function [J] = getJacobianNanoHexapod(Hbm) % getJacobianNanoHexapod - % % Syntax: [J] = getJacobianNanoHexapod(Hbm) % % Inputs: % - Hbm - Height of {B} w.r.t. {M} [m] % % Outputs: % - J - Jacobian Matrix Fa = [[-86.05, -74.78, 22.49], [ 86.05, -74.78, 22.49], [ 107.79, -37.13, 22.49], [ 21.74, 111.91, 22.49], [-21.74, 111.91, 22.49], [-107.79, -37.13, 22.49]]'*1e-3; % Ai w.r.t. {F} [m] Mb = [[-28.47, -106.25, -22.50], [ 28.47, -106.25, -22.50], [ 106.25, 28.47, -22.50], [ 77.78, 77.78, -22.50], [-77.78, 77.78, -22.50], [-106.25, 28.47, -22.50]]'*1e-3; % Bi w.r.t. {M} [m] H = 95e-3; % Stewart platform height [m] Fb = Mb + [0; 0; H]; % Bi w.r.t. {F} [m] si = Fb - Fa; si = si./vecnorm(si); % Normalize Bb = Mb - [0; 0; Hbm]; J = [si', cross(Bb, si)'];