Measurement of Piezoelectric Amplifiers

Table of Contents

Two voltage amplifiers are tested:

The piezoelectric actuator under test is an APA95ML from Cedrat technology. It contains three stacks with a capacitance of \(5 \mu F\) each that can be connected independently to the amplifier.

1 Effect of a change of capacitance

1.1 Cedrat Technology

Load Data

piezo1 = load('mat/cedrat_la75b_med_1_stack.mat', 't', 'V_in', 'V_out');
piezo2 = load('mat/cedrat_la75b_med_2_stack.mat', 't', 'V_in', 'V_out');
piezo3 = load('mat/cedrat_la75b_med_3_stack.mat', 't', 'V_in', 'V_out');

Compute Coherence and Transfer functions

Ts = 1e-4;
win = hann(ceil(0.1/Ts));

[tf_1, f_1] = tfestimate(piezo1.V_in, piezo1.V_out, win, [], [], 1/Ts);
[co_1, ~] = mscohere(piezo1.V_in, piezo1.V_out, win, [], [], 1/Ts);


[tf_2, f_2] = tfestimate(piezo2.V_in, piezo2.V_out, win, [], [], 1/Ts);
[co_2, ~] = mscohere(piezo2.V_in, piezo2.V_out, win, [], [], 1/Ts);


[tf_3, f_3] = tfestimate(piezo3.V_in, piezo3.V_out, win, [], [], 1/Ts);
[co_3, ~] = mscohere(piezo3.V_in, piezo3.V_out, win, [], [], 1/Ts);

change_capa_cedrat.png

Figure 1: Effect of a change of the piezo capacitance on the Amplifier transfer function

1.2 PI

piezo1 = load('mat/pi_505_high.mat', 't', 'V_in', 'V_out');
piezo2 = load('mat/pi_505_high_2_stacks.mat', 't', 'V_in', 'V_out');
piezo3 = load('mat/pi_505_high_3_stacks.mat', 't', 'V_in', 'V_out');
Ts = 1e-4;
win = hann(ceil(0.1/Ts));

[tf_1, f_1] = tfestimate(piezo1.V_in, piezo1.V_out, win, [], [], 1/Ts);
[co_1, ~] = mscohere(piezo1.V_in, piezo1.V_out, win, [], [], 1/Ts);


[tf_2, f_2] = tfestimate(piezo2.V_in, piezo2.V_out, win, [], [], 1/Ts);
[co_2, ~] = mscohere(piezo2.V_in, piezo2.V_out, win, [], [], 1/Ts);


[tf_3, f_3] = tfestimate(piezo3.V_in, piezo3.V_out, win, [], [], 1/Ts);
[co_3, ~] = mscohere(piezo3.V_in, piezo3.V_out, win, [], [], 1/Ts);

change_capa_pi.png

Figure 2: Effect of a change of the piezo capacitance on the Amplifier transfer function

2 Effect of a change in Voltage level

2.1 Cedrat Technology

hi = load('mat/cedrat_la75b_high_1_stack.mat', 't', 'V_in', 'V_out');
me = load('mat/cedrat_la75b_med_1_stack.mat', 't', 'V_in', 'V_out');
lo = load('mat/cedrat_la75b_low_1_stack.mat', 't', 'V_in', 'V_out');
Ts = 1e-4;
win = hann(ceil(0.1/Ts));

[tf_hi, f_hi] = tfestimate(hi.V_in, hi.V_out, win, [], [], 1/Ts);
[co_hi, ~] = mscohere(hi.V_in, hi.V_out, win, [], [], 1/Ts);

[tf_me, f_me] = tfestimate(me.V_in, me.V_out, win, [], [], 1/Ts);
[co_me, ~] = mscohere(me.V_in, me.V_out, win, [], [], 1/Ts);

[tf_lo, f_lo] = tfestimate(lo.V_in, lo.V_out, win, [], [], 1/Ts);
[co_lo, ~] = mscohere(lo.V_in, lo.V_out, win, [], [], 1/Ts);

change_level_cedrat.png

Figure 3: Effect of a change of voltage level on the Amplifier transfer function

2.2 PI

hi = load('mat/pi_505_high.mat', 't', 'V_in', 'V_out');
lo = load('mat/pi_505_low.mat', 't', 'V_in', 'V_out');
Ts = 1e-4;
win = hann(ceil(0.1/Ts));

[tf_hi, f_hi] = tfestimate(hi.V_in, hi.V_out, win, [], [], 1/Ts);
[co_hi, ~] = mscohere(hi.V_in, hi.V_out, win, [], [], 1/Ts);

[tf_lo, f_lo] = tfestimate(lo.V_in, lo.V_out, win, [], [], 1/Ts);
[co_lo, ~] = mscohere(lo.V_in, lo.V_out, win, [], [], 1/Ts);

change_level_pi.png

Figure 4: Effect of a change of voltage level on the Amplifier transfer function

3 Comparison PI / Cedrat

3.1 Results

ce_results = load('mat/cedrat_la75b_high_1_stack.mat', 't', 'V_in', 'V_out');
pi_results = load('mat/pi_505_high.mat', 't', 'V_in', 'V_out');
Ts = 1e-4;
win = hann(ceil(0.1/Ts));

[tf_ce, f_ce] = tfestimate(ce_results.V_in, ce_results.V_out, win, [], [], 1/Ts);
[tf_pi, f_pi] = tfestimate(pi_results.V_in, pi_results.V_out, win, [], [], 1/Ts);

tf_amplifiers_comp.png

Figure 5: Comparison of the two Amplifier transfer functions

Author: Dehaeze Thomas

Created: 2020-08-13 jeu. 10:00