diff --git a/matlab/R2019B/accelerometer_3d.slx b/matlab/R2019B/accelerometer_3d.slx index fa71675..72bce52 100644 Binary files a/matlab/R2019B/accelerometer_3d.slx and b/matlab/R2019B/accelerometer_3d.slx differ diff --git a/matlab/R2019B/accelerometer_3d_perfect.slx b/matlab/R2019B/accelerometer_3d_perfect.slx index 867f7c8..0945a76 100644 Binary files a/matlab/R2019B/accelerometer_3d_perfect.slx and b/matlab/R2019B/accelerometer_3d_perfect.slx differ diff --git a/matlab/R2019B/vibration_table.slx b/matlab/R2019B/vibration_table.slx index 0cbc848..cedb862 100644 Binary files a/matlab/R2019B/vibration_table.slx and b/matlab/R2019B/vibration_table.slx differ diff --git a/matlab/vibration_table.slx b/matlab/vibration_table.slx index 0f38b28..a8ef67f 100644 Binary files a/matlab/vibration_table.slx and b/matlab/vibration_table.slx differ diff --git a/vibration-table.html b/vibration-table.html index dba3831..459f52c 100644 --- a/vibration-table.html +++ b/vibration-table.html @@ -3,7 +3,7 @@ "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
- +This report is also available as a pdf.
This document is divided as follows:
Figure 1: CAD View of the vibration table
@@ -115,10 +115,10 @@ This document is divided as follows:Here are the documentation of the equipment used for this vibration table:
@@ -136,8 +136,8 @@ Here are the documentation of the equipment used for this vibration table:
Figure 2: Compliance of the B4545A optical table
@@ -153,8 +153,8 @@ Here are the documentation of the equipment used for this vibration table:-From the datasheet in Table 5, we can estimate the parameters of the physical shaker. +From the datasheet in Table 5, we can estimate the parameters of the physical shaker.
@@ -859,11 +867,11 @@ shaker.c = 0.2*sqrt(shaker.k
-
@@ -878,7 +886,7 @@ An accelerometer consists of 2 solids:
The relative motion between the housing and the inertial mass gives a measurement of the acceleration of the measured body (up to the suspension mode of the inertial mass).
Let’s first use perfect 3d accelerometers:
@@ -1067,8 +1075,8 @@ This corresponds to 6 states for each triaxial accelerometers.
Let’s now identify the resonance frequency and mode shapes associated with the suspension modes of the optical table.
@@ -1115,11 +1123,11 @@ And the associated response of the optical table
-The results are shown in Table 7.
+The results are shown in Table 7.
The motion associated to the mode shapes are just indicative.
Created: 2021-04-16 ven. 18:28 Created: 2021-04-19 lun. 15:024.1.3 3D accelerometer (356B18)
+4.1.3 3D accelerometer (356B18)
+
type
property:
-4.2 Identification
+4.2 Identification
-4.2.1 Number of states
+4.2.1 Number of states
4.2.2 Resonance frequencies and mode shapes
+4.2.2 Resonance frequencies and mode shapes
+
4.3 Verify transformation
+4.3 Verify transformation
%% Options for Linearized
@@ -1229,7 +1237,7 @@ mdl = 'vibration_table';
clear io; io_i = 1;
io(io_i) = linio([mdl, '/F'], 1, 'openinput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/acc'], 1, 'openoutput'); io_i = io_i + 1;
-io(io_i) = linio([mdl, '/Absolute_Accelerometer'], 1, 'openoutput'); io_i = io_i + 1;
+io(io_i) = linio([mdl, '/acc_O'], 1, 'openoutput'); io_i = io_i + 1;
%% Run the linearization
G = linearize(mdl, io, 0.0, options);
@@ -1258,18 +1266,18 @@ bodeFig({G_acc(6), G_id(6)})