span class="org-builtin">hold</span> <span class="org-matlab-commanddual-string">off;</span>
<span class="org-builtin">xlabel</span>(<span class="org-string">'Fast Jack Displacement [mm]'</span>); <span class="org-builtin">ylabel</span>(<span class="org-string">'Angle Offset [nrad]'</span>);
<span class="org-builtin">legend</span>()
</pre>
</div>
<div class="org-src-container">
<pre class="src src-matlab"><span class="org-matlab-cellbreak">%% Compute best polynomial fit</span>
f_rx2 = fit(180<span class="org-builtin">/</span><span class="org-matlab-math">pi</span><span class="org-builtin">*</span>th, 1e9<span class="org-builtin">*</span>rx2, <span class="org-string">'poly4'</span>);
f_ry2 = fit(180<span class="org-builtin">/</span><span class="org-matlab-math">pi</span><span class="org-builtin">*</span>th, 1e9<span class="org-builtin">*</span>ry2, <span class="org-string">'poly4'</span>);
f_rx1 = fit(180<span class="org-builtin">/</span><span class="org-matlab-math">pi</span><span class="org-builtin">*</span>th, 1e9<span class="org-builtin">*</span>rx1, <span class="org-string">'poly4'</span>);
f_ry1 = fit(180<span class="org-builtin">/</span><span class="org-matlab-math">pi</span><span class="org-builtin">*</span>th, 1e9<span class="org-builtin">*</span>ry1, <span class="org-string">'poly4'</span>);
</pre>
</div>
<div class="org-src-container">
<pre class="src src-matlab"><span class="org-builtin">figure</span>;
<span class="org-builtin">hold</span> <span class="org-matlab-commanddual-string">on;</span>
<span class="org-builtin">plot</span>(180<span class="org-builtin">/</span><span class="org-matlab-math">pi</span><span class="org-builtin">*</span>th, f_rx2(180<span class="org-builtin">/</span><span class="org-matlab-math">pi</span><span class="org-builtin">*</span>th))
<span class="org-builtin">plot</span>(180<span class="org-builtin">/</span><span class="org-matlab-math">pi</span><span class="org-builtin">*</span>th, f_ry2(180<span class="org-builtin">/</span><span class="org-matlab-math">pi</span><span class="org-builtin">*</span>th))
<span class="org-builtin">plot</span>(180<span class="org-builtin">/</span><span class="org-matlab-math">pi</span><span class="org-builtin">*</span>th, f_rx1(180<span class="org-builtin">/</span><span class="org-matlab-math">pi</span><span class="org-builtin">*</span>th))
<span class="org-builtin">plot</span>(180<span class="org-builtin">/</span><span class="org-matlab-math">pi</span><span class="org-builtin">*</span>th, f_ry1(180<span class="org-builtin">/</span><span class="org-matlab-math">pi</span><span class="org-builtin">*</span>th))
<span class="org-builtin">hold</span> <span class="org-matlab-commanddual-string">off;</span>
</pre>
</div>
<div class="org-src-container">
<pre class="src src-matlab"><span class="org-builtin">figure</span>;
<span class="org-builtin">hold</span> <span class="org-matlab-commanddual-string">on;</span>
<span class="org-builtin">plot</span>(th, f_rx2(th) <span class="org-builtin">-</span> rx2)
<span class="org-builtin">plot</span>(th, f_ry2(th) <span class="org-builtin">-</span> ry2)
<span class="org-builtin">plot</span>(th, f_rx1(th) <span class="org-builtin">-</span> rx1)
<span class="org-builtin">plot</span>(th, f_ry1(th) <span class="org-builtin">-</span> ry1)
<span class="org-builtin">hold</span> <span class="org-matlab-commanddual-string">off;</span>
</pre>
</div>
<div class="org-src-container">
<pre class="src src-matlab"><span class="org-builtin">figure</span>;
<span class="org-builtin">hold</span> <span class="org-matlab-commanddual-string">on;</span>
<span class="org-builtin">plot</span>(th, f(th))
<span class="org-builtin">plot</span>(th, rx2, <span class="org-string">'.'</span>)
</pre>
</div>
</div>
</div>
<div id="outline-container-org74b4de2" class="outline-3">
<h3 id="org74b4de2"><span class="section-number-3">3.6.</span> Test</h3>
<div class="outline-text-3" id="text-3-6">
<div class="org-src-container">
<pre class="src src-matlab">filename = <span class="org-string">"/home/thomas/mnt/data_id21/22Jan/blc13550/id21/test_xtal1_interf/test_xtal1_interf_0001/test_xtal1_interf_0001.h5"</span>;
</pre>
</div>
<div class="org-src-container">
<pre class="src src-matlab">data = struct();
data.xtal1_111_u = double(h5read(filename, <span class="org-string">'/7.1/instrument/FPGA1_SSIM4/data'</span>));
data.xtal1_111_m = double(h5read(filename, <span class="org-string">'/7.1/instrument/FPGA1_SSIM5/data'</span>));
data.xtal1_111_d = double(h5read(filename, <span class="org-string">'/7.1/instrument/FPGA1_SSIM6/data'</span>));
data.mframe_u = double(h5read(filename, <span class="org-string">'/7.1/instrument/FPGA2_SSIM3/data'</span>));
data.mframe_dh = double(h5read(filename, <span class="org-string">'/7.1/instrument/FPGA2_SSIM4/data'</span>));
data.mframe_dr = double(h5read(filename, <span class="org-string">'/7.1/instrument/FPGA2_SSIM5/data'</span>));
data.bragg = (<span class="org-matlab-math">pi</span><span class="org-builtin">/</span>180)<span class="org-builtin">*</span>double(h5read(filename, <span class="org-string">'/7.1/instrument/FPGA2_SSIM6/data'</span>));
data.fj_pos = 0.030427 <span class="org-builtin">-</span> 10.5e<span class="org-builtin">-</span>3<span class="org-builtin">./</span>(2<span class="org-builtin">*</span>cos(data.bragg));
data.time = double(h5read(filename, <span class="org-string">'/7.1/instrument/time/data'</span>));
data.rx = 1e<span class="org-builtin">-</span>9<span class="org-builtin">*</span>double(h5read(filename, <span class="org-string">'/7.1/instrument/xtal1_111_rx/data'</span>));
data.ry = 1e<span class="org-builtin">-</span>9<span class="org-builtin">*</span>double(h5read(filename, <span class="org-string">'/7.1/instrument/xtal1_111_ry/data'</span>));
data.z = 1e<span class="org-builtin">-</span>9<span class="org-builtin">*</span>double(h5read(filename, <span class="org-string">'/7.1/instrument/xtal1_111_z/data'</span>));
data.drx = 1e<span class="org-builtin">-</span>9<span class="org-builtin">*</span>double(h5read(filename, <span class="org-string">'/7.1/instrument/xtal_111_drx_filter/data'</span>));
data.dry = 1e<span class="org-builtin">-</span>9<span class="org-builtin">*</span>double(h5read(filename, <span class="org-string">'/7.1/instrument/xtal_111_dry_filter/data'</span>));
data.dz = 1e<span class="org-builtin">-</span>9<span class="org-builtin">*</span>double(h5read(filename, <span class="org-string">'/7.1/instrument/xtal_111_dz_filter/data'</span>));
data.xtal2_111_u = double(h5read(filename, <span class="org-string">'/7.1/instrument/FPGA1_SSIM10/data'</span>))<span class="org-builtin">+</span>10.5e6<span class="org-builtin">./</span>(2<span class="org-builtin">*</span>cos(data.bragg));
data.xtal2_111_m = double(h5read(filename, <span class="org-string">'/7.1/instrument/FPGA2_SSIM1/data'</span>))<span class="org-builtin">+</span>10.5e6<span class="org-builtin">./</span>(2<span class="org-builtin">*</span>cos(data.bragg));
data.xtal2_111_d = double(h5read(filename, <span class="org-string">'/7.1/instrument/FPGA2_SSIM2/data'</span>))<span class="org-builtin">+</span>10.5e6<span class="org-builtin">./</span>(2<span class="org-builtin">*</span>cos(data.bragg));
</pre>
</div>
<div id="org3f0f3e9" class="figure">
<p><img src="figs/drifts_xtal2_detrend.png" alt="drifts_xtal2_detrend.png" />
</p>
<p><span class="figure-number">Figure 9: </span>Drifts of the second crystal as a function of Bragg Angle</p>
</div>
<div class="org-src-container">
<pre class="src src-matlab"><span class="org-builtin">figure</span>;
<span class="org-builtin">hold</span> <span class="org-matlab-commanddual-string">on;</span>
<span class="org-builtin">plot</span>(108<span class="org-builtin">/</span><span class="org-matlab-math">pi</span><span class="org-builtin">*</span>data.bragg, data.drx)
<span class="org-builtin">plot</span>(108<span class="org-builtin">/</span><span class="org-matlab-math">pi</span><span class="org-builtin">*</span>data.bragg, data.dry)
<span class="org-builtin">hold</span> <span class="org-matlab-commanddual-string">off;</span>
</pre>
</div>
</div>
</div>
<div id="outline-container-org0717d49" class="outline-3">
<h3 id="org0717d49"><span class="section-number-3">3.7.</span> Repeatability of frame deformation</h3>
<div class="outline-text-3" id="text-3-7">
<div class="org-src-container">
<pre class="src src-matlab">filename = <span class="org-string">"/home/thomas/mnt/data_id21/22Jan/blc13550/id21/test_xtal1_interf/test_xtal1_interf_0001/test_xtal1_interf_0001.h5"</span>;
</pre>
</div>
<div class="org-src-container">
<pre class="src src-matlab">data_1 = struct();
data_1.time = double(h5read(filename, <span class="org-string">'/7.1/instrument/time/data'</span>));
data_1.bragg = (<span class="org-matlab-math">pi</span><span class="org-builtin">/</span>180)<span class="org-builtin">*</span>double(h5read(filename, <span class="org-string">'/7.1/instrument/FPGA2_SSIM6/data'</span>));
data_1.fj_pos = 0.030427 <span class="org-builtin">-</span> 10.5e<span class="org-builtin">-</span>3<span class="org-builtin">./</span>(2<span class="org-builtin">*</span>cos(data_1.bragg));
data_1.xtal1_111_u = double(h5read(filename, <span class="org-string">'/7.1/instrument/FPGA1_SSIM4/data'</span>));
data_1.xtal1_111_m = double(h5read(filename, <span class="org-string">'/7.1/instrument/FPGA1_SSIM5/data'</span>));
data_1.xtal1_111_d = double(h5read(filename, <span class="org-string">'/7.1/instrument/FPGA1_SSIM6/data'</span>));
data_1.xtal2_111_u = double(h5read(filename, <span class="org-string">'/7.1/instrument/FPGA1_SSIM10/data'</span>))<span class="org-builtin">+</span>10.5e6<span class="org-builtin">./</span>(2<span class="org-builtin">*</span>cos(data_1.bragg));
data_1.xtal2_111_m = double(h5read(filename, <span class="org-string">'/7.1/instrument/FPGA2_SSIM1/data'</span>))<span class="org-builtin">+</span>10.5e6<span class="org-builtin">./</span>(2<span class="org-builtin">*</span>cos(data_1.bragg));
data_1.xtal2_111_d = double(h5read(filename, <span class="org-string">'/7.1/instrument/FPGA2_SSIM2/data'</span>))<span class="org-builtin">+</span>10.5e6<span class="org-builtin">./</span>(2<span class="org-builtin">*</span>cos(data_1.bragg));
data_1.mframe_u = double(h5read(filename, <span class="org-string">'/7.1/instrument/FPGA2_SSIM3/data'</span>));
data_1.mframe_dh = double(h5read(filename, <span class="org-string">'/7.1/instrument/FPGA2_SSIM4/data'</span>));
data_1.mframe_dr = double(h5read(filename, <span class="org-string">'/7.1/instrument/FPGA2_SSIM5/data'</span>));
data_1.drx = 1e<span class="org-builtin">-</span>9<span class="org-builtin">*</span>double(h5read(filename, <span class="org-string">'/7.1/instrument/xtal_111_drx_filter/data'</span>));
data_1.dry = 1e<span class="org-builtin">-</span>9<span class="org-builtin">*</span>double(h5read(filename, <span class="org-string">'/7.1/instrument/xtal_111_dry_filter/data'</span>));
data_1.dz = 1e<span class="org-builtin">-</span>9<span class="org-builtin">*</span>double(h5read(filename, <span class="org-string">'/7.1/instrument/xtal_111_dz_filter/data'</span>));
</pre>
</div>
<div class="org-src-container">
<pre class="src src-matlab">data_2 = struct();
data_2.time = double(h5read(filename, <span class="org-string">'/6.1/instrument/time/data'</span>));
data_2.bragg = (<span class="org-matlab-math">pi</span><span class="org-builtin">/</span>180)<span class="org-builtin">*</span>double(h5read(filename, <span class="org-string">'/6.1/instrument/FPGA2_SSIM6/data'</span>));
data_2.fj_pos = 0.030427 <span class="org-builtin">-</span> 10.5e<span class="org-builtin">-</span>3<span class="org-builtin">./</span>(2<span class="org-builtin">*</span>cos(data_2.bragg));
data_2.xtal1_111_u = double(h5read(filename, <span class="org-string">'/6.1/instrument/FPGA1_SSIM4/data'</span>));
data_2.xtal1_111_m = double(h5read(filename, <span class="org-string">'/6.1/instrument/FPGA1_SSIM5/data'</span>));
data_2.xtal1_111_d = double(h5read(filename, <span class="org-string">'/6.1/instrument/FPGA1_SSIM6/data'</span>));
data_2.xtal2_111_u = double(h5read(filename, <span class="org-string">'/6.1/instrument/FPGA1_SSIM10/data'</span>))<span class="org-builtin">+</span>10.5e6<span class="org-builtin">./</span>(2<span class="org-builtin">*</span>cos(data_2.bragg));
data_2.xtal2_111_m = double(h5read(filename, <span class="org-string">'/6.1/instrument/FPGA2_SSIM1/data'</span>))<span class="org-builtin">+</span>10.5e6<span class="org-builtin">./</span>(2<span class="org-builtin">*</span>cos(data_2.bragg));
data_2.xtal2_111_d = double(h5read(filename, <span class="org-string">'/6.1/instrument/FPGA2_SSIM2/data'</span>))<span class="org-builtin">+</span>10.5e6<span class="org-builtin">./</span>(2<span class="org-builtin">*</span>cos(data_2.bragg));
data_2.mframe_u = double(h5read(filename, <span class="org-string">'/6.1/instrument/FPGA2_SSIM3/data'</span>));
data_2.mframe_dh = double(h5read(filename, <span class="org-string">'/6.1/instrument/FPGA2_SSIM4/data'</span>));
data_2.mframe_dr = double(h5read(filename, <span class="org-string">'/6.1/instrument/FPGA2_SSIM5/data'</span>));
data_2.drx = 1e<span class="org-builtin">-</span>9<span class="org-builtin">*</span>double(h5read(filename, <span class="org-string">'/6.1/instrument/xtal_111_drx_filter/data'</span>));
data_2.dry = 1e<span class="org-builtin">-</span>9<span class="org-builtin">*</span>double(h5read(filename, <span class="org-string">'/6.1/instrument/xtal_111_dry_filter/data'</span>));
data_2.dz = 1e<span class="org-builtin">-</span>9<span class="org-builtin">*</span>double(h5read(filename, <span class="org-string">'/6.1/instrument/xtal_111_dz_filter/data'</span>));
</pre>
</div>
</div>
</div>
</div>
<div id="outline-container-orga9f44b6" class="outline-2">
<h2 id="orga9f44b6"><span class="section-number-2">4.</span> Attocube - Periodic Non-Linearity</h2>
<div class="outline-text-2" id="text-4">
<p>
<a id="orgb874772"></a>
</p>
<p>
Interferometers have some periodic nonlinearity (<a href="#citeproc_bib_item_2">Thurner et al., 2015</a>).
The period is a fraction of the wavelength (usually \(\lambda/2\)) and can be due to polarization mixing, non perfect alignment of the optical components and unwanted reflected beams (See <a href="#citeproc_bib_item_1">Ducourtieux, 2018, p. 67 to 69</a>; <a href="#citeproc_bib_item_2">Thurner et al., 2015</a>).
The amplitude of the nonlinearity can vary from a fraction of a nanometer to tens of nanometers.
</p>
<p>
In the DCM case, when using Attocube interferometers, the period non-linearity are in the order of several nanometers with a period of \(765\,nm\).
This is inducing some positioning errors which are too high.
</p>
<p>
In order to overcome this issue, the periodic non-linearity of the interferometers have to be calibrated.
To do so, a displacement is imposed and measured both by the interferometers and by another metrology system which does not have this nonlinearity.
By comparing the two measured displacements, the nonlinearity can be calibration.
This process is performed over several periods in order to characterize the error over the full stroke.
</p>
</div>
<div id="outline-container-org0260dd3" class="outline-3">
<h3 id="org0260dd3"><span class="section-number-3">4.1.</span> Measurement Setup</h3>
<div class="outline-text-3" id="text-4-1">
<p>
The metrology that will be compared with the interferometers are the strain gauges incorporated in the PI piezoelectric stacks.
</p>
<p>
It is here supposed that the measured displacement by the strain gauges are converted to the displacement at the interferometer locations.
It is also supposed that we are at a certain Bragg angle, and that the stepper motors are not moving: only the piezoelectric actuators are used.
</p>
<div class="note" id="org27af802">
<p>
Note that the strain gauges are measuring the relative displacement of the piezoelectric stacks while the interferometers are measuring the relative motion between the second crystals and the metrology frame.
</p>
<p>
Only the interferometers measuring the second crystal motion can be calibrated here.
</p>
<p>
As any deformations of the metrology frame of deformation of the crystal&rsquo;s support can degrade the quality of the calibration, it is better to perform this calibration without any bragg angle motion.
</p>
</div>
<p>
The setup is schematically with the block diagram in Figure <a href="#orga3308a0">10</a>.
</p>
<p>
The signals are:
</p>
<ul class="org-ul">
<li>\(u\): Reference Signal sent to the PI controller (position where we wish to three stacks to be).
The PI controller takes care or controlling to position as measured by the strain gauges such that it is close to the reference position.</li>
<li>\(d\): Disturbances affecting the position of the crystals</li>
<li>\(y\): Displacement of the crystal as measured by one interferometer</li>
<li>\(y_g\): Measurement of the motion in the frame of the interferometer by the strain gauge with some noise \(n_g\)</li>
<li>\(y_a\): Measurement of the crystal motion by the interferometer with some noise \(n_a\)</li>
</ul>
<div id="orga3308a0" class="figure">
<p><img src="figs/block_diagram_lut_attocube.png" alt="block_diagram_lut_attocube.png" />
</p>
<p><span class="figure-number">Figure 10: </span>Block Diagram schematic of the setup used to measure the periodic non-linearity of the Attocube</p>
</div>
<p>
The problem is to estimate the periodic non-linearity of the Attocube from the imperfect measurements \(y_a\) and \(y_g\).
</p>
</div>
</div>
<div id="outline-container-org4d2d3da" class="outline-3">
<h3 id="org4d2d3da"><span class="section-number-3">4.2.</span> Choice of the reference signal</h3>
<div class="outline-text-3" id="text-4-2">
<p>
The main specifications for the reference signal are;
</p>
<ul class="org-ul">
<li>sweep several periods (i.e. several micrometers)</li>
<li>stay in the linear region of the strain gauge</li>
<li>no excitation of mechanical modes (i.e. the frequency content of the signal should be at low frequency)</li>
<li>no phase shift due to limited bandwidth of both the interferometers and the strain gauge</li>
<li>the full process should be quite fast</li>
</ul>
<p>
The travel range of the piezoelectric stacks is 15 micrometers, the resolution of the strain gauges is 0.3nm and the maximum non-linearity is 0.15%.
If one non-linear period is swept (765nm), the maximum estimation error of the strain gauge is around 1nm.
</p>
<p>
Based on the above discussion, one suitable excitation signal is a sinusoidal sweep with a frequency of 10Hz.
</p>
</div>
</div>
<div id="outline-container-orge3e9949" class="outline-3">
<h3 id="orge3e9949"><span class="section-number-3">4.3.</span> Repeatability of the non-linearity</h3>
<div class="outline-text-3" id="text-4-3">
<p>
Instead of calibrating the non-linear errors of the interferometers over the full fast jack stroke (25mm), one can only calibrate the errors of one period.
</p>
<p>
For that, we need to make sure that the errors are repeatable from one period to the other and also the period should be very precisely estimated (i.e. the wavelength of the laser).
</p>
<p>
Also, the laser wavelength should be very stable (specified at 50ppb).
</p>
<p>
One way to precisely estimate the laser wavelength is to estimate the non linear errors of the interferometer at an initial position, and then to estimate the non linear errors at a large offset, say 10mm.
</p>
</div>
</div>
<div id="outline-container-orgf603009" class="outline-3">
<h3 id="orgf603009"><span class="section-number-3">4.4.</span> Simulation</h3>
<div class="outline-text-3" id="text-4-4">
<p>
Suppose we have a first approximation of the non-linear period.
</p>
<div class="org-src-container">
<pre class="src src-matlab">period_est = 765e<span class="org-builtin">-</span>9; <span class="org-comment-delimiter">% </span><span class="org-comment">Estimated period [m]</span>
</pre>
</div>
<p>
And suppose the real period of the non-linear errors is a little bit above (by 0.02nm):
</p>
<div class="org-src-container">
<pre class="src src-matlab">period_err = 0.02e<span class="org-builtin">-</span>9; <span class="org-comment-delimiter">% </span><span class="org-comment">Error on the period estimation [m]</span>
period_nl = period_est <span class="org-builtin">+</span> period_err; <span class="org-comment-delimiter">% </span><span class="org-comment">Period of the non-linear errors [m]</span>
</pre>
</div>
<p>
The non-linear errors are first estimated at the beginning of the stroke (Figure <a href="#orgefc2a0a">11</a>).
</p>
<div id="orgefc2a0a" class="figure">
<p><img src="figs/non_linear_errors_start_stroke.png" alt="non_linear_errors_start_stroke.png" />
</p>
<p><span class="figure-number">Figure 11: </span>Estimation of the non-linear errors at the beginning of the stroke</p>
</div>
<p>
From this only measurement, it is not possible to estimate with great accuracy the period of the error.
To do so, the same measurement is performed with a stroke of several millimeters (Figure <a href="#org8279c88">12</a>).
</p>
<p>
It can be seen that there is an offset between the estimated and the measured errors.
This is due to a mismatch between the estimated period and the true period of the error.
</p>
<div id="org8279c88" class="figure">
<p><img src="figs/non_linear_errors_middle_stroke.png" alt="non_linear_errors_middle_stroke.png" />
</p>
<p><span class="figure-number">Figure 12: </span>Estimated non-linear errors at a latter position</p>
</div>
<p>
Suppose the non-linear error is characterized by a periodic function \(\mathcal{E}\), to simplify let&rsquo;s take a sinusoidal function (this can be generalized by taking the fourier transform of the function):
</p>
\begin{equation}
\mathcal{E}(x) = \sin\left(\frac{x}{\lambda}\right)
\end{equation}
<p>
with \(x\) the displacement and \(\lambda\) the period of the error.
</p>
<p>
The measured error at \(x_0\) is then:
</p>
\begin{equation}
\mathcal{E}_m(x_0) = \sin\left( \frac{x_0}{\lambda} \right)
\end{equation}
<p>
And the estimated one is:
</p>
\begin{equation}
\mathcal{E}_e(x_0) = \sin \left( \frac{x_0}{\lambda_{\text{est}}} \right)
\end{equation}
<p>
with \(\lambda_{\text{est}}\) the estimated error&rsquo;s period.
</p>
<p>
From Figure <a href="#org8279c88">12</a>, we can see that there is an offset between the two curves.
Let&rsquo;s call this offset \(\epsilon_x\), we then have:
</p>
\begin{equation}
\mathcal{E}_m(x_0) = \mathcal{E}_e(x_0 + \epsilon_x)
\end{equation}
<p>
Which gives us:
</p>
\begin{equation}
\sin\left( \frac{x_0}{\lambda} \right) = \sin \left( \frac{x_0 + \epsilon_x}{\lambda_{\text{est}}} \right)
\end{equation}
<p>
Finally:
</p>
\begin{equation}
\boxed{\lambda = \lambda_{\text{est}} \frac{x_0}{x_0 + \epsilon_x}}
\end{equation}
<p>
The estimated delay is computed:
</p>
<div class="org-src-container">
<pre class="src src-matlab"><span class="org-matlab-cellbreak">%% Estimation of the offset between the estimated and measured errors</span>
i_period = stroke <span class="org-builtin">&gt;</span> 5e<span class="org-builtin">-</span>3<span class="org-builtin">-</span>period_nl<span class="org-builtin">/</span>2 <span class="org-builtin">&amp;</span> stroke <span class="org-builtin">&lt;</span> 5e<span class="org-builtin">-</span>3<span class="org-builtin">+</span>period_nl<span class="org-builtin">/</span>2;
epsilon_x = finddelay(nl_errors(i_period), est_errors(i_period)) <span class="org-comment-delimiter">% </span><span class="org-comment">[m]</span>
</pre>
</div>
<pre class="example">
Estimated delay x0 is -120 [nm]
</pre>
<p>
And the period \(\lambda\) can be estimated:
</p>
<div class="org-src-container">
<pre class="src src-matlab"><span class="org-matlab-cellbreak">%% Computation of the period [m]</span>
period_fin = period_est <span class="org-builtin">*</span> (5e<span class="org-builtin">-</span>3)<span class="org-builtin">/</span>(5e<span class="org-builtin">-</span>3 <span class="org-builtin">+</span> d_offset); <span class="org-comment-delimiter">% </span><span class="org-comment">Estimated period after measurement [m]</span>
</pre>
</div>
<pre class="example">
The estimated period is 765.020 [nm]
</pre>
<p>
And the results confirms that this method is working on paper.
</p>
<p>
When doing this computation, we suppose that there are <b>at most</b> one half period of offset between the estimated and the measured non-linear (to not have any ambiguity whether the estimated period is too large or too small).
Mathematically this means that the displacement \(x_0\) should be smaller than:
</p>
\begin{equation}
x_0 < \frac{1}{2} \cdot \lambda \cdot \frac{\lambda}{\epsilon_\lambda}
\end{equation}
<p>
With \(\epsilon_\lambda\) the absolute estimation error of the period in meters.
</p>
<p>
For instance, if we estimate the error on the period to be less than 0.1nm, the maximum displacement is:
</p>
<div class="org-src-container">
<pre class="src src-matlab"><span class="org-matlab-cellbreak">%% Estimated maximum stroke [m]</span>
max_x0 = 0.5 <span class="org-builtin">*</span> 765e<span class="org-builtin">-</span>9 <span class="org-builtin">*</span> (765e<span class="org-builtin">-</span>9)<span class="org-builtin">/</span>(0.1e<span class="org-builtin">-</span>9);
</pre>
</div>
<pre class="example">
The maximum stroke is 2.9 [mm]
</pre>
</div>
</div>
<div id="outline-container-org5650b5e" class="outline-3">
<h3 id="org5650b5e"><span class="section-number-3">4.5.</span> Measurements</h3>
<div class="outline-text-3" id="text-4-5">
<p>
We have some constrains on the way the motion is imposed and measured:
</p>
<ul class="org-ul">
<li>We want the frequency content of the imposed motion to be at low frequency in order not to induce vibrations of the structure.
We have to make sure the forces applied by the piezoelectric actuator only moves the crystal and not the fast jack below.
Therefore, we have to move much slower than the first resonance frequency in the system.</li>
<li>As both \(y_a\) and \(y_g\) should have rather small noise, we have to filter them with low pass filters.
The cut-off frequency of the low pass filter should be high as compared to the motion (to not induce any distortion) but still reducing sufficiently the noise.
Let&rsquo;s say we want the noise to be less than 1nm (\(6 \sigma\)).</li>
</ul>
<p>
Suppose we have the power spectral density (PSD) of both \(n_a\) and \(n_g\).
</p>
<ul class="org-ul">
<li class="off"><code>[&#xa0;]</code> Take the PSD of the Attocube</li>
<li class="off"><code>[&#xa0;]</code> Take the PSD of the strain gauge</li>
<li class="off"><code>[&#xa0;]</code> Using 2nd order low pass filter, estimate the required low pass filter cut-off frequency to have sufficiently low noise</li>
</ul>
</div>
</div>
</div>
<div id="outline-container-orgd3e86f0" class="outline-2">
<h2 id="orgd3e86f0">Bibliography</h2>
<div class="outline-text-2" id="text-orgd3e86f0">
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Ducourtieux, S., 2018. Toward high precision position control using laser interferometry: Main sources of error. <a href="https://doi.org/10.13140/rg.2.2.21044.35205">https://doi.org/10.13140/rg.2.2.21044.35205</a></div>
<div class="csl-entry"><a id="citeproc_bib_item_2"></a>Thurner, K., Quacquarelli, F.P., Braun, P.-F., Dal Savio, C., Karrai, K., 2015. Fiber-based distance sensing interferometry. Applied optics 54, 30513063.</div>
</div>
</div>
</div>
</div>
<div id="postamble" class="status">
<p class="author">Author: Dehaeze Thomas</p>
<p class="date">Created: 2022-02-15 mar. 14:24</p>
</div>
</body>
</html>