Add measurement of the Attocube's non-linearity

This commit is contained in:
Thomas Dehaeze 2020-11-10 09:53:29 +01:00
parent c3d6466603
commit 70d45841b5
21 changed files with 4124 additions and 64 deletions

14
css/custom.css Normal file
View File

@ -0,0 +1,14 @@
.figure p{
text-align: center;
}
.figure img{
max-width:100%;
display: block;
margin: auto;
}
table {
margin-left: auto;
margin-right: auto;
}

View File

@ -513,7 +513,7 @@ legend{
padding:0;
white-space:normal}
.fa:before,#content .admonition-title:before,#content h1 .headerlink:before,#content h2 .headerlink:before,#content h3 .headerlink:before,#content h4 .headerlink:before,#content h5 .headerlink:before,#content h6 .headerlink:before,#content dl dt .headerlink:before,.icon:before,.wy-dropdown .caret:before,.wy-inline-validate.wy-inline-validate-success .wy-input-context:before,.wy-inline-validate.wy-inline-validate-danger .wy-input-context:before,.wy-inline-validate.wy-inline-validate-warning .wy-input-context:before,.wy-inline-validate.wy-inline-validate-info .wy-input-context:before,.wy-alert,#content .note,#content .attention,#content .caution,#content .danger,#content .error,#content .hint,#content .important,#content .tip,#content .warning,#content .seealso,#content .admonitiontodo,.btn,input[type="text"],input[type="password"],input[type="email"],input[type="url"],input[type="date"],input[type="month"],input[type="time"],input[type="datetime"],input[type="datetime-local"],input[type="week"],input[type="number"],input[type="search"],input[type="tel"],input[type="color"],select,textarea,#table-of-contents li.on a,#table-of-contents li.current>a,.wy-side-nav-search>a,.wy-side-nav-search .wy-dropdown>a,.wy-nav-top a{
.fa:before,#content .admonition-title:before,#content h1 .headerlink:before,#content h2 .headerlink:before,#content h3 .headerlink:before,#content h4 .headerlink:before,#content h5 .headerlink:before,#content h6 .headerlink:before,#content dl dt .headerlink:before,.icon:before,.wy-dropdown .caret:before,.wy-inline-validate.wy-inline-validate-success .wy-input-context:before,.wy-inline-validate.wy-inline-validate-danger .wy-input-context:before,.wy-inline-validate.wy-inline-validate-warning .wy-input-context:before,.wy-inline-validate.wy-inline-validate-info .wy-input-context:before,.wy-alert,#content .note,#content .attention,#content .caution,#content .danger,#content .error,#content .summary,#content .hint,#content .important,#content .tip,#content .warning,#content .question,#content .seealso,#content .admonitiontodo,.btn,input[type="text"],input[type="password"],input[type="email"],input[type="url"],input[type="date"],input[type="month"],input[type="time"],input[type="datetime"],input[type="datetime-local"],input[type="week"],input[type="number"],input[type="search"],input[type="tel"],input[type="color"],select,textarea,#table-of-contents li.on a,#table-of-contents li.current>a,.wy-side-nav-search>a,.wy-side-nav-search .wy-dropdown>a,.wy-nav-top a{
-webkit-font-smoothing:antialiased}
/*!
@ -576,7 +576,7 @@ a .fa,a #content .admonition-title,#content a .admonition-title{
.nav #content .admonition-title,#content .nav .admonition-title,.nav .icon{
display:inline}
.wy-alert,#content .note,#content .attention,#content .caution,#content .danger,#content .error,#content .hint,#content .important,#content .tip,#content .warning,#content .seealso,#content .admonitiontodo{
.wy-alert,#content .note,#content .attention,#content .caution,#content .danger,#content .error,#content .summary,#content .hint,#content .important,#content .tip,#content .warning,#content .question,#content .seealso,#content .admonitiontodo{
padding:12px;
line-height:24px;
margin-bottom:24px;
@ -596,32 +596,45 @@ a .fa,a #content .admonition-title,#content a .admonition-title{
#content .danger,#content .error{
background:#fdf3f2}
.wy-alert.wy-alert-warning,#content .wy-alert-warning.note,#content .attention,#content .caution,#content .wy-alert-warning.danger,#content .wy-alert-warning.error,#content .wy-alert-warning.hint,#content .wy-alert-warning.important,#content .wy-alert-warning.tip,#content .warning,#content .wy-alert-warning.seealso,#content .admonitiontodo{
.wy-alert.wy-alert-warning,#content .wy-alert-warning.note,#content .attention,#content .caution,#content .wy-alert-warning.danger,#content .wy-alert-warning.error,#content .wy-alert-warning.summary,#content .wy-alert-warning.hint,#content .wy-alert-warning.important,#content .wy-alert-warning.tip,#content .warning,#content .wy-alert-warning.seealso,#content .admonitiontodo{
background:#ffedcc}
#content .admonition-title.note:before, #content .admonition-title.seealso:before,
#content .admonition-title.warning:before, #content .admonition-title.caution:before,
#content .admonition-title.warning:before,
#content .admonition-title.caution:before,
#content .admonition-title.attention:before,
#content .admonition-title.tip:before, #content .admonition-title.hint:before,
#content .admonition-title.important:before,
#content .admonition-title.error:before, #content .admonition-title.danger:before{
#content .admonition-title.error:before,
#content .admonition-title.danger:before{
font-family:FontAwesome;
content: "";}
#content .note,#content .seealso{
#content .admonition-title.question:before{
font-family:FontAwesome;
content: "";}
#content .admonition-title.note:before,
#content .admonition-title.seealso:before,
#content .admonition-title.tip:before,
#content .admonition-title.summary:before,
#content .admonition-title.hint:before{
font-family:FontAwesome;
content: "";}
#content .note,#content .question,#content .seealso{
background:#e7f2fa}
.wy-alert p:last-child,#content .note p:last-child,#content .attention p:last-child,#content .caution p:last-child,#content .danger p:last-child,#content .error p:last-child,#content .hint p:last-child,#content .important p:last-child,#content .tip p:last-child,#content .warning p:last-child,#content .seealso p:last-child,#content .admonitiontodo p:last-child{
.wy-alert p:last-child,#content .note p:last-child,#content .attention p:last-child,#content .caution p:last-child,#content .danger p:last-child,#content .error p:last-child,#content .summary p:last-child,#content .hint p:last-child,#content .important p:last-child,#content .tip p:last-child,#content .warning p:last-child,#content .question p:last-child,#content .seealso p:last-child,#content .admonitiontodo p:last-child{
margin-bottom:0}
#content .admonition-title.tip,#content .admonition-title.important,#content .admonition-title.hint{
#content .admonition-title.tip,#content .admonition-title.important,#content .admonition-title.summary,#content .admonition-title.hint{
line-height: 1;
background:#1abc9c}
#content .important,#content .tip,#content .hint{
#content .important,#content .tip,#content .summary,#content .hint{
background:#dbfaf4}
#content .admonition-title.note,#content .admonition-title.seealso{
#content .admonition-title.note,#content .admonition-title.question,#content .admonition-title.seealso{
line-height: 1;
background:#6ab0de}
@ -938,7 +951,7 @@ footer p{
font-style:italic;
}
#content .note .last,#content .attention .last,#content .caution .last,#content .danger .last,#content .error .last,#content .hint .last,#content .important .last,#content .tip .last,#content .warning .last,#content .seealso .last,#content .admonitiontodo .last{
#content .note .last,#content .attention .last,#content .caution .last,#content .danger .last,#content .error .last,#content .hint .summary,#content .hint .last,#content .important .last,#content .tip .last,#content .warning .last,#content .question .last,#content .seealso .last,#content .admonitiontodo .last{
margin-bottom:0}
#content .admonition-title:before{

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 67 KiB

3663
figs/exp_setup_schematic.svg Normal file

File diff suppressed because it is too large Load Diff

After

Width:  |  Height:  |  Size: 215 KiB

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 35 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 48 KiB

BIN
figs/int_enc_one_cycle.pdf Normal file

Binary file not shown.

BIN
figs/int_enc_one_cycle.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 26 KiB

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 36 KiB

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 43 KiB

Binary file not shown.

View File

Before

Width:  |  Height:  |  Size: 21 KiB

After

Width:  |  Height:  |  Size: 21 KiB

View File

Before

Width:  |  Height:  |  Size: 26 KiB

After

Width:  |  Height:  |  Size: 26 KiB

View File

@ -3,14 +3,14 @@
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
<head>
<!-- 2020-11-03 mar. 11:21 -->
<!-- 2020-11-10 mar. 09:53 -->
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
<title>Attocube - Test Bench</title>
<meta name="generator" content="Org mode" />
<meta name="author" content="Dehaeze Thomas" />
<link rel="stylesheet" type="text/css" href="./css/htmlize.css"/>
<link rel="stylesheet" type="text/css" href="./css/readtheorg.css"/>
<link rel="stylesheet" type="text/css" href="./css/zenburn.css"/>
<link rel="stylesheet" type="text/css" href="./css/custom.css"/>
<script type="text/javascript" src="./js/jquery.min.js"></script>
<script type="text/javascript" src="./js/bootstrap.min.js"></script>
<script type="text/javascript" src="./js/jquery.stickytableheaders.min.js"></script>
@ -35,45 +35,53 @@
<h2>Table of Contents</h2>
<div id="text-table-of-contents">
<ul>
<li><a href="#orgc6ccba7">1. Estimation of the Spectral Density of the Attocube Noise</a>
<li><a href="#org31551fe">1. Estimation of the Spectral Density of the Attocube Noise</a>
<ul>
<li><a href="#org3cc416a">1.1. Long and Slow measurement</a></li>
<li><a href="#org821fd88">1.2. Short and Fast measurement</a></li>
<li><a href="#orgecead74">1.3. Obtained Amplitude Spectral Density of the measured displacement</a></li>
<li><a href="#org2ca70e8">1.1. Long and Slow measurement</a></li>
<li><a href="#org4dffcb8">1.2. Short and Fast measurement</a></li>
<li><a href="#org83ac827">1.3. Obtained Amplitude Spectral Density of the measured displacement</a></li>
</ul>
</li>
<li><a href="#org14aa3d1">2. Effect of the &ldquo;bubble sheet&rdquo; and <b>Aluminium tube</b></a>
<li><a href="#orgf63ae3e">2. Effect of the &ldquo;bubble sheet&rdquo; and &ldquo;Aluminium tube&rdquo;</a>
<ul>
<li><a href="#org986c782">2.1. Aluminium Tube and Bubble Sheet</a></li>
<li><a href="#orge3f9893">2.2. Only Aluminium Tube</a></li>
<li><a href="#org9430d99">2.3. Nothing</a></li>
<li><a href="#orgf5b2d48">2.4. Comparison</a></li>
<li><a href="#org1f1ce7f">2.1. Aluminium Tube and Bubble Sheet</a></li>
<li><a href="#orgb26f1e7">2.2. Only Aluminium Tube</a></li>
<li><a href="#org38d2ea6">2.3. Nothing</a></li>
<li><a href="#orgc931b82">2.4. Comparison</a></li>
</ul>
</li>
<li><a href="#org8ec3157">3. Measurement of the Attocube&rsquo;s non-linearity</a>
<ul>
<li><a href="#orgd049784">3.1. Load Data</a></li>
<li><a href="#orga29027e">3.2. Time Domain Results</a></li>
<li><a href="#orgce6e0ff">3.3. Difference between Encoder and Interferometer as a function of time</a></li>
<li><a href="#org2008a1e">3.4. Difference between Encoder and Interferometer as a function of position</a></li>
</ul>
</li>
</ul>
</div>
</div>
<div id="outline-container-orgc6ccba7" class="outline-2">
<h2 id="orgc6ccba7"><span class="section-number-2">1</span> Estimation of the Spectral Density of the Attocube Noise</h2>
<div id="outline-container-org31551fe" class="outline-2">
<h2 id="org31551fe"><span class="section-number-2">1</span> Estimation of the Spectral Density of the Attocube Noise</h2>
<div class="outline-text-2" id="text-1">
<div id="org93ec5d1" class="figure">
<p><img src="figs/test-bench-shematic.png" alt="test-bench-shematic.png" />
<div id="org5b9ba48" class="figure">
<p><img src="figs/test-bench-schematic.png" alt="test-bench-schematic.png" />
</p>
<p><span class="figure-number">Figure 1: </span>Test Bench Schematic</p>
</div>
<div id="org83b6919" class="figure">
<div id="org9ef7a86" class="figure">
<p><img src="figs/IMG-7865.JPG" alt="IMG-7865.JPG" />
</p>
<p><span class="figure-number">Figure 2: </span>Picture of the test bench. The Attocube and mirror are covered by a &ldquo;bubble sheet&rdquo;</p>
</div>
</div>
<div id="outline-container-org3cc416a" class="outline-3">
<h3 id="org3cc416a"><span class="section-number-3">1.1</span> Long and Slow measurement</h3>
<div id="outline-container-org2ca70e8" class="outline-3">
<h3 id="org2ca70e8"><span class="section-number-3">1.1</span> Long and Slow measurement</h3>
<div class="outline-text-3" id="text-1-1">
<p>
The first measurement was made during ~17 hours with a sampling time of \(T_s = 0.1\,s\).
@ -86,14 +94,14 @@ Ts = 0.1; <span class="org-comment">% [s]</span>
</div>
<div id="orgacdd31b" class="figure">
<div id="org4b6374b" class="figure">
<p><img src="figs/long_meas_time_domain_full.png" alt="long_meas_time_domain_full.png" />
</p>
<p><span class="figure-number">Figure 3: </span>Long measurement time domain data</p>
</div>
<p>
Let&rsquo;s fit the data with a step response to a first order low pass filter (Figure <a href="#org8514bc0">4</a>).
Let&rsquo;s fit the data with a step response to a first order low pass filter (Figure <a href="#org36afa1e">4</a>).
</p>
<div class="org-src-container">
@ -117,17 +125,17 @@ The corresponding time constant is (in [h]):
<div id="org8514bc0" class="figure">
<div id="org36afa1e" class="figure">
<p><img src="figs/long_meas_time_domain_fit.png" alt="long_meas_time_domain_fit.png" />
</p>
<p><span class="figure-number">Figure 4: </span>Fit of the measurement data with a step response of a first order low pass filter</p>
</div>
<p>
We can see in Figure <a href="#orgacdd31b">3</a> that there is a transient period where the measured displacement experiences some drifts.
We can see in Figure <a href="#org4b6374b">3</a> that there is a transient period where the measured displacement experiences some drifts.
This is probably due to thermal effects.
We only select the data between <code>t1</code> and <code>t2</code>.
The obtained displacement is shown in Figure <a href="#orgf9150d1">5</a>.
The obtained displacement is shown in Figure <a href="#orgf2cfa94">5</a>.
</p>
<div class="org-src-container">
@ -141,7 +149,7 @@ t = t <span class="org-type">-</span> t(1);
</div>
<div id="orgf9150d1" class="figure">
<div id="orgf2cfa94" class="figure">
<p><img src="figs/long_meas_time_domain_zoom.png" alt="long_meas_time_domain_zoom.png" />
</p>
<p><span class="figure-number">Figure 5: </span>Kept data (removed slow drifts during the first hours)</p>
@ -176,8 +184,8 @@ f_1 = f_1(f_1 <span class="org-type">&lt;</span> 2);
</div>
</div>
<div id="outline-container-org821fd88" class="outline-3">
<h3 id="org821fd88"><span class="section-number-3">1.2</span> Short and Fast measurement</h3>
<div id="outline-container-org4dffcb8" class="outline-3">
<h3 id="org4dffcb8"><span class="section-number-3">1.2</span> Short and Fast measurement</h3>
<div class="outline-text-3" id="text-1-2">
<p>
An second measurement is done in order to estimate the high frequency noise of the interferometer.
@ -196,11 +204,11 @@ Ts = 1e<span class="org-type">-</span>4; <span class="org-comment">% [s]</span>
</div>
<p>
The time domain measurement is shown in Figure <a href="#orgfb8bd83">6</a>.
The time domain measurement is shown in Figure <a href="#org0f2f571">6</a>.
</p>
<div id="orgfb8bd83" class="figure">
<div id="org0f2f571" class="figure">
<p><img src="figs/short_meas_time_domain.png" alt="short_meas_time_domain.png" />
</p>
<p><span class="figure-number">Figure 6: </span>Time domain measurement with the high sampling rate</p>
@ -217,15 +225,15 @@ The Power Spectral Density of the measured displacement is computed
</div>
</div>
<div id="outline-container-orgecead74" class="outline-3">
<h3 id="orgecead74"><span class="section-number-3">1.3</span> Obtained Amplitude Spectral Density of the measured displacement</h3>
<div id="outline-container-org83ac827" class="outline-3">
<h3 id="org83ac827"><span class="section-number-3">1.3</span> Obtained Amplitude Spectral Density of the measured displacement</h3>
<div class="outline-text-3" id="text-1-3">
<p>
The computed ASD of the two measurements are combined in Figure <a href="#org669cb34">7</a>.
The computed ASD of the two measurements are combined in Figure <a href="#orga897ad9">7</a>.
</p>
<div id="org669cb34" class="figure">
<div id="orga897ad9" class="figure">
<p><img src="figs/psd_combined.png" alt="psd_combined.png" />
</p>
<p><span class="figure-number">Figure 7: </span>Obtained Amplitude Spectral Density of the measured displacement</p>
@ -234,19 +242,19 @@ The computed ASD of the two measurements are combined in Figure <a href="#org669
</div>
</div>
<div id="outline-container-org14aa3d1" class="outline-2">
<h2 id="org14aa3d1"><span class="section-number-2">2</span> Effect of the &ldquo;bubble sheet&rdquo; and <b>Aluminium tube</b></h2>
<div id="outline-container-orgf63ae3e" class="outline-2">
<h2 id="orgf63ae3e"><span class="section-number-2">2</span> Effect of the &ldquo;bubble sheet&rdquo; and &ldquo;Aluminium tube&rdquo;</h2>
<div class="outline-text-2" id="text-2">
<div id="orgbf4b90d" class="figure">
<div id="orgff246fc" class="figure">
<p><img src="figs/IMG-7864.JPG" alt="IMG-7864.JPG" />
</p>
<p><span class="figure-number">Figure 8: </span>Aluminium tube used to protect the beam path from disturbances</p>
</div>
</div>
<div id="outline-container-org986c782" class="outline-3">
<h3 id="org986c782"><span class="section-number-3">2.1</span> Aluminium Tube and Bubble Sheet</h3>
<div id="outline-container-org1f1ce7f" class="outline-3">
<h3 id="org1f1ce7f"><span class="section-number-3">2.1</span> Aluminium Tube and Bubble Sheet</h3>
<div class="outline-text-3" id="text-2-1">
<div class="org-src-container">
<pre class="src src-matlab">load(<span class="org-string">'./mat/short_test_plastic.mat'</span>);
@ -267,8 +275,8 @@ Ts = 1e<span class="org-type">-</span>4; <span class="org-comment">% [s]</span>
</div>
</div>
<div id="outline-container-orge3f9893" class="outline-3">
<h3 id="orge3f9893"><span class="section-number-3">2.2</span> Only Aluminium Tube</h3>
<div id="outline-container-orgb26f1e7" class="outline-3">
<h3 id="orgb26f1e7"><span class="section-number-3">2.2</span> Only Aluminium Tube</h3>
<div class="outline-text-3" id="text-2-2">
<div class="org-src-container">
<pre class="src src-matlab">load(<span class="org-string">'./mat/short_test_alu_tube.mat'</span>);
@ -282,7 +290,7 @@ Ts = 1e<span class="org-type">-</span>4; <span class="org-comment">% [s]</span>
</div>
<p>
The time domain measurement is shown in Figure <a href="#orgfb8bd83">6</a>.
The time domain measurement is shown in Figure <a href="#org0f2f571">6</a>.
</p>
<div class="org-src-container">
<pre class="src src-matlab">win = hann(ceil(length(x)<span class="org-type">/</span>10));
@ -292,8 +300,8 @@ The time domain measurement is shown in Figure <a href="#orgfb8bd83">6</a>.
</div>
</div>
<div id="outline-container-org9430d99" class="outline-3">
<h3 id="org9430d99"><span class="section-number-3">2.3</span> Nothing</h3>
<div id="outline-container-org38d2ea6" class="outline-3">
<h3 id="org38d2ea6"><span class="section-number-3">2.3</span> Nothing</h3>
<div class="outline-text-3" id="text-2-3">
<div class="org-src-container">
<pre class="src src-matlab">load(<span class="org-string">'./mat/short_test_without_material.mat'</span>);
@ -307,7 +315,7 @@ Ts = 1e<span class="org-type">-</span>4; <span class="org-comment">% [s]</span>
</div>
<p>
The time domain measurement is shown in Figure <a href="#orgfb8bd83">6</a>.
The time domain measurement is shown in Figure <a href="#org0f2f571">6</a>.
</p>
<div class="org-src-container">
<pre class="src src-matlab">win = hann(ceil(length(x)<span class="org-type">/</span>10));
@ -317,11 +325,11 @@ The time domain measurement is shown in Figure <a href="#orgfb8bd83">6</a>.
</div>
</div>
<div id="outline-container-orgf5b2d48" class="outline-3">
<h3 id="orgf5b2d48"><span class="section-number-3">2.4</span> Comparison</h3>
<div id="outline-container-orgc931b82" class="outline-3">
<h3 id="orgc931b82"><span class="section-number-3">2.4</span> Comparison</h3>
<div class="outline-text-3" id="text-2-4">
<div id="orgb09511f" class="figure">
<div id="org0e0ae0d" class="figure">
<p><img src="figs/asd_noise_comp_bubble_aluminium.png" alt="asd_noise_comp_bubble_aluminium.png" />
</p>
<p><span class="figure-number">Figure 9: </span>Comparison of the noise ASD with and without bubble sheet</p>
@ -329,10 +337,183 @@ The time domain measurement is shown in Figure <a href="#orgfb8bd83">6</a>.
</div>
</div>
</div>
<div id="outline-container-org8ec3157" class="outline-2">
<h2 id="org8ec3157"><span class="section-number-2">3</span> Measurement of the Attocube&rsquo;s non-linearity</h2>
<div class="outline-text-2" id="text-3">
<p>
The measurement setup is shown in Figure <a href="#org30833d7">10</a>.
</p>
<div id="org30833d7" class="figure">
<p><img src="figs/exp_setup_schematic.png" alt="exp_setup_schematic.png" />
</p>
<p><span class="figure-number">Figure 10: </span>Schematic of the Experiment</p>
</div>
<p>
A DAC and voltage amplified are used to move the mass with the Amplified Piezoelectric Actuator (APA95ML).
The encoder and the attocube are measure ring the same motion.
</p>
<p>
As will be shown shortly, this measurement permitted to measure the period non-linearity of the Attocube.
</p>
</div>
<div id="outline-container-orgd049784" class="outline-3">
<h3 id="orgd049784"><span class="section-number-3">3.1</span> Load Data</h3>
<div class="outline-text-3" id="text-3-1">
<p>
The measurement data are loaded and the offset are removed using the <code>detrend</code> command.
</p>
<div class="org-src-container">
<pre class="src src-matlab">load(<span class="org-string">'mat/int_enc_comp.mat'</span>, <span class="org-string">'interferometer'</span>, <span class="org-string">'encoder'</span>, <span class="org-string">'u'</span>, <span class="org-string">'t'</span>);
Ts = 1e<span class="org-type">-</span>4; <span class="org-comment">% Sampling Time [s]</span>
</pre>
</div>
<div class="org-src-container">
<pre class="src src-matlab">interferometer = detrend(interferometer, 0);
encoder = detrend(encoder, 0);
u = detrend(u, 0);
</pre>
</div>
</div>
</div>
<div id="outline-container-orga29027e" class="outline-3">
<h3 id="orga29027e"><span class="section-number-3">3.2</span> Time Domain Results</h3>
<div class="outline-text-3" id="text-3-2">
<p>
One period of the displacement of the mass as measured by the encoder and interferometer are shown in Figure <a href="#orgeb04850">11</a>.
It consist of the sinusoidal motion at 0.5Hz with an amplitude of approximately \(70\mu m\).
</p>
<p>
The frequency of the motion is chosen such that no resonance in the system is excited.
This should improve the coherence between the measurements made by the encoder and interferometer.
</p>
<div id="orgeb04850" class="figure">
<p><img src="figs/int_enc_one_cycle.png" alt="int_enc_one_cycle.png" />
</p>
<p><span class="figure-number">Figure 11: </span>One cycle measurement</p>
</div>
<p>
The difference between the two measurements during the same period is shown in Figure <a href="#org3ddfc88">12</a>.
</p>
<div id="org3ddfc88" class="figure">
<p><img src="figs/int_enc_one_cycle_error.png" alt="int_enc_one_cycle_error.png" />
</p>
<p><span class="figure-number">Figure 12: </span>Difference between the Encoder and the interferometer during one cycle</p>
</div>
</div>
</div>
<div id="outline-container-orgce6e0ff" class="outline-3">
<h3 id="orgce6e0ff"><span class="section-number-3">3.3</span> Difference between Encoder and Interferometer as a function of time</h3>
<div class="outline-text-3" id="text-3-3">
<p>
The data is filtered using a second order low pass filter with a cut-off frequency \(\omega_0\) as defined below.
</p>
<div class="org-src-container">
<pre class="src src-matlab">w0 = 2<span class="org-type">*</span><span class="org-constant">pi</span><span class="org-type">*</span>5; <span class="org-comment">% [rad/s]</span>
xi = 0.7;
G_lpf = 1<span class="org-type">/</span>(1 <span class="org-type">+</span> 2<span class="org-type">*</span>xi<span class="org-type">/</span>w0<span class="org-type">*</span>s <span class="org-type">+</span> s<span class="org-type">^</span>2<span class="org-type">/</span>w0<span class="org-type">^</span>2);
</pre>
</div>
<p>
After filtering, the data is &ldquo;re-shaped&rdquo; such that we can superimpose all the measured periods as shown in Figure <a href="#org18b1b55">13</a>.
This gives an idea of the measurement error as given by the Attocube during a \(70 \mu m\) motion.
</p>
<div class="org-src-container">
<pre class="src src-matlab">d_err_mean = reshape(lsim(G_lpf, encoder <span class="org-type">-</span> interferometer, t), [2<span class="org-type">/</span>Ts floor(Ts<span class="org-type">/</span>2<span class="org-type">*</span>length(encoder))]);
d_err_mean = d_err_mean <span class="org-type">-</span> mean(d_err_mean);
</pre>
</div>
<div id="org18b1b55" class="figure">
<p><img src="figs/int_enc_error_mean_time.png" alt="int_enc_error_mean_time.png" />
</p>
<p><span class="figure-number">Figure 13: </span>Difference between the two measurement in the time domain, averaged for all the cycles</p>
</div>
</div>
</div>
<div id="outline-container-org2008a1e" class="outline-3">
<h3 id="org2008a1e"><span class="section-number-3">3.4</span> Difference between Encoder and Interferometer as a function of position</h3>
<div class="outline-text-3" id="text-3-4">
<p>
Figure <a href="#org18b1b55">13</a> gives the measurement error as a function of time.
We here wish the compute this measurement error as a function of the position (as measured by the encoer).
</p>
<p>
To do so, all the attocube measurements corresponding to each position measured by the Encoder (resolution of \(1nm\)) are averaged.
Figure <a href="#orgdfccfb5">14</a> is obtained where we clearly see an error with a period comparable to the motion range and a much smaller period corresponding to the non-linear period errors that we wish the estimate.
</p>
<div class="org-src-container">
<pre class="src src-matlab">[e_sorted, <span class="org-type">~</span>, e_ind] = unique(encoder);
i_mean = zeros(length(e_sorted), 1);
<span class="org-keyword">for</span> <span class="org-variable-name"><span class="org-constant">i</span></span> = <span class="org-constant">1:length(e_sorted)</span>
i_mean(<span class="org-constant">i</span>) = mean(interferometer(e_ind <span class="org-type">==</span> <span class="org-constant">i</span>));
<span class="org-keyword">end</span>
i_mean_error = (i_mean <span class="org-type">-</span> e_sorted);
</pre>
</div>
<div id="orgdfccfb5" class="figure">
<p><img src="figs/int_enc_error_mean_position.png" alt="int_enc_error_mean_position.png" />
</p>
<p><span class="figure-number">Figure 14: </span>Difference between the two measurement as a function of the measured position by the encoder, averaged for all the cycles</p>
</div>
<p>
The period of the non-linearity seems to be equal to \(765 nm\) which corresponds to half the wavelength of the Laser (\(1.53 \mu m\)).
For the motion range done here, the non-linearity is measured over ~18 periods which permits to do some averaging.
</p>
<div class="org-src-container">
<pre class="src src-matlab">win_length = 1530<span class="org-type">/</span>2; <span class="org-comment">% length of the windows (corresponds to 765 nm)</span>
num_avg = floor(length(e_sorted)<span class="org-type">/</span>win_length); <span class="org-comment">% number of averaging</span>
i_init = ceil((length(e_sorted) <span class="org-type">-</span> win_length<span class="org-type">*</span>num_avg)<span class="org-type">/</span>2); <span class="org-comment">% does not start at the extremity</span>
e_sorted_mean_over_period = mean(reshape(i_mean_error(i_init<span class="org-type">:</span>i_init<span class="org-type">+</span>win_length<span class="org-type">*</span>num_avg<span class="org-type">-</span>1), [win_length num_avg]), 2);
</pre>
</div>
<p>
The obtained periodic non-linearity is shown in Figure <a href="#orgcfbb9a2">15</a>.
</p>
<div id="orgcfbb9a2" class="figure">
<p><img src="figs/int_non_linearity_period_wavelength.png" alt="int_non_linearity_period_wavelength.png" />
</p>
<p><span class="figure-number">Figure 15: </span>Non-Linearity of the Interferometer over the period of the wavelength</p>
</div>
</div>
</div>
</div>
</div>
<div id="postamble" class="status">
<p class="author">Author: Dehaeze Thomas</p>
<p class="date">Created: 2020-11-03 mar. 11:21</p>
<p class="date">Created: 2020-11-10 mar. 09:53</p>
</div>
</body>
</html>

195
index.org
View File

@ -9,7 +9,7 @@
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="./css/htmlize.css"/>
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="./css/readtheorg.css"/>
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="./css/zenburn.css"/>
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="./css/custom.css"/>
#+HTML_HEAD: <script type="text/javascript" src="./js/jquery.min.js"></script>
#+HTML_HEAD: <script type="text/javascript" src="./js/bootstrap.min.js"></script>
#+HTML_HEAD: <script type="text/javascript" src="./js/jquery.stickytableheaders.min.js"></script>
@ -29,9 +29,9 @@
* Estimation of the Spectral Density of the Attocube Noise
** Introduction :ignore:
#+name: fig:test-bench-shematic
#+name: fig:test-bench-schematic
#+caption: Test Bench Schematic
[[file:figs/test-bench-shematic.png]]
[[file:figs/test-bench-schematic.png]]
#+name: fig:test-bench-picture
#+caption: Picture of the test bench. The Attocube and mirror are covered by a "bubble sheet"
@ -217,7 +217,7 @@ The computed ASD of the two measurements are combined in Figure [[fig:psd_combin
#+RESULTS:
[[file:figs/psd_combined.png]]
* Effect of the "bubble sheet" and *Aluminium tube*
* Effect of the "bubble sheet" and "Aluminium tube"
** Introduction :ignore:
#+name: fig:picture-test-bench-aluminium-tube
@ -324,3 +324,190 @@ The time domain measurement is shown in Figure [[fig:short_meas_time_domain]].
#+caption: Comparison of the noise ASD with and without bubble sheet
#+RESULTS:
[[file:figs/asd_noise_comp_bubble_aluminium.png]]
* Measurement of the Attocube's non-linearity
** Introduction :ignore:
The measurement setup is shown in Figure [[fig:exp_setup_schematic]].
#+name: fig:exp_setup_schematic
#+caption: Schematic of the Experiment
[[file:figs/exp_setup_schematic.png]]
A DAC and voltage amplified are used to move the mass with the Amplified Piezoelectric Actuator (APA95ML).
The encoder and the attocube are measure ring the same motion.
As will be shown shortly, this measurement permitted to measure the period non-linearity of the Attocube.
** Matlab Init :noexport:ignore:
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
<<matlab-dir>>
#+end_src
#+begin_src matlab :exports none :results silent :noweb yes
<<matlab-init>>
#+end_src
** Load Data
The measurement data are loaded and the offset are removed using the =detrend= command.
#+begin_src matlab
load('mat/int_enc_comp.mat', 'interferometer', 'encoder', 'u', 't');
Ts = 1e-4; % Sampling Time [s]
#+end_src
#+begin_src matlab
interferometer = detrend(interferometer, 0);
encoder = detrend(encoder, 0);
u = detrend(u, 0);
#+end_src
** Time Domain Results
One period of the displacement of the mass as measured by the encoder and interferometer are shown in Figure [[fig:int_enc_one_cycle]].
It consist of the sinusoidal motion at 0.5Hz with an amplitude of approximately $70\mu m$.
The frequency of the motion is chosen such that no resonance in the system is excited.
This should improve the coherence between the measurements made by the encoder and interferometer.
#+begin_src matlab :exports none
figure;
hold on;
plot(t, encoder, '-', 'DisplayName', 'Encoder')
plot(t, interferometer, '--', 'DisplayName', 'Interferometer')
hold off;
xlabel('Time [s]'); ylabel('Displacement [m]');
legend('location', 'southeast');
xlim([50, 52])
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
exportFig('figs/int_enc_one_cycle.pdf', 'width', 'wide', 'height', 'normal');
#+end_src
#+name: fig:int_enc_one_cycle
#+caption: One cycle measurement
#+RESULTS:
[[file:figs/int_enc_one_cycle.png]]
The difference between the two measurements during the same period is shown in Figure [[fig:int_enc_one_cycle_error]].
#+begin_src matlab :exports none
figure;
hold on;
plot(t, encoder - interferometer, 'DisplayName', 'Difference')
hold off;
xlabel('Time [s]'); ylabel('Displacement [m]');
legend('location', 'northeast');
xlim([50, 52])
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
exportFig('figs/int_enc_one_cycle_error.pdf', 'width', 'wide', 'height', 'normal');
#+end_src
#+name: fig:int_enc_one_cycle_error
#+caption: Difference between the Encoder and the interferometer during one cycle
#+RESULTS:
[[file:figs/int_enc_one_cycle_error.png]]
** Difference between Encoder and Interferometer as a function of time
The data is filtered using a second order low pass filter with a cut-off frequency $\omega_0$ as defined below.
#+begin_src matlab
w0 = 2*pi*5; % [rad/s]
xi = 0.7;
G_lpf = 1/(1 + 2*xi/w0*s + s^2/w0^2);
#+end_src
After filtering, the data is "re-shaped" such that we can superimpose all the measured periods as shown in Figure [[fig:int_enc_error_mean_time]].
This gives an idea of the measurement error as given by the Attocube during a $70 \mu m$ motion.
#+begin_src matlab
d_err_mean = reshape(lsim(G_lpf, encoder - interferometer, t), [2/Ts floor(Ts/2*length(encoder))]);
d_err_mean = d_err_mean - mean(d_err_mean);
#+end_src
#+begin_src matlab :exports none
figure;
hold on;
for i_i = 1:size(d_err_mean, 2)
plot(t(1:size(d_err_mean, 1)), d_err_mean(:, i_i), 'k-')
end
plot(t(1:size(d_err_mean, 1)), mean(d_err_mean, 2), 'r-')
hold off;
xlabel('Time [s]'); ylabel('Displacement [m]');
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
exportFig('figs/int_enc_error_mean_time.pdf', 'width', 'wide', 'height', 'normal', 'pdf', false);
#+end_src
#+name: fig:int_enc_error_mean_time
#+caption: Difference between the two measurement in the time domain, averaged for all the cycles
#+RESULTS:
[[file:figs/int_enc_error_mean_time.png]]
** Difference between Encoder and Interferometer as a function of position
Figure [[fig:int_enc_error_mean_time]] gives the measurement error as a function of time.
We here wish the compute this measurement error as a function of the position (as measured by the encoer).
To do so, all the attocube measurements corresponding to each position measured by the Encoder (resolution of $1nm$) are averaged.
Figure [[fig:int_enc_error_mean_position]] is obtained where we clearly see an error with a period comparable to the motion range and a much smaller period corresponding to the non-linear period errors that we wish the estimate.
#+begin_src matlab
[e_sorted, ~, e_ind] = unique(encoder);
i_mean = zeros(length(e_sorted), 1);
for i = 1:length(e_sorted)
i_mean(i) = mean(interferometer(e_ind == i));
end
i_mean_error = (i_mean - e_sorted);
#+end_src
#+begin_src matlab :exports none
figure;
hold on;
% plot(encoder, interferometer - encoder, 'k.', 'DisplayName', 'Difference')
plot(1e6*(e_sorted), 1e9*(i_mean_error))
hold off;
xlabel('Encoder Measurement [$\mu m$]'); ylabel('Measrement Error [nm]');
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
exportFig('figs/int_enc_error_mean_position.pdf', 'width', 'wide', 'height', 'normal');
#+end_src
#+name: fig:int_enc_error_mean_position
#+caption: Difference between the two measurement as a function of the measured position by the encoder, averaged for all the cycles
#+RESULTS:
[[file:figs/int_enc_error_mean_position.png]]
The period of the non-linearity seems to be equal to $765 nm$ which corresponds to half the wavelength of the Laser ($1.53 \mu m$).
For the motion range done here, the non-linearity is measured over ~18 periods which permits to do some averaging.
#+begin_src matlab
win_length = 1530/2; % length of the windows (corresponds to 765 nm)
num_avg = floor(length(e_sorted)/win_length); % number of averaging
i_init = ceil((length(e_sorted) - win_length*num_avg)/2); % does not start at the extremity
e_sorted_mean_over_period = mean(reshape(i_mean_error(i_init:i_init+win_length*num_avg-1), [win_length num_avg]), 2);
#+end_src
The obtained periodic non-linearity is shown in Figure [[fig:int_non_linearity_period_wavelength]].
#+begin_src matlab :exports none
figure;
hold on;
plot(1e-3*(0:win_length-1), 1e9*(e_sorted_mean_over_period))
hold off;
xlabel('Displacement [$\mu m$]'); ylabel('Measurement Non-Linearity [nm]');
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
exportFig('figs/int_non_linearity_period_wavelength.pdf', 'width', 'wide', 'height', 'tall');
#+end_src
#+name: fig:int_non_linearity_period_wavelength
#+caption: Non-Linearity of the Interferometer over the period of the wavelength
#+RESULTS:
[[file:figs/int_non_linearity_period_wavelength.png]]

View File

@ -9,6 +9,8 @@ $(function() {
$('.hint').before("<p class='admonition-title hint'>Hint</p>");
$('.error').before("<p class='admonition-title error'>Error</p>");
$('.danger').before("<p class='admonition-title danger'>Danger</p>");
$('.question').before("<p class='admonition-title question'>Question</p>");
$('.summary').before("<p class='admonition-title hint'>Summary</p>");
});
$( document ).ready(function() {

BIN
mat/int_enc_comp.mat Normal file

Binary file not shown.