Measurement of Piezoelectric Amplifiers
Table of Contents
Two voltage amplifiers are tested:
The piezoelectric actuator under test is an APA95ML from Cedrat technology. It contains three stacks with a capacitance of \(5 \mu F\) each that can be connected independently to the amplifier.
1 Effect of a change of capacitance
1.1 Cedrat Technology
Load Data
piezo1 = load('mat/cedrat_la75b_med_1_stack.mat', 't', 'V_in', 'V_out'); piezo2 = load('mat/cedrat_la75b_med_2_stack.mat', 't', 'V_in', 'V_out'); piezo3 = load('mat/cedrat_la75b_med_3_stack.mat', 't', 'V_in', 'V_out');
Compute Coherence and Transfer functions
Ts = 1e-4; win = hann(ceil(0.1/Ts)); [tf_1, f_1] = tfestimate(piezo1.V_in, piezo1.V_out, win, [], [], 1/Ts); [co_1, ~] = mscohere(piezo1.V_in, piezo1.V_out, win, [], [], 1/Ts); [tf_2, f_2] = tfestimate(piezo2.V_in, piezo2.V_out, win, [], [], 1/Ts); [co_2, ~] = mscohere(piezo2.V_in, piezo2.V_out, win, [], [], 1/Ts); [tf_3, f_3] = tfestimate(piezo3.V_in, piezo3.V_out, win, [], [], 1/Ts); [co_3, ~] = mscohere(piezo3.V_in, piezo3.V_out, win, [], [], 1/Ts);
Figure 1: Effect of a change of the piezo capacitance on the Amplifier transfer function
1.2 PI
piezo1 = load('mat/pi_505_high.mat', 't', 'V_in', 'V_out'); piezo2 = load('mat/pi_505_high_2_stacks.mat', 't', 'V_in', 'V_out'); piezo3 = load('mat/pi_505_high_3_stacks.mat', 't', 'V_in', 'V_out');
Ts = 1e-4; win = hann(ceil(0.1/Ts)); [tf_1, f_1] = tfestimate(piezo1.V_in, piezo1.V_out, win, [], [], 1/Ts); [co_1, ~] = mscohere(piezo1.V_in, piezo1.V_out, win, [], [], 1/Ts); [tf_2, f_2] = tfestimate(piezo2.V_in, piezo2.V_out, win, [], [], 1/Ts); [co_2, ~] = mscohere(piezo2.V_in, piezo2.V_out, win, [], [], 1/Ts); [tf_3, f_3] = tfestimate(piezo3.V_in, piezo3.V_out, win, [], [], 1/Ts); [co_3, ~] = mscohere(piezo3.V_in, piezo3.V_out, win, [], [], 1/Ts);
Figure 2: Effect of a change of the piezo capacitance on the Amplifier transfer function
2 Effect of a change in Voltage level
2.1 Cedrat Technology
hi = load('mat/cedrat_la75b_high_1_stack.mat', 't', 'V_in', 'V_out'); me = load('mat/cedrat_la75b_med_1_stack.mat', 't', 'V_in', 'V_out'); lo = load('mat/cedrat_la75b_low_1_stack.mat', 't', 'V_in', 'V_out');
Ts = 1e-4; win = hann(ceil(0.1/Ts)); [tf_hi, f_hi] = tfestimate(hi.V_in, hi.V_out, win, [], [], 1/Ts); [co_hi, ~] = mscohere(hi.V_in, hi.V_out, win, [], [], 1/Ts); [tf_me, f_me] = tfestimate(me.V_in, me.V_out, win, [], [], 1/Ts); [co_me, ~] = mscohere(me.V_in, me.V_out, win, [], [], 1/Ts); [tf_lo, f_lo] = tfestimate(lo.V_in, lo.V_out, win, [], [], 1/Ts); [co_lo, ~] = mscohere(lo.V_in, lo.V_out, win, [], [], 1/Ts);
Figure 3: Effect of a change of voltage level on the Amplifier transfer function
2.2 PI
hi = load('mat/pi_505_high.mat', 't', 'V_in', 'V_out'); lo = load('mat/pi_505_low.mat', 't', 'V_in', 'V_out');
Ts = 1e-4; win = hann(ceil(0.1/Ts)); [tf_hi, f_hi] = tfestimate(hi.V_in, hi.V_out, win, [], [], 1/Ts); [co_hi, ~] = mscohere(hi.V_in, hi.V_out, win, [], [], 1/Ts); [tf_lo, f_lo] = tfestimate(lo.V_in, lo.V_out, win, [], [], 1/Ts); [co_lo, ~] = mscohere(lo.V_in, lo.V_out, win, [], [], 1/Ts);
Figure 4: Effect of a change of voltage level on the Amplifier transfer function
3 Comparison PI / Cedrat
3.1 Results
ce_results = load('mat/cedrat_la75b_high_1_stack.mat', 't', 'V_in', 'V_out'); pi_results = load('mat/pi_505_high.mat', 't', 'V_in', 'V_out');
Ts = 1e-4; win = hann(ceil(0.1/Ts)); [tf_ce, f_ce] = tfestimate(ce_results.V_in, ce_results.V_out, win, [], [], 1/Ts); [tf_pi, f_pi] = tfestimate(pi_results.V_in, pi_results.V_out, win, [], [], 1/Ts);
Figure 5: Comparison of the two Amplifier transfer functions