diff --git a/figs/tf_amplifiers_comp.pdf b/figs/tf_amplifiers_comp.pdf index eb5cbdf..514be56 100644 Binary files a/figs/tf_amplifiers_comp.pdf and b/figs/tf_amplifiers_comp.pdf differ diff --git a/figs/tf_amplifiers_comp.png b/figs/tf_amplifiers_comp.png index 34085fa..34eb268 100644 Binary files a/figs/tf_amplifiers_comp.png and b/figs/tf_amplifiers_comp.png differ diff --git a/index.html b/index.html index c525ca7..0659788 100644 --- a/index.html +++ b/index.html @@ -3,7 +3,7 @@ "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
- +Load Data @@ -109,7 +109,7 @@ win = hann(ceil(0.1/Ts));
Figure 1: Effect of a change of the piezo capacitance on the Amplifier transfer function
@@ -117,8 +117,8 @@ win = hann(ceil(0.1/Ts));piezo1 = load('mat/pi_505_high.mat', 't', 'V_in', 'V_out'); @@ -145,7 +145,7 @@ win = hann(ceil(0.1/Ts));
Figure 2: Effect of a change of the piezo capacitance on the Amplifier transfer function
@@ -154,12 +154,12 @@ win = hann(ceil(0.1/Ts));hi = load('mat/cedrat_la75b_high_1_stack.mat', 't', 'V_in', 'V_out'); @@ -184,7 +184,7 @@ win = hann(ceil(0.1/Ts));
Figure 3: Effect of a change of voltage level on the Amplifier transfer function
@@ -192,8 +192,8 @@ win = hann(ceil(0.1/Ts));hi = load('mat/pi_505_high.mat', 't', 'V_in', 'V_out'); @@ -214,7 +214,7 @@ win = hann(ceil(0.1/Ts));
Figure 4: Effect of a change of voltage level on the Amplifier transfer function
@@ -223,12 +223,12 @@ win = hann(ceil(0.1/Ts));ce_results = load('mat/cedrat_la75b_high_1_stack.mat', 't', 'V_in', 'V_out'); @@ -240,13 +240,21 @@ pi_results = load('mat/pi_505_high.mat', 't', 'V_in', 'V_out');Ts = 1e-4; win = hann(ceil(0.1/Ts)); -[tf_ce, f_ce] = tfestimate(ce_results.V_in, ce_results.V_out, win, [], [], 1/Ts); -[tf_pi, f_pi] = tfestimate(pi_results.V_in, pi_results.V_out, win, [], [], 1/Ts); +[tf_ce, f] = tfestimate(ce_results.V_in, ce_results.V_out, win, [], [], 1/Ts); +[tf_pi, ~] = tfestimate(pi_results.V_in, pi_results.V_out, win, [], [], 1/Ts); ++
+We remove the phase delay due to the time delay of the ADC/DAC: +
+angle_delay = 180/pi*angle(squeeze(freqresp(exp(-s*Ts), f, 'Hz')));
Figure 5: Comparison of the two Amplifier transfer functions
@@ -255,8 +263,8 @@ win = hann(ceil(0.1/Ts));The goal is to experimentally measure the output impedance of the voltage amplifiers. @@ -278,13 +286,13 @@ From the two values of voltage, the internal resistor value can be computed:
R = 10; % Resistive Load used [Ohm] -V = 10.09; % Output Voltage without any load [V] -Vp = 3.46; % Output Voltage with resistice load [V] +V = 0.998; % Output Voltage without any load [V] +Vp = 0.912; % Output Voltage with resistice load [V]
-19.162 +0.94298 ++ + +
R = 47; % Resistive Load used [Ohm] +V = 4.960; % Output Voltage without any load [V] +Vp = 4.874; % Output Voltage with resistice load [V] ++
R * (V - Vp)/Vp; ++
+0.8293@@ -308,13 +333,13 @@ G_ce = 1/(1+Ri*C*s);
R = 10; % Resistive Load used [Ohm] -V = 10.35; % Output Voltage without any load [V] -Vp = 4.14; % Output Voltage with resistice load [V] +V = 1.059; % Output Voltage without any load [V] +Vp = 0.828; % Output Voltage with resistice load [V]
-15 +2.7899 ++ + +
R = 10; % Resistive Load used [Ohm] +V = 2.092; % Output Voltage without any load [V] +Vp = 1.637; % Output Voltage with resistice load [V] ++
R * (V - Vp)/Vp ++
+2.7795
Created: 2020-08-13 jeu. 17:11
+Created: 2020-08-17 lun. 08:41