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This document is dedicated to the experimental study of the nano-hexapod shown in Figure 0.1.

Figure 0.1: Nano-Hexapod

Note

Here are the documentation of the equipment used for this test bench (lots of them are shwon
in Figure 0.2):

• Voltage Amplifier: PiezoDrive PD200

• Amplified Piezoelectric Actuator: Cedrat APA300ML

• DAC/ADC: Speedgoat IO313

• Encoder: Renishaw Vionic and used Ruler

• Interferometers: Attocube

In Figure 0.3 is shown a block diagram of the experimental setup. When possible, the notations are
consistent with this diagram and summarized in Table 0.1.
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Figure 0.2: Nano-Hexapod and the control electronics
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Figure 0.3: Block diagram of the system with named signals
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Table 0.1: List of signals

Unit Matlab Vector Elements

Control Input (wanted DAC voltage) [V] u u ui
DAC Output Voltage [V] u ũ ũi
PD200 Output Voltage [V] ua ua ua,i
Actuator applied force [N] tau τ τi

Strut motion [m] dL dL dLi

Encoder measured displacement [m] dLm dLm dLm,i

Force Sensor strain [m] epsilon ε εi
Force Sensor Generated Voltage [V] taum τ̃m τ̃m,i

Measured Generated Voltage [V] taum τm τm,i

Motion of the top platform [m,rad] dX dX dXi

Metrology measured displacement [m,rad] dXm dXm dXm,i

This document is divided in the following sections:

• Section 1: the encoders are fixed to the struts

• Section 2: the encoders are fixed to the plates
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1 Encoders fixed to the Struts

1.1 Introduction

In this section, the encoders are fixed to the struts.

It is divided in the following sections:

• Section 1.2: the transfer function matrix from the actuators to the force sensors and to the
encoders is experimentally identified.

• Section 1.3: the obtained FRF matrix is compared with the dynamics of the simscape model

• Section 1.4: decentralized Integral Force Feedback (IFF) is applied and its performances are
evaluated.

• Section 1.5: a modal analysis of the nano-hexapod is performed

1.2 Identification of the dynamics

1.2.1 Load Data

Matlab
%% Load Identification Data
meas_data_lf = {};

for i = 1:6
meas_data_lf(i) = {load(sprintf('mat/frf_data_exc_strut_%i_noise_lf.mat', i), 't', 'Va', 'Vs', 'de')};
meas_data_hf(i) = {load(sprintf('mat/frf_data_exc_strut_%i_noise_hf.mat', i), 't', 'Va', 'Vs', 'de')};

end

1.2.2 Spectral Analysis - Setup

Matlab
%% Setup useful variables
% Sampling Time [s]
Ts = (meas_data_lf{1}.t(end) - (meas_data_lf{1}.t(1)))/(length(meas_data_lf{1}.t)-1);

% Sampling Frequency [Hz]
Fs = 1/Ts;

% Hannning Windows
win = hanning(ceil(1*Fs));
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% And we get the frequency vector
[~, f] = tfestimate(meas_data_lf{1}.Va, meas_data_lf{1}.de, win, [], [], 1/Ts);

i_lf = f < 250; % Points for low frequency excitation
i_hf = f > 250; % Points for high frequency excitation

1.2.3 DVF Plant

First, let’s compute the coherence from the excitation voltage and the displacement as measured by the
encoders (Figure 1.1).

Matlab
%% Coherence
coh_dvf_lf = zeros(length(f), 6, 6);
coh_dvf_hf = zeros(length(f), 6, 6);

for i = 1:6
coh_dvf_lf(:, :, i) = mscohere(meas_data_lf{i}.Va, meas_data_lf{i}.de, win, [], [], 1/Ts);
coh_dvf_hf(:, :, i) = mscohere(meas_data_hf{i}.Va, meas_data_hf{i}.de, win, [], [], 1/Ts);

end
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Figure 1.1: Obtained coherence for the DVF plant

Then the 6x6 transfer function matrix is estimated (Figure 1.2).

Matlab
%% DVF Plant (transfer function from u to dLm)
G_dvf_lf = zeros(length(f), 6, 6);
G_dvf_hf = zeros(length(f), 6, 6);

for i = 1:6
G_dvf_lf(:, :, i) = tfestimate(meas_data_lf{i}.Va, meas_data_lf{i}.de, win, [], [], 1/Ts);
G_dvf_hf(:, :, i) = tfestimate(meas_data_hf{i}.Va, meas_data_hf{i}.de, win, [], [], 1/Ts);

end
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Figure 1.2: Measured FRF for the DVF plant

1.2.4 IFF Plant

First, let’s compute the coherence from the excitation voltage and the displacement as measured by the
encoders (Figure 1.3).

Matlab
%% Coherence for the IFF plant
coh_iff_lf = zeros(length(f), 6, 6);
coh_iff_hf = zeros(length(f), 6, 6);

for i = 1:6
coh_iff_lf(:, :, i) = mscohere(meas_data_lf{i}.Va, meas_data_lf{i}.Vs, win, [], [], 1/Ts);
coh_iff_hf(:, :, i) = mscohere(meas_data_hf{i}.Va, meas_data_hf{i}.Vs, win, [], [], 1/Ts);

end

Then the 6x6 transfer function matrix is estimated (Figure 1.4).

Matlab
%% IFF Plant
G_iff_lf = zeros(length(f), 6, 6);
G_iff_hf = zeros(length(f), 6, 6);

for i = 1:6
G_iff_lf(:, :, i) = tfestimate(meas_data_lf{i}.Va, meas_data_lf{i}.Vs, win, [], [], 1/Ts);
G_iff_hf(:, :, i) = tfestimate(meas_data_hf{i}.Va, meas_data_hf{i}.Vs, win, [], [], 1/Ts);

end
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Figure 1.3: Obtained coherence for the IFF plant
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Figure 1.4: Measured FRF for the IFF plant
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1.3 Comparison with the Simscape Model

In this section, the measured dynamics is compared with the dynamics estimated from the Simscape
model.

1.3.1 Dynamics from Actuator to Force Sensors

Matlab
%% Initialize Nano-Hexapod
n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ...

'flex_top_type', '4dof', ...
'motion_sensor_type', 'struts', ...
'actuator_type', '2dof');

Matlab
%% Identify the IFF Plant (transfer function from u to taum)
clear io; io_i = 1;
io(io_i) = linio([mdl, '/F'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs
io(io_i) = linio([mdl, '/Fm'], 1, 'openoutput'); io_i = io_i + 1; % Force Sensors

Giff = exp(-s*Ts)*linearize(mdl, io, 0.0, options);
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Figure 1.5: Diagonal elements of the IFF Plant
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Figure 1.6: Off diagonal elements of the IFF Plant

1.3.2 Dynamics from Actuator to Encoder

Matlab
%% Initialization of the Nano-Hexapod
n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ...

'flex_top_type', '4dof', ...
'motion_sensor_type', 'struts', ...
'actuator_type', '2dof');

Matlab
%% Identify the DVF Plant (transfer function from u to dLm)
clear io; io_i = 1;
io(io_i) = linio([mdl, '/F'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs
io(io_i) = linio([mdl, '/D'], 1, 'openoutput'); io_i = io_i + 1; % Encoders

Gdvf = exp(-s*Ts)*linearize(mdl, io, 0.0, options);

1.4 Integral Force Feedback

1.4.1 Root Locus and Decentralized Loop gain

Matlab
%% IFF Controller
Kiff_g1 = (1/(s + 2*pi*40))*... % Low pass filter (provides integral action above 40Hz)

(s/(s + 2*pi*30))*... % High pass filter to limit low frequency gain
(1/(1 + s/2/pi/500))*... % Low pass filter to be more robust to high frequency resonances
eye(6); % Diagonal 6x6 controller

Then the “optimal” IFF controller is:
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Figure 1.7: Diagonal elements of the DVF Plant
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Figure 1.8: Off diagonal elements of the DVF Plant
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Figure 1.9: Root Locus for the IFF control strategy

Matlab
%% IFF controller with Optimal gain
Kiff = g*Kiff_g1;

1.4.2 Multiple Gains - Simulation

Matlab
%% Tested IFF gains
iff_gains = [4, 10, 20, 40, 100, 200, 400];

Matlab
%% Initialize the Simscape model in closed loop
n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ...

'flex_top_type', '4dof', ...
'motion_sensor_type', 'struts', ...
'actuator_type', '2dof', ...
'controller_type', 'iff');

Matlab
%% Identify the (damped) transfer function from u to dLm for different values of the IFF gain
Gd_iff = {zeros(1, length(iff_gains))};

clear io; io_i = 1;
io(io_i) = linio([mdl, '/F'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs
io(io_i) = linio([mdl, '/D'], 1, 'openoutput'); io_i = io_i + 1; % Strut Displacement (encoder)

13



10!2

10!1

100

101

102

A
m
p
li
tu
d
e
[V
/V
]

=m;i=ui "Kiff - FRF
=m;i=ui "Kiff - Model

102 103

Frequency [Hz]

-180

-90

0

90

180

P
h
as
e
[d
eg
]

Figure 1.10: Bode plot of the “decentralized loop gain” Giff(i, i)×Kiff(i, i)
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for i = 1:length(iff_gains)
Kiff = iff_gains(i)*Kiff_g1*eye(6); % IFF Controller
Gd_iff(i) = {exp(-s*Ts)*linearize(mdl, io, 0.0, options)};

isstable(Gd_iff{i})
end
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Figure 1.11: Effect of the IFF gain g on the transfer function from τ to dLm

1.4.3 Experimental Results - Gains

Let’s look at the damping introduced by IFF as a function of the IFF gain and compare that with the
results obtained using the Simscape model.

Load Data

Matlab
%% Load Identification Data
meas_iff_gains = {};

for i = 1:length(iff_gains)
meas_iff_gains(i) = {load(sprintf('mat/iff_strut_1_noise_g_%i.mat', iff_gains(i)), 't', 'Vexc', 'Vs', 'de', 'u')};

end
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Spectral Analysis - Setup

Matlab
%% Setup useful variables
% Sampling Time [s]
Ts = (meas_iff_gains{1}.t(end) - (meas_iff_gains{1}.t(1)))/(length(meas_iff_gains{1}.t)-1);

% Sampling Frequency [Hz]
Fs = 1/Ts;

% Hannning Windows
win = hanning(ceil(1*Fs));

% And we get the frequency vector
[~, f] = tfestimate(meas_iff_gains{1}.Vexc, meas_iff_gains{1}.de, win, [], [], 1/Ts);

DVF Plant

Matlab
%% DVF Plant (transfer function from u to dLm)
G_iff_gains = {};

for i = 1:length(iff_gains)
G_iff_gains{i} = tfestimate(meas_iff_gains{i}.Vexc, meas_iff_gains{i}.de(:,1), win, [], [], 1/Ts);

end
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Figure 1.12: Transfer function from u to dLm for multiple values of the IFF gain
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Figure 1.13: Transfer function from u to dLm for multiple values of the IFF gain (Zoom)
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Important

The IFF control strategy is very effective for the damping of the suspension modes. It however
does not damp the modes at 200Hz, 300Hz and 400Hz (flexible modes of the APA). This is very
logical.
Also, the experimental results and the models obtained from the Simscape model are in agree-
ment.

Experimental Results - Comparison of the un-damped and fully damped system
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Figure 1.14: Comparison of the diagonal elements of the tranfer function from u to dLm without
active damping and with optimal IFF gain

Question

A series of modes at around 205Hz are also damped.
Are these damped modes at 205Hz additional “suspension” modes or flexible modes of the struts?

1.4.4 Experimental Results - Damped Plant with Optimal gain

Let’s now look at the 6× 6 damped plant with the optimal gain g = 400.
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Load Data

Matlab
%% Load Identification Data
meas_iff_struts = {};

for i = 1:6
meas_iff_struts(i) = {load(sprintf('mat/iff_strut_%i_noise_g_400.mat', i), 't', 'Vexc', 'Vs', 'de', 'u')};

end

Spectral Analysis - Setup

Matlab
%% Setup useful variables
% Sampling Time [s]
Ts = (meas_iff_struts{1}.t(end) - (meas_iff_struts{1}.t(1)))/(length(meas_iff_struts{1}.t)-1);

% Sampling Frequency [Hz]
Fs = 1/Ts;

% Hannning Windows
win = hanning(ceil(1*Fs));

% And we get the frequency vector
[~, f] = tfestimate(meas_iff_struts{1}.Vexc, meas_iff_struts{1}.de, win, [], [], 1/Ts);

DVF Plant

Matlab
%% DVF Plant (transfer function from u to dLm)
G_iff_opt = {};

for i = 1:6
G_iff_opt{i} = tfestimate(meas_iff_struts{i}.Vexc, meas_iff_struts{i}.de, win, [], [], 1/Ts);

end

Important

With the IFF control strategy applied and the optimal gain used, the suspension modes are very
well damped. Remains the undamped flexible modes of the APA (200Hz, 300Hz, 400Hz), and
the modes of the plates (700Hz).
The Simscape model and the experimental results are in very good agreement.

1.5 Modal Analysis

Several 3-axis accelerometers are fixed on the top platform of the nano-hexapod as shown in Figure
1.19.

The top platform is then excited using an instrumented hammer as shown in Figure 1.18.
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Figure 1.15: Comparison of the diagonal elements of the transfer functions from u to dLm with active
damping (IFF) applied with an optimal gain g = 400
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Figure 1.16: Comparison of the off-diagonal elements of the transfer functions from u to dLm with
active damping (IFF) applied with an optimal gain g = 400
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Figure 1.17: Location of the accelerometers on top of the nano-hexapod
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Figure 1.18: Example of an excitation using an instrumented hammer
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1.5.1 Effectiveness of the IFF Strategy - Compliance

In this section, we wish to estimated the effectiveness of the IFF strategy concerning the compliance.

The top plate is excited vertically using the instrumented hammer two times:

1. no control loop is used

2. decentralized IFF is used

The data is loaded.
Matlab

frf_ol = load('Measurement_Z_axis.mat'); % Open-Loop
frf_iff = load('Measurement_Z_axis_damped.mat'); % IFF

The mean vertical motion of the top platform is computed by averaging all 5 accelerometers.
Matlab

%% Multiply by 10 (gain in m/s^2/V) and divide by 5 (number of accelerometers)
d_frf_ol = 10/5*(frf_ol.FFT1_H1_4_1_RMS_Y_Mod + frf_ol.FFT1_H1_7_1_RMS_Y_Mod + frf_ol.FFT1_H1_10_1_RMS_Y_Mod +

frf_ol.FFT1_H1_13_1_RMS_Y_Mod + frf_ol.FFT1_H1_16_1_RMS_Y_Mod)./(2*pi*frf_ol.FFT1_H1_16_1_RMS_X_Val).^2;↪→
d_frf_iff = 10/5*(frf_iff.FFT1_H1_4_1_RMS_Y_Mod + frf_iff.FFT1_H1_7_1_RMS_Y_Mod + frf_iff.FFT1_H1_10_1_RMS_Y_Mod +

frf_iff.FFT1_H1_13_1_RMS_Y_Mod + frf_iff.FFT1_H1_16_1_RMS_Y_Mod)./(2*pi*frf_iff.FFT1_H1_16_1_RMS_X_Val).^2;↪→

The vertical compliance (magnitude of the transfer function from a vertical force applied on the top
plate to the vertical motion of the top plate) is shown in Figure 1.19.
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Figure 1.19: Measured vertical compliance with and without IFF

Important

From Figure 1.19, it is clear that the IFF control strategy is very effective in damping the
suspensions modes of the nano-hexapode. It also has the effect of degrading (slightly) the
vertical compliance at low frequency.
It also seems some damping can be added to the modes at around 205Hz which are flexible
modes of the struts.
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1.5.2 Comparison with the Simscape Model

Let’s now compare the measured vertical compliance with the vertical compliance as estimated from
the Simscape model.

The transfer function from a vertical external force to the absolute motion of the top platform is
identified (with and without IFF) using the Simscape model. The comparison is done in Figure 1.20.
Again, the model is quite accurate!
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Figure 1.20: Measured vertical compliance with and without IFF

1.5.3 Obtained Mode Shapes

Then, several excitation are performed using the instrumented Hammer and the mode shapes are
extracted.

We can observe the mode shapes of the first 6 modes that are the suspension modes (the plate is
behaving as a solid body) in Figure 1.22.

Then, there is a mode at 692Hz which corresponds to a flexible mode of the top plate (Figure 1.22).

The obtained modes are summarized in Table 1.1.

Table 1.1: Description of the identified modes

Mode Freq. [Hz] Description

1 105 Suspension Mode: Y-translation
2 107 Suspension Mode: X-translation
3 131 Suspension Mode: Z-translation
4 161 Suspension Mode: Y-tilt
5 162 Suspension Mode: X-tilt
6 180 Suspension Mode: Z-rotation
7 692 (flexible) Membrane mode of the top platform
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Figure 1.21: Measured mode shapes for the first six modes

Figure 1.22: First flexible mode at 692Hz
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2 Encoders fixed to the plates
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