
Nano-Hexapod - Test Bench

Dehaeze Thomas

July 2, 2021



Contents

1 Encoders fixed to the Struts - Dynamics 7
1.1 Identification of the dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1.1 Load Measurement Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.1.2 Spectral Analysis - Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.1.3 Transfer function from Actuator to Encoder . . . . . . . . . . . . . . . . . . . . . 8
1.1.4 Transfer function from Actuator to Force Sensor . . . . . . . . . . . . . . . . . . 8
1.1.5 Save Identified Plants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2 Comparison with the Simscape Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2.1 Load measured FRF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2.2 Dynamics from Actuator to Force Sensors . . . . . . . . . . . . . . . . . . . . . . 11
1.2.3 Dynamics from Actuator to Encoder . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2.4 Effect of a change in bending damping of the joints . . . . . . . . . . . . . . . . . 13
1.2.5 Effect of a change in damping factor of the APA . . . . . . . . . . . . . . . . . . 14
1.2.6 Effect of a change in stiffness damping coef of the APA . . . . . . . . . . . . . . 16
1.2.7 Effect of a change in mass damping coef of the APA . . . . . . . . . . . . . . . . 16
1.2.8 Using Flexible model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.2.9 Flexible model + encoders fixed to the plates . . . . . . . . . . . . . . . . . . . . 19

1.3 Integral Force Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.3.1 IFF Control Law and Optimal Gain . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.3.2 Effect of IFF on the plant - Simulations . . . . . . . . . . . . . . . . . . . . . . . 23
1.3.3 Effect of IFF on the plant - Experimental Results . . . . . . . . . . . . . . . . . . 25
1.3.4 Experimental Results - Damped Plant with Optimal gain . . . . . . . . . . . . . 28
1.3.5 Comparison with the Flexible model . . . . . . . . . . . . . . . . . . . . . . . . . 32
1.3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

1.4 Modal Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
1.4.1 Obtained Mode Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
1.4.2 Nano-Hexapod Compliance - Effect of IFF . . . . . . . . . . . . . . . . . . . . . . 37
1.4.3 Comparison with the Simscape Model . . . . . . . . . . . . . . . . . . . . . . . . 39

1.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2 Encoders fixed to the plates - Dynamics 41
2.1 Identification of the dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.1.1 Data Loading and Spectral Analysis Setup . . . . . . . . . . . . . . . . . . . . . 42
2.1.2 Transfer function from Actuator to Encoder . . . . . . . . . . . . . . . . . . . . . 42
2.1.3 Transfer function from Actuator to Force Sensor . . . . . . . . . . . . . . . . . . 44
2.1.4 Save Identified Plants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.2 Comparison with the Simscape Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.2.1 Identification Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.2.2 Dynamics from Actuator to Force Sensors . . . . . . . . . . . . . . . . . . . . . . 46
2.2.3 Dynamics from Actuator to Encoder . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.3 Integral Force Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.3.1 Effect of IFF on the plant - Simscape Model . . . . . . . . . . . . . . . . . . . . 51
2.3.2 Effect of IFF on the plant - FRF . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2



2.3.3 Comparison of the measured FRF and the Simscape model . . . . . . . . . . . . 54
2.3.4 Save Damped Plant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3 Decentralized High Authority Control with Integral Force Feedback 60
3.1 High Authority Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.1.1 Simscape Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.1.2 HAC Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.1.3 Verification of the Stability using the Simscape model . . . . . . . . . . . . . . . 63
3.1.4 Experimental Loop Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.2 Reference Tracking - Trajectories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.2.1 Y-Z Scans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.2.2 Tilt Scans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.2.3 “NASS” reference path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.3 First Experimental Tests with the HAC . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.3.1 Initial Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.3.2 Controller with increased stability margins . . . . . . . . . . . . . . . . . . . . . 72

4 Functions 76
4.1 generateXYZTrajectory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.2 generateYZScanTrajectory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.3 getTransformationMatrixAcc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.4 getJacobianNanoHexapod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3



This document is dedicated to the experimental study of the nano-hexapod shown in Figure 0.1.

Figure 0.1: Nano-Hexapod

Note

Here are the documentation of the equipment used for this test bench (lots of them are shwon
in Figure 0.2):

• Voltage Amplifier: PiezoDrive PD200

• Amplified Piezoelectric Actuator: Cedrat APA300ML

• DAC/ADC: Speedgoat IO313

• Encoder: Renishaw Vionic and used Ruler

• Interferometers: Attocube

In Figure 0.3 is shown a block diagram of the experimental setup. When possible, the notations are
consistent with this diagram and summarized in Table 0.1.

4



Figure 0.2: Nano-Hexapod and the control electronics

Nano-Hexapod

Mechanics
Actuator

stacks
PD200DAC

Sensor

stack
ADC

Encoder

u

[V ]
/

ũ

[V ]
ua

[V ]
τ

[N ]
ε

[m]
τ̃m

[V ]
/
τm

[V ]

dL
[m]

/
dLm

[m]

Figure 0.3: Block diagram of the system with named signals

5



Table 0.1: List of signals

Unit Matlab Vector Elements

Control Input (wanted DAC voltage) [V] u u ui
DAC Output Voltage [V] u ũ ũi
PD200 Output Voltage [V] ua ua ua,i
Actuator applied force [N] tau τ τi

Strut motion [m] dL dL dLi

Encoder measured displacement [m] dLm dLm dLm,i

Force Sensor strain [m] epsilon ε εi
Force Sensor Generated Voltage [V] taum τ̃m τ̃m,i

Measured Generated Voltage [V] taum τm τm,i

Motion of the top platform [m,rad] dX dX dXi

Metrology measured displacement [m,rad] dXm dXm dXm,i

This document is divided in the following sections:

• Section 1: the dynamics of the nano-hexapod when the encoders are fixed to the struts is studied.

• Section 2: the same is done when the encoders are fixed to the plates.

• Section 3: a decentralized HAC-LAC strategy is studied and implemented.

6



1 Encoders fixed to the Struts - Dynamics

In this section, the encoders are fixed to the struts.

It is divided in the following sections:

• Section 1.1: the transfer function matrix from the actuators to the force sensors and to the
encoders is experimentally identified.

• Section 1.2: the obtained FRF matrix is compared with the dynamics of the simscape model

• Section 1.3: decentralized Integral Force Feedback (IFF) is applied and its performances are
evaluated.

• Section 1.4: a modal analysis of the nano-hexapod is performed

1.1 Identification of the dynamics

1.1.1 Load Measurement Data

Matlab
%% Load Identification Data
meas_data_lf = {};

for i = 1:6
meas_data_lf(i) = {load(sprintf('mat/frf_data_exc_strut_%i_noise_lf.mat', i), 't', 'Va', 'Vs', 'de')};
meas_data_hf(i) = {load(sprintf('mat/frf_data_exc_strut_%i_noise_hf.mat', i), 't', 'Va', 'Vs', 'de')};

end

1.1.2 Spectral Analysis - Setup

Matlab
%% Setup useful variables
% Sampling Time [s]
Ts = (meas_data_lf{1}.t(end) - (meas_data_lf{1}.t(1)))/(length(meas_data_lf{1}.t)-1);

% Sampling Frequency [Hz]
Fs = 1/Ts;

% Hannning Windows
win = hanning(ceil(1*Fs));

% And we get the frequency vector
[~, f] = tfestimate(meas_data_lf{1}.Va, meas_data_lf{1}.de, win, [], [], 1/Ts);

7



i_lf = f < 250; % Points for low frequency excitation
i_hf = f > 250; % Points for high frequency excitation

1.1.3 Transfer function from Actuator to Encoder

First, let’s compute the coherence from the excitation voltage and the displacement as measured by the
encoders (Figure 1.1).

Matlab
%% Coherence
coh_dvf = zeros(length(f), 6, 6);

for i = 1:6
coh_dvf_lf = mscohere(meas_data_lf{i}.Va, meas_data_lf{i}.de, win, [], [], 1/Ts);
coh_dvf_hf = mscohere(meas_data_hf{i}.Va, meas_data_hf{i}.de, win, [], [], 1/Ts);
coh_dvf(:,:,i) = [coh_dvf_lf(i_lf, :); coh_dvf_hf(i_hf, :)];

end

102 103

Frequency [Hz]

0

0.2

0.4

0.6

0.8

1

C
o
h
er

en
ce

[-
]

Gdvf (1; 1)
Gdvf (2; 2)
Gdvf (3; 3)

Gdvf (4; 4)
Gdvf (5; 5)
Gdvf (6; 6)

Gdvf (i; j)

Figure 1.1: Obtained coherence for the DVF plant

Then the 6x6 transfer function matrix is estimated (Figure 1.2).
Matlab

%% DVF Plant (transfer function from u to dLm)
G_dvf = zeros(length(f), 6, 6);

for i = 1:6
G_dvf_lf = tfestimate(meas_data_lf{i}.Va, meas_data_lf{i}.de, win, [], [], 1/Ts);
G_dvf_hf = tfestimate(meas_data_hf{i}.Va, meas_data_hf{i}.de, win, [], [], 1/Ts);
G_dvf(:,:,i) = [G_dvf_lf(i_lf, :); G_dvf_hf(i_hf, :)];

end

1.1.4 Transfer function from Actuator to Force Sensor

First, let’s compute the coherence from the excitation voltage and the displacement as measured by the
encoders (Figure 1.3).

8



10!8

10!6

10!4

A
m

p
li
tu

d
e

d
e
=V

a
[m

/V
]

Gdvf (1; 1)
Gdvf (2; 2)
Gdvf (3; 3)

Gdvf (4; 4)
Gdvf (5; 5)
Gdvf (6; 6)

Gdvf (i; j)

102 103

Frequency [Hz]

-180

-90

0

90

180

P
h
as

e
[d

eg
]

Figure 1.2: Measured FRF for the DVF plant

Matlab
%% Coherence for the IFF plant
coh_iff = zeros(length(f), 6, 6);

for i = 1:6
coh_iff_lf = mscohere(meas_data_lf{i}.Va, meas_data_lf{i}.Vs, win, [], [], 1/Ts);
coh_iff_hf = mscohere(meas_data_hf{i}.Va, meas_data_hf{i}.Vs, win, [], [], 1/Ts);
coh_iff(:,:,i) = [coh_iff_lf(i_lf, :); coh_iff_hf(i_hf, :)];

end

Then the 6x6 transfer function matrix is estimated (Figure 1.4).

Matlab
%% IFF Plant
G_iff = zeros(length(f), 6, 6);

for i = 1:6
G_iff_lf = tfestimate(meas_data_lf{i}.Va, meas_data_lf{i}.Vs, win, [], [], 1/Ts);
G_iff_hf = tfestimate(meas_data_hf{i}.Va, meas_data_hf{i}.Vs, win, [], [], 1/Ts);
G_iff(:,:,i) = [G_iff_lf(i_lf, :); G_iff_hf(i_hf, :)];

end

9



102 103

Frequency [Hz]

0

0.2

0.4

0.6

0.8

1

C
o
h
er

en
ce

[-
]

Giff (1; 1)
Giff (2; 2)
Giff (3; 3)

Giff (4; 4)
Giff (5; 5)
Giff (6; 6)

Giff (i; j)

Figure 1.3: Obtained coherence for the IFF plant

10!3

10!2

10!1

100

101

102

A
m
p
li
tu
d
e

V
s
=V

a
[V

/V
]

Giff (1; 1)
Giff (2; 2)
Giff (3; 3)

Giff (4; 4)
Giff (5; 5)
Giff (6; 6)

Giff (i; j)

102 103

Frequency [Hz]

-180

-90

0

90

180

P
h
as
e
[d
eg
]

Figure 1.4: Measured FRF for the IFF plant

10



1.1.5 Save Identified Plants

Matlab
save('matlab/mat/identified_plants_enc_struts.mat', 'f', 'Ts', 'G_iff', 'G_dvf')

1.2 Comparison with the Simscape Model

In this section, the measured dynamics is compared with the dynamics estimated from the Simscape
model.

1.2.1 Load measured FRF

Matlab
%% Load data
load('identified_plants_enc_struts.mat', 'f', 'Ts', 'G_iff', 'G_dvf')

1.2.2 Dynamics from Actuator to Force Sensors

Matlab
%% Initialize Nano-Hexapod
n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ...

'flex_top_type', '4dof', ...
'motion_sensor_type', 'struts', ...
'actuator_type', '2dof');

Matlab
%% Identify the IFF Plant (transfer function from u to taum)
clear io; io_i = 1;
io(io_i) = linio([mdl, '/du'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs
io(io_i) = linio([mdl, '/dum'], 1, 'openoutput'); io_i = io_i + 1; % Force Sensors

Giff = exp(-s*Ts)*linearize(mdl, io, 0.0, options);

1.2.3 Dynamics from Actuator to Encoder

Matlab
%% Initialization of the Nano-Hexapod
n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ...

'flex_top_type', '4dof', ...
'motion_sensor_type', 'struts', ...
'actuator_type', 'flexible');

11



10!2

10!1

100

101

102

A
m
p
li
tu
d
e
[V
/V
]

=m;i=ui - FRF
=m;i=ui - Model

102 103

Frequency [Hz]

-180

-90

0

90

180

P
h
as
e
[d
eg
]

Figure 1.5: Diagonal elements of the IFF Plant

102 103

Frequency [Hz]

10!2

100

102

A
m

p
li
tu

d
e

[V
/V

]

=m;i=uj - FRF
=m;i=uj - Model

Figure 1.6: Off diagonal elements of the IFF Plant

12



Matlab
%% Identify the DVF Plant (transfer function from u to dLm)
clear io; io_i = 1;
io(io_i) = linio([mdl, '/du'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs
io(io_i) = linio([mdl, '/D'], 1, 'openoutput'); io_i = io_i + 1; % Encoders

Gdvf = exp(-s*Ts)*linearize(mdl, io, 0.0, options);

10!8

10!7

10!6

10!5

10!4

10!3

A
m
p
li
tu
d
e
[m

/V
]

dLm;i=ui - FRF
dLm;i=ui - Model

102 103

Frequency [Hz]

-180

-90

0

90

180

P
h
as
e
[d
eg
]

Figure 1.7: Diagonal elements of the DVF Plant

1.2.4 Effect of a change in bending damping of the joints

Matlab
%% Tested bending dampings [Nm/(rad/s)]
cRs = [1e-3, 5e-3, 1e-2, 5e-2, 1e-1];

Matlab
%% Identify the DVF Plant (transfer function from u to dLm)
clear io; io_i = 1;
io(io_i) = linio([mdl, '/du'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs
io(io_i) = linio([mdl, '/D'], 1, 'openoutput'); io_i = io_i + 1; % Encoders

Then the identification is performed for all the values of the bending damping.

13



102 103

Frequency [Hz]

10!8

10!6

10!4

A
m
p
li
tu
d
e
[m

/
V
]

dLm;i=uj - FRF
dLm;i=uj - Model

Figure 1.8: Off diagonal elements of the DVF Plant

Matlab
%% Idenfity the transfer function from actuator to encoder for all bending dampins
Gs = {zeros(length(cRs), 1)};

for i = 1:length(cRs)
n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ...

'flex_top_type', '4dof', ...
'motion_sensor_type', 'struts', ...
'actuator_type', 'flexible', ...
'flex_bot_cRx', cRs(i), ...
'flex_bot_cRy', cRs(i), ...
'flex_top_cRx', cRs(i), ...
'flex_top_cRy', cRs(i));

G = exp(-s*Ts)*linearize(mdl, io, 0.0, options);
G.InputName = {'Va1', 'Va2', 'Va3', 'Va4', 'Va5', 'Va6'};
G.OutputName = {'dL1', 'dL2', 'dL3', 'dL4', 'dL5', 'dL6'};

Gs(i) = {G};
end

• Could be nice

• Actual damping is very small

1.2.5 Effect of a change in damping factor of the APA

Matlab
%% Tested bending dampings [Nm/(rad/s)]
xis = [1e-3, 5e-3, 1e-2, 5e-2, 1e-1];

Matlab
%% Identify the DVF Plant (transfer function from u to dLm)
clear io; io_i = 1;
io(io_i) = linio([mdl, '/du'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs
io(io_i) = linio([mdl, '/D'], 1, 'openoutput'); io_i = io_i + 1; % Encoders

14



Matlab
%% Idenfity the transfer function from actuator to encoder for all bending dampins
Gs = {zeros(length(xis), 1)};

for i = 1:length(xis)
n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ...

'flex_top_type', '4dof', ...
'motion_sensor_type', 'struts', ...
'actuator_type', 'flexible', ...
'actuator_xi', xis(i));

G = exp(-s*Ts)*linearize(mdl, io, 0.0, options);
G.InputName = {'Va1', 'Va2', 'Va3', 'Va4', 'Va5', 'Va6'};
G.OutputName = {'dL1', 'dL2', 'dL3', 'dL4', 'dL5', 'dL6'};

Gs(i) = {G};
end

10!8

10!7

10!6

10!5

10!4

10!3

A
m

p
li
tu

d
e

d
L
=V

a
[m

/V
]

9 = 0:001
9 = 0:005
9 = 0:010
9 = 0:050
9 = 0:100

102 103

Frequency [Hz]

-180

-90

0

90

180

P
h
as

e
[d

eg
]

Figure 1.9: Effect of the APA damping factor ξ on the dynamics from u to dL

Important

Damping factor ξ has a large impact on the damping of the “spurious resonances” at 200Hz and
300Hz.

Question

Why is the damping factor does not change the damping of the first peak?

15



1.2.6 Effect of a change in stiffness damping coef of the APA

Matlab
m_coef = 1e1;

Matlab
%% Tested bending dampings [Nm/(rad/s)]
k_coefs = [1e-6, 5e-6, 1e-5, 5e-5, 1e-4];

Matlab
%% Identify the DVF Plant (transfer function from u to dLm)
clear io; io_i = 1;
io(io_i) = linio([mdl, '/du'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs
io(io_i) = linio([mdl, '/D'], 1, 'openoutput'); io_i = io_i + 1; % Encoders

Matlab
%% Idenfity the transfer function from actuator to encoder for all bending dampins
Gs = {zeros(length(k_coefs), 1)};
n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ...

'flex_top_type', '4dof', ...
'motion_sensor_type', 'struts', ...
'actuator_type', 'flexible');

for i = 1:length(k_coefs)
k_coef = k_coefs(i);

G = exp(-s*Ts)*linearize(mdl, io, 0.0, options);
G.InputName = {'Va1', 'Va2', 'Va3', 'Va4', 'Va5', 'Va6'};
G.OutputName = {'dL1', 'dL2', 'dL3', 'dL4', 'dL5', 'dL6'};

Gs(i) = {G};
end

1.2.7 Effect of a change in mass damping coef of the APA

Matlab
k_coef = 1e-6;

Matlab
%% Tested bending dampings [Nm/(rad/s)]
m_coefs = [1e1, 5e1, 1e2, 5e2, 1e3];

Matlab
%% Identify the DVF Plant (transfer function from u to dLm)
clear io; io_i = 1;
io(io_i) = linio([mdl, '/du'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs
io(io_i) = linio([mdl, '/D'], 1, 'openoutput'); io_i = io_i + 1; % Encoders

16



10!8

10!7

10!6

10!5

10!4

10!3

A
m
p
li
tu
d
e

d
L
=V

a
[m

/V
]

kcoef = 1e-06
kcoef = 5e-06
kcoef = 1e-05
kcoef = 5e-05
kcoef = 1e-04

102 103

Frequency [Hz]

-180

-90

0

90

180

P
h
as
e
[d
eg
]

Figure 1.10: Effect of a change of the damping “stiffness coeficient” on the transfer function from u to
dL

17



Matlab
%% Idenfity the transfer function from actuator to encoder for all bending dampins
Gs = {zeros(length(m_coefs), 1)};
n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ...

'flex_top_type', '4dof', ...
'motion_sensor_type', 'struts', ...
'actuator_type', 'flexible');

for i = 1:length(m_coefs)
m_coef = m_coefs(i);

G = exp(-s*Ts)*linearize(mdl, io, 0.0, options);
G.InputName = {'Va1', 'Va2', 'Va3', 'Va4', 'Va5', 'Va6'};
G.OutputName = {'dL1', 'dL2', 'dL3', 'dL4', 'dL5', 'dL6'};

Gs(i) = {G};
end

10!8

10!7

10!6

10!5

10!4

10!3

A
m
p
li
tu
d
e

d
L
=V

a
[m

/V
]

mcoef = 1e+01
mcoef = 5e+01
mcoef = 1e+02
mcoef = 5e+02
mcoef = 1e+03

102 103

Frequency [Hz]

-180

-90

0

90

180

P
h
as
e
[d
eg
]

Figure 1.11: Effect of a change of the damping “mass coeficient” on the transfer function from u to
dL

1.2.8 Using Flexible model

Matlab
d_aligns = [[-0.05, -0.3, 0];

[ 0, 0.5, 0];
[-0.1, -0.3, 0];
[ 0, 0.3, 0];
[-0.05, 0.05, 0];
[0, 0, 0]]*1e-3;

18



Matlab
d_aligns = zeros(6,3);
% d_aligns(1,:) = [-0.05, -0.3, 0]*1e-3;
d_aligns(2,:) = [ 0, 0.3, 0]*1e-3;

Matlab
%% Initialize Nano-Hexapod
n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ...

'flex_top_type', '4dof', ...
'motion_sensor_type', 'struts', ...
'actuator_type', 'flexible', ...
'actuator_d_align', d_aligns);

Question

Why do we have smaller resonances when using flexible APA? On the test bench we have the
same resonance as the 2DoF model. Could it be due to the compliance in other dof of the flexible
model?

Matlab
%% Identify the DVF Plant (transfer function from u to dLm)
clear io; io_i = 1;
io(io_i) = linio([mdl, '/du'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs
io(io_i) = linio([mdl, '/D'], 1, 'openoutput'); io_i = io_i + 1; % Encoders

Gdvf = exp(-s*Ts)*linearize(mdl, io, 0.0, options);

Matlab
%% Identify the IFF Plant (transfer function from u to taum)
clear io; io_i = 1;
io(io_i) = linio([mdl, '/du'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs
io(io_i) = linio([mdl, '/dum'], 1, 'openoutput'); io_i = io_i + 1; % Force Sensors

Giff = exp(-s*Ts)*linearize(mdl, io, 0.0, options);

1.2.9 Flexible model + encoders fixed to the plates

Matlab
%% Identify the IFF Plant (transfer function from u to taum)
clear io; io_i = 1;
io(io_i) = linio([mdl, '/du'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs
io(io_i) = linio([mdl, '/D'], 1, 'openoutput'); io_i = io_i + 1; % Force Sensors

Matlab
d_aligns = [[-0.05, -0.3, 0];

[ 0, 0.5, 0];
[-0.1, -0.3, 0];
[ 0, 0.3, 0];
[-0.05, 0.05, 0];
[0, 0, 0]]*1e-3;

19



Matlab
%% Initialize Nano-Hexapod
n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ...

'flex_top_type', '4dof', ...
'motion_sensor_type', 'struts', ...
'actuator_type', 'flexible', ...
'actuator_d_align', d_aligns);

Matlab
Gdvf_struts = exp(-s*Ts)*linearize(mdl, io, 0.0, options);

Matlab
%% Initialize Nano-Hexapod
n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ...

'flex_top_type', '4dof', ...
'motion_sensor_type', 'plates', ...
'actuator_type', 'flexible', ...
'actuator_d_align', d_aligns);

Matlab
Gdvf_plates = exp(-s*Ts)*linearize(mdl, io, 0.0, options);

10!8

10!7

10!6

10!5

10!4

10!3

A
m
p
li
tu
d
e

d
L
=V

a
[m

/V
]

Struts
Plates

102 103

Frequency [Hz]

-180

-90

0

90

180

P
h
as
e
[d
eg
]

Figure 1.12: Comparison of the dynamics from Va to dL when the encoders are fixed to the struts
(blue) and to the plates (red). APA are modeled as a flexible element.

20



1.3 Integral Force Feedback

In this section, the Integral Force Feedback (IFF) control strategy is applied to the nano-hexapod. The
main goal of this to add damping to the nano-hexapod’s modes.

The control architecture is shown in Figure 1.13 where KIFF is a diagonal 6× 6 controller.

The system as then a new input u′, and the transfer function from u′ to dLm should be easier to control
than the initial transfer function from u to dLm.

Plant

KIFF

+ τm

dLm

uu′

Figure 1.13: Integral Force Feedback Strategy

This section is structured as follow:

• Section 1.3.1: Using the Simscape model (APA taken as 2DoF model), the transfer function from
u to τm is identified. Based on the obtained dynamics, the control law is developed and the
optimal gain is estimated using the Root Locus.

• Section 1.3.2: Still using the Simscape model, the effect of the IFF gain on the the transfer
function from u′ to dLm is studied.

• Section 1.3.3: The same is performed experimentally: several IFF gains are used and the damped
plant is identified each time.

• Section 1.3.4: The damped model and the identified damped system are compared for the optimal
IFF gain. It is found that IFF indeed adds a lot of damping into the system. However it is not
efficient in damping the spurious struts modes.

• Section 1.3.5: Finally, a “flexible” model of the APA is used in the Simscape model and the
optimally damped model is compared with the measurements.

1.3.1 IFF Control Law and Optimal Gain

Let’s use a model of the Nano-Hexapod with the encoders fixed to the struts and the APA taken as
2DoF model.

Matlab
%% Initialize Nano-Hexapod
n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ...

'flex_top_type', '4dof', ...
'motion_sensor_type', 'struts', ...
'actuator_type', '2dof');

21



The transfer function from u to τm is identified.

Matlab
%% Identify the IFF Plant (transfer function from u to taum)
clear io; io_i = 1;
io(io_i) = linio([mdl, '/du'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs
io(io_i) = linio([mdl, '/dum'], 1, 'openoutput'); io_i = io_i + 1; % Force Sensors

Giff = exp(-s*Ts)*linearize(mdl, io, 0.0, options);

The IFF controller is defined as shown below:

Matlab
%% IFF Controller
Kiff_g1 = -(1/(s + 2*pi*40))*... % LPF: provides integral action above 40Hz

(s/(s + 2*pi*30))*... % HPF: limit low frequency gain
(1/(1 + s/2/pi/500))*... % LPF: more robust to high frequency resonances
eye(6); % Diagonal 6x6 controller

Then, the poles of the system are shown in the complex plane as a function of the controller gain (i.e.
Root Locus plot) in Figure 1.14. A gain of 400 is chosen as the “optimal” gain as it visually seems to
be the gain that adds the maximum damping to all the suspension modes simultaneously.

-1200 -1000 -800 -600 -400 -200 0

Real Part

0

200

400

600

800

1000

1200

Im
a
g
in

a
ry

P
a
rt

g = 0
g = 400

Figure 1.14: Root Locus for the IFF control strategy

Then the “optimal” IFF controller is:

Matlab
%% IFF controller with Optimal gain
Kiff = 400*Kiff_g1;

22



And it is saved for further use.
Matlab

save('mat/Kiff.mat', 'Kiff')

The bode plots of the “diagonal” elements of the loop gain are shown in Figure 1.15. It is shown that
the phase and gain margins are quite high and the loop gain is large arround the resonances.

10!2

10!1

100

101

102

A
m
p
li
tu
d
e
[V
/V
]

=m;i=ui "Kiff - FRF
=m;i=ui "Kiff - Model

102 103

Frequency [Hz]

-180

-90

0

90

180

P
h
as
e
[d
eg
]

Figure 1.15: Bode plot of the “decentralized loop gain” Giff(i, i)×Kiff(i, i)

1.3.2 Effect of IFF on the plant - Simulations

Still using the Simscape model with encoders fixed to the struts and 2DoF APA, the IFF strategy is
tested.

Matlab
%% Initialize the Simscape model in closed loop
n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ...

'flex_top_type', '4dof', ...
'motion_sensor_type', 'struts', ...
'actuator_type', '2dof', ...
'controller_type', 'iff');

The following IFF gains are tried:

23



Matlab
%% Tested IFF gains
iff_gains = [4, 10, 20, 40, 100, 200, 400];

And the transfer functions from u′ to dLm are identified for all the IFF gains.

Matlab
%% Identify the (damped) transfer function from u to dLm for different values of the IFF gain
Gd_iff = {zeros(1, length(iff_gains))};

clear io; io_i = 1;
io(io_i) = linio([mdl, '/du'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs
io(io_i) = linio([mdl, '/dL'], 1, 'openoutput'); io_i = io_i + 1; % Strut Displacement (encoder)

for i = 1:length(iff_gains)
Kiff = iff_gains(i)*Kiff_g1*eye(6); % IFF Controller
Gd_iff(i) = {exp(-s*Ts)*linearize(mdl, io, 0.0, options)};

isstable(Gd_iff{i})
end

The obtained dynamics are shown in Figure 1.16.

10!8

10!7

10!6

10!5

10!4

10!3

A
m

p
li
tu

d
e

[m
/V

]

g = 4
g = 10
g = 20
g = 40

g = 100
g = 200
g = 400
g = 1000

102 103

Frequency [Hz]

-180

-90

0

90

180

P
h
a
se

[d
eg

]

Figure 1.16: Effect of the IFF gain g on the transfer function from τ to dLm

24



1.3.3 Effect of IFF on the plant - Experimental Results

The IFF strategy is applied experimentally and the transfer function from u′ to dLm is identified for
all the defined values of the gain.

Load Data

First load the identification data.

Matlab
%% Load Identification Data
meas_iff_gains = {};

for i = 1:length(iff_gains)
meas_iff_gains(i) = {load(sprintf('mat/iff_strut_1_noise_g_%i.mat', iff_gains(i)), 't', 'Vexc', 'Vs', 'de', 'u')};

end

Spectral Analysis - Setup

And define the useful variables that will be used for the identification using the tfestimate function.

Matlab
%% Setup useful variables
% Sampling Time [s]
Ts = (meas_iff_gains{1}.t(end) - (meas_iff_gains{1}.t(1)))/(length(meas_iff_gains{1}.t)-1);

% Sampling Frequency [Hz]
Fs = 1/Ts;

% Hannning Windows
win = hanning(ceil(1*Fs));

% And we get the frequency vector
[~, f] = tfestimate(meas_iff_gains{1}.Vexc, meas_iff_gains{1}.de, win, [], [], 1/Ts);

DVF Plant

The transfer functions are estimated for all the values of the gain.

Matlab
%% DVF Plant (transfer function from u to dLm)
G_iff_gains = {};

for i = 1:length(iff_gains)
G_iff_gains{i} = tfestimate(meas_iff_gains{i}.Vexc, meas_iff_gains{i}.de(:,1), win, [], [], 1/Ts);

end

The obtained dynamics as shown in the bode plot in Figure 1.17. The dashed curves are the results
obtained using the model, and the solid curves the results from the experimental identification.

The bode plot is then zoomed on the suspension modes of the nano-hexapod in Figure 1.18.

25



10!8

10!7

10!6

10!5

10!4

10!3

A
m

p
li
tu

d
e

[m
/V

]

giff = 4
giff = 10
giff = 20
giff = 40

giff = 100
giff = 200
giff = 400

102 103

Frequency [Hz]

-180

-90

0

90

180

P
h
as

e
[d

eg
]

Figure 1.17: Transfer function from u to dLm for multiple values of the IFF gain

26



10!5

10!4

A
m
p
li
tu
d
e
[m

/V
]

giff = 4
giff = 10
giff = 20
giff = 40

giff = 100
giff = 200
giff = 400

102

Frequency [Hz]

-180

-90

0

90

180

P
h
as
e
[d
eg
]

Figure 1.18: Transfer function from u to dLm for multiple values of the IFF gain (Zoom)

27



Important

The IFF control strategy is very effective for the damping of the suspension modes. It however
does not damp the modes at 200Hz, 300Hz and 400Hz (flexible modes of the APA).
Also, the experimental results and the models obtained from the Simscape model are in agree-
ment concerning the damped system (up to the flexible modes).

Experimental Results - Comparison of the un-damped and fully damped system

The un-damped and damped experimental plants are compared in Figure 1.19 (diagonal terms).

It is very clear that all the suspension modes are very well damped thanks to IFF. However, there is
little to no effect on the flexible modes of the struts and of the plate.

10!8

10!6

10!4

A
m
p
li
tu
d
e

d
e
=V

ex
c
[m

/V
]

Un-Damped Optimal gain

102 103

Frequency [Hz]

-180

-90

0

90

180

P
h
as
e
[d
eg
]

Figure 1.19: Comparison of the diagonal elements of the tranfer function from u to dLm without
active damping and with optimal IFF gain

1.3.4 Experimental Results - Damped Plant with Optimal gain

Let’s now look at the 6× 6 damped plant with the optimal gain g = 400.

28



Load Data

The experimental data are loaded.

Matlab
%% Load Identification Data
meas_iff_struts = {};

for i = 1:6
meas_iff_struts(i) = {load(sprintf('mat/iff_strut_%i_noise_g_400.mat', i), 't', 'Vexc', 'Vs', 'de', 'u')};

end

Spectral Analysis - Setup

And the parameters useful for the spectral analysis are defined.

Matlab
%% Setup useful variables
% Sampling Time [s]
Ts = (meas_iff_struts{1}.t(end) - (meas_iff_struts{1}.t(1)))/(length(meas_iff_struts{1}.t)-1);

% Sampling Frequency [Hz]
Fs = 1/Ts;

% Hannning Windows
win = hanning(ceil(1*Fs));

% And we get the frequency vector
[~, f] = tfestimate(meas_iff_struts{1}.Vexc, meas_iff_struts{1}.de, win, [], [], 1/Ts);

DVF Plant

Finally, the 6× 6 plant is identified using the tfestimate function.

Matlab
%% DVF Plant (transfer function from u to dLm)
G_iff_opt = {};

for i = 1:6
G_iff_opt{i} = tfestimate(meas_iff_struts{i}.Vexc, meas_iff_struts{i}.de, win, [], [], 1/Ts);

end

The obtained diagonal elements are compared with the model in Figure 1.20.

And all the off-diagonal elements are compared with the model in Figure 1.21.

Important

With the IFF control strategy applied and the optimal gain used, the suspension modes are very
well damped. Remains the un-damped flexible modes of the APA (200Hz, 300Hz, 400Hz), and
the modes of the plates (700Hz).
The Simscape model and the experimental results are in very good agreement.

29



10!8

10!6

10!4

A
m
p
li
tu

d
e

d
e
=V

ex
c
[m

/V
]

dLm;i=ui - FRF dLm;i=ui - Model

102 103

Frequency [Hz]

-180

-90

0

90

180

P
h
as

e
[d
eg

]

Figure 1.20: Comparison of the diagonal elements of the transfer functions from u to dLm with active
damping (IFF) applied with an optimal gain g = 400

30



10!8

10!6

10!4

A
m
p
li
tu

d
e

d
e
=V

ex
c
[m

/V
]

dLm;i=uj - FRF dLm;i=uj - Model

102 103

Frequency [Hz]

-180

-90

0

90

180

P
h
as

e
[d
eg

]

Figure 1.21: Comparison of the off-diagonal elements of the transfer functions from u to dLm with
active damping (IFF) applied with an optimal gain g = 400

31



1.3.5 Comparison with the Flexible model

When using the 2-DoF model for the APA, the flexible modes of the struts were not modelled, and
it was the main limitation of the model. Now, let’s use a flexible model for the APA, and see if the
obtained damped plant using the model is similar to the measured dynamics.

First, the nano-hexapod is initialized.

Matlab
%% Estimated misalignement of the struts
d_aligns = [[-0.05, -0.3, 0];

[ 0, 0.5, 0];
[-0.1, -0.3, 0];
[ 0, 0.3, 0];
[-0.05, 0.05, 0];
[0, 0, 0]]*1e-3;

%% Initialize Nano-Hexapod
n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ...

'flex_top_type', '4dof', ...
'motion_sensor_type', 'struts', ...
'actuator_type', 'flexible', ...
'actuator_d_align', d_aligns, ...
'controller_type', 'iff');

And the “optimal” controller is loaded.

Matlab
%% Optimal IFF controller
load('Kiff.mat', 'Kiff');

The transfer function from u′ to dLm is identified using the Simscape model.

Matlab
%% Linearized inputs/outputs
clear io; io_i = 1;
io(io_i) = linio([mdl, '/du'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs
io(io_i) = linio([mdl, '/dL'], 1, 'openoutput'); io_i = io_i + 1; % Strut Displacement (encoder)

%% Identification of the plant
Gd_iff = exp(-s*Ts)*linearize(mdl, io, 0.0, options);

The obtained diagonal elements are shown in Figure 1.22 while the off-diagonal elements are shown in
Figure 1.23.

Important

Using flexible models for the APA, the agreement between the Simscape model of the nano-
hexapod and the measured FRF is very good.
Only the flexible mode of the top-plate is not appearing in the model which is very logical as
the top plate is taken as a solid body.

32



10!8

10!6

10!4

A
m
p
li
tu

d
e

d
L

m
=u

0
[m

/V
]

dLm;i=u
0
i - FRF dLm;i=u

0
i - Model

102 103

Frequency [Hz]

-180

-90

0

90

180

P
h
as

e
[d
eg

]

Figure 1.22: Diagonal elements of the transfer function from u′ to dLm - comparison of the measured
FRF and the identified dynamics using the flexible model

33



10!8

10!6

10!4

A
m
p
li
tu

d
e

d
L

m
=u

0
[m

/V
]

dLm;i=u
0
j - FRF dLm;i=u

0
j - Model

102 103

Frequency [Hz]

-180

-90

0

90

180

P
h
as

e
[d
eg

]

Figure 1.23: Off-diagonal elements of the transfer function from u′ to dLm - comparison of the mea-
sured FRF and the identified dynamics using the flexible model

34



1.3.6 Conclusion

Important

The decentralized Integral Force Feedback strategy applied on the nano-hexapod is very effective
in damping all the suspension modes.
The Simscape model (especially when using a flexible model for the APA) is shown to be very
accurate, even when IFF is applied.

1.4 Modal Analysis

Several 3-axis accelerometers are fixed on the top platform of the nano-hexapod as shown in Figure
1.28.

Figure 1.24: Location of the accelerometers on top of the nano-hexapod

The top platform is then excited using an instrumented hammer as shown in Figure 1.25.

From this experiment, the resonance frequencies and the associated mode shapes can be computed
(Section 1.4.1). Then, in Section 1.4.2, the vertical compliance of the nano-hexapod is experimentally

35



Figure 1.25: Example of an excitation using an instrumented hammer

36



estimated. Finally, in Section 1.4.3, the measured compliance is compare with the estimated one from
the Simscape model.

1.4.1 Obtained Mode Shapes

We can observe the mode shapes of the first 6 modes that are the suspension modes (the plate is
behaving as a solid body) in Figure 1.26.

Figure 1.26: Measured mode shapes for the first six modes

Then, there is a mode at 692Hz which corresponds to a flexible mode of the top plate (Figure 1.27).

Figure 1.27: First flexible mode at 692Hz

The obtained modes are summarized in Table 1.1.

1.4.2 Nano-Hexapod Compliance - Effect of IFF

In this section, we wish to estimated the effectiveness of the IFF strategy concerning the compliance.

The top plate is excited vertically using the instrumented hammer two times:

1. no control loop is used

37



Table 1.1: Description of the identified modes

Mode Freq. [Hz] Description

1 105 Suspension Mode: Y-translation
2 107 Suspension Mode: X-translation
3 131 Suspension Mode: Z-translation
4 161 Suspension Mode: Y-tilt
5 162 Suspension Mode: X-tilt
6 180 Suspension Mode: Z-rotation
7 692 (flexible) Membrane mode of the top platform

2. decentralized IFF is used

The data is loaded.

Matlab
frf_ol = load('Measurement_Z_axis.mat'); % Open-Loop
frf_iff = load('Measurement_Z_axis_damped.mat'); % IFF

The mean vertical motion of the top platform is computed by averaging all 5 accelerometers.

Matlab
%% Multiply by 10 (gain in m/s^2/V) and divide by 5 (number of accelerometers)
d_frf_ol = 10/5*(frf_ol.FFT1_H1_4_1_RMS_Y_Mod + frf_ol.FFT1_H1_7_1_RMS_Y_Mod + frf_ol.FFT1_H1_10_1_RMS_Y_Mod +

frf_ol.FFT1_H1_13_1_RMS_Y_Mod + frf_ol.FFT1_H1_16_1_RMS_Y_Mod)./(2*pi*frf_ol.FFT1_H1_16_1_RMS_X_Val).^2;↪→
d_frf_iff = 10/5*(frf_iff.FFT1_H1_4_1_RMS_Y_Mod + frf_iff.FFT1_H1_7_1_RMS_Y_Mod + frf_iff.FFT1_H1_10_1_RMS_Y_Mod +

frf_iff.FFT1_H1_13_1_RMS_Y_Mod + frf_iff.FFT1_H1_16_1_RMS_Y_Mod)./(2*pi*frf_iff.FFT1_H1_16_1_RMS_X_Val).^2;↪→

The vertical compliance (magnitude of the transfer function from a vertical force applied on the top
plate to the vertical motion of the top plate) is shown in Figure 1.28.

102 103

Frequency [Hz]

10!8

10!6

V
er

ti
ca

l
C
om

p
li
an

ce
[m

=N
]

OL
IFF

Figure 1.28: Measured vertical compliance with and without IFF

38



Important

From Figure 1.28, it is clear that the IFF control strategy is very effective in damping the
suspensions modes of the nano-hexapod. It also has the effect of (slightly) degrading the vertical
compliance at low frequency.
It also seems some damping can be added to the modes at around 205Hz which are flexible
modes of the struts.

1.4.3 Comparison with the Simscape Model

Let’s now compare the measured vertical compliance with the vertical compliance as estimated from
the Simscape model.

The transfer function from a vertical external force to the absolute motion of the top platform is
identified (with and without IFF) using the Simscape model. The comparison is done in Figure 1.29.
Again, the model is quite accurate!

102 103

Frequency [Hz]

10!8

10!6

V
er

ti
ca

l
C
o
m

p
li
a
n
ce

[m
=N

]

OL - Meas.
IFF - Meas.
OL - Model
IFF - Model

Figure 1.29: Measured vertical compliance with and without IFF

1.5 Conclusion

Important

From the previous analysis, several conclusions can be drawn:

• Decentralized IFF is very effective in damping the “suspension” modes of the nano-hexapod
(Figure 1.19)

• Decentralized IFF does not damp the “spurious” modes of the struts nor the flexible modes
of the top plate (Figure 1.19)

• Even though the Simscape model and the experimentally measured FRF are in good agree-
ment (Figures 1.22 and 1.23), the obtain dynamics from the control inputs u and the

39



encoders dLm is very difficult to control

Therefore, in the following sections, the encoders will be fixed to the plates. The goal is to be
less sensitive to the flexible modes of the struts.

40



2 Encoders fixed to the plates - Dynamics

In this section, the encoders are fixed to the plates rather than to the struts as shown in Figure 2.1.

Figure 2.1: Nano-Hexapod with encoders fixed to the struts

It is structured as follow:

• Section 2.1: The dynamics of the nano-hexapod is identified.

• Section 2.2: The identified dynamics is compared with the Simscape model.

• Section 2.3: The Integral Force Feedback (IFF) control strategy is applied and the dynamics of
the damped nano-hexapod is identified and compare with the Simscape model.

41



2.1 Identification of the dynamics

In this section, the dynamics of the nano-hexapod with the encoders fixed to the plates is identified.

First, the measurement data are loaded in Section 2.1.1, then the transfer function matrix from the
actuators to the encoders are estimated in Section 2.1.2. Finally, the transfer function matrix from the
actuators to the force sensors is estimated in Section 2.1.3.

2.1.1 Data Loading and Spectral Analysis Setup

The actuators are excited one by one using a low pass filtered white noise. For each excitation, the 6
force sensors and 6 encoders are measured and saved.

Matlab
%% Load Identification Data
meas_data_lf = {};

for i = 1:6
meas_data_lf(i) = {load(sprintf('mat/frf_exc_strut_%i_enc_plates_noise.mat', i), 't', 'Va', 'Vs', 'de')};

end

2.1.2 Transfer function from Actuator to Encoder

Let’s compute the coherence from the excitation voltage u and the displacement dLm as measured by
the encoders.

Matlab
%% Coherence
coh_dvf = zeros(length(f), 6, 6);

for i = 1:6
coh_dvf(:, :, i) = mscohere(meas_data_lf{i}.Va, meas_data_lf{i}.de, win, [], [], 1/Ts);

end

The obtained coherence shown in Figure 2.2 is quite good up to 400Hz.

Then the 6x6 transfer function matrix is estimated.

Matlab
%% DVF Plant (transfer function from u to dLm)
G_dvf = zeros(length(f), 6, 6);

for i = 1:6
G_dvf(:,:,i) = tfestimate(meas_data_lf{i}.Va, meas_data_lf{i}.de, win, [], [], 1/Ts);

end

The diagonal and off-diagonal terms of this transfer function matrix are shown in Figure 2.3.

42



102 103

Frequency [Hz]

0

0.2

0.4

0.6

0.8

1

C
o
h
er

en
ce

[-
]

Gdvf (1; 1)
Gdvf (2; 2)
Gdvf (3; 3)

Gdvf (4; 4)
Gdvf (5; 5)
Gdvf (6; 6)

Gdvf (i; j)

Figure 2.2: Obtained coherence for the DVF plant

10!8

10!6

10!4

A
m

p
li
tu

d
e

d
e
=V

a
[m

/V
]

Gdvf (1; 1)
Gdvf (2; 2)
Gdvf (3; 3)

Gdvf (4; 4)
Gdvf (5; 5)
Gdvf (6; 6)

Gdvf (i; j)

102 103

Frequency [Hz]

-180

-90

0

90

180

P
h
as

e
[d

eg
]

Figure 2.3: Measured FRF for the DVF plant

43



Important

From Figure 2.3, we can draw few conclusions on the transfer functions from u to dLm when
the encoders are fixed to the plates:

• the decoupling is rather good at low frequency (below the first suspension mode). The low
frequency gain is constant for the off diagonal terms, whereas when the encoders where
fixed to the struts, the low frequency gain of the off-diagonal terms were going to zero
(Figure 1.2).

• the flexible modes of the struts at 226Hz and 337Hz are indeed shown in the transfer
functions, but their amplitudes are rather low.

• the diagonal terms have alternating poles and zeros up to at least 600Hz: the flexible
modes of the struts are not affecting the alternating pole/zero pattern. This what not the
case when the encoders were fixed to the struts (Figure 1.2).

2.1.3 Transfer function from Actuator to Force Sensor

Let’s now compute the coherence from the excitation voltage u and the voltage τm generated by the
Force senors.

Matlab
%% Coherence for the IFF plant
coh_iff = zeros(length(f), 6, 6);

for i = 1:6
coh_iff(:,:,i) = mscohere(meas_data_lf{i}.Va, meas_data_lf{i}.Vs, win, [], [], 1/Ts);

end

The coherence is shown in Figure 2.4, and is very good for from 10Hz up to 2kHz.

102 103

Frequency [Hz]

0

0.2

0.4

0.6

0.8

1

C
oh

er
en

ce
[-
]

Giff (1; 1)
Giff (2; 2)
Giff (3; 3)

Giff (4; 4)
Giff (5; 5)
Giff (6; 6)

Giff (i; j)

Figure 2.4: Obtained coherence for the IFF plant

Then the 6x6 transfer function matrix is estimated.

44



Matlab
%% IFF Plant
G_iff = zeros(length(f), 6, 6);

for i = 1:6
G_iff(:,:,i) = tfestimate(meas_data_lf{i}.Va, meas_data_lf{i}.Vs, win, [], [], 1/Ts);

end

The bode plot of the diagonal and off-diagonal terms are shown in Figure 2.5.

10!3

10!2

10!1

100

101

102

A
m
p
li
tu
d
e

V
s
=V

a
[V

/V
]

Giff (1; 1)
Giff (2; 2)
Giff (3; 3)

Giff (4; 4)
Giff (5; 5)
Giff (6; 6)

Giff (i; j)

102 103

Frequency [Hz]

-180

-90

0

90

180

P
h
as
e
[d
eg
]

Figure 2.5: Measured FRF for the IFF plant

Important

It is shown in Figure 2.6 that:

• The IFF plant has alternating poles and zeros

• The first flexible mode of the struts as 235Hz is appearing, and therefore is should be
possible to add some damping to this mode using IFF

• The decoupling is quite good at low frequency (below the first model) as well as high
frequency (above the last suspension mode, except near the flexible modes of the top
plate)

45



2.1.4 Save Identified Plants

The identified dynamics is saved for further use.

Matlab
save('mat/identified_plants_enc_plates.mat', 'f', 'Ts', 'G_iff', 'G_dvf')

2.2 Comparison with the Simscape Model

In this section, the measured dynamics done in Section 2.1 is compared with the dynamics estimated
from the Simscape model.

2.2.1 Identification Setup

The nano-hexapod is initialized with the APA taken as flexible models.

Matlab
%% Initialize Nano-Hexapod
n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ...

'flex_top_type', '4dof', ...
'motion_sensor_type', 'plates', ...
'actuator_type', 'flexible');

2.2.2 Dynamics from Actuator to Force Sensors

Then the transfer function from u to τm is identified using the Simscape model.

Matlab
%% Identify the IFF Plant (transfer function from u to taum)
clear io; io_i = 1;
io(io_i) = linio([mdl, '/du'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs
io(io_i) = linio([mdl, '/dum'], 1, 'openoutput'); io_i = io_i + 1; % Force Sensors

Giff = exp(-s*Ts)*linearize(mdl, io, 0.0, options);

The identified dynamics is compared with the measured FRF:

• Figure 2.6: the individual transfer function from u1 (the DAC voltage for the first actuator) to
the force sensors of all 6 struts are compared

• Figure 2.7: all the diagonal elements are compared

• Figure 2.8: all the off-diagonal elements are compared

46



10!2

100

102

A
m
p
li
tu
d
e
[m

/
V
]

d=m1=u1 d=m2=u1 d=m3=u1

Meas.
Model

102

Frequency [Hz]

10!2

100

102

A
m
p
li
tu
d
e
[m

/
V
]

d=m4=u1

102

Frequency [Hz]

d=m5=u1

102

Frequency [Hz]

d=m6=u1

Figure 2.6: IFF Plant for the first actuator input and all the force senosrs

47



10!4

10!2

100

102

104

A
m
p
li
tu
d
e
[V

/V
]

=m;i=ui - FRF
=m;i=ui - Model

102 103

Frequency [Hz]

-180

-90

0

90

180

P
h
as
e
[d
eg
]

Figure 2.7: Diagonal elements of the IFF Plant

102 103

Frequency [Hz]

10!2

100

102

A
m

p
li
tu

d
e

[V
/V

]

=m;i=uj - FRF
=m;i=uj - Model

Figure 2.8: Off diagonal elements of the IFF Plant

48



2.2.3 Dynamics from Actuator to Encoder

Now, the dynamics from the DAC voltage u to the encoders dLm is estimated using the Simscape
model.

Matlab
%% Identify the DVF Plant (transfer function from u to dLm)
clear io; io_i = 1;
io(io_i) = linio([mdl, '/du'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs
io(io_i) = linio([mdl, '/dL'], 1, 'openoutput'); io_i = io_i + 1; % Encoders

Gdvf = exp(-s*Ts)*linearize(mdl, io, 0.0, options);

The identified dynamics is compared with the measured FRF:

• Figure 2.9: the individual transfer function from u3 (the DAC voltage for the actuator number 3)
to the six encoders

• Figure 2.10: all the diagonal elements are compared

• Figure 2.11: all the off-diagonal elements are compared

10!8

10!6

10!4

10!2

A
m
p
li
tu
d
e
[m
/
V
]

dLm1=u3 dLm2=u3 dLm3=u3

Meas.
Model

102

Frequency [Hz]

10!8

10!6

10!4

10!2

A
m
p
li
tu
d
e
[m
/
V
]

dLm4=u3

102

Frequency [Hz]

dLm5=u3

102

Frequency [Hz]

dLm6=u3

Figure 2.9: DVF Plant for the first actuator input and all the encoders

49



10!8

10!7

10!6

10!5

10!4

10!3

A
m
p
li
tu
d
e
[m

/V
]

dLm;i=ui - FRF
dLm;i=ui - Model

102 103

Frequency [Hz]

-180

-90

0

90

180

P
h
as
e
[d
eg
]

Figure 2.10: Diagonal elements of the DVF Plant

102 103

Frequency [Hz]

10!8

10!6

10!4

A
m
p
li
tu
d
e
[m

/
V
]

dLm;i=uj - FRF
dLm;i=uj - Model

Figure 2.11: Off diagonal elements of the DVF Plant

50



2.2.4 Conclusion

Important

The Simscape model is quite accurate for the transfer function matrices from u to τm and from
u to dLm except at frequencies of the flexible modes of the top-plate. The Simscape model can
therefore be used to develop the control strategies.

2.3 Integral Force Feedback

In this section, the Integral Force Feedback (IFF) control strategy is applied to the nano-hexapod in
order to add damping to the suspension modes.

The control architecture is shown in Figure 2.12:

• τm is the measured voltage of the 6 force sensors

• KIFF is the 6× 6 diagonal controller

• u is the plant input (voltage generated by the 6 DACs)

• u′ is the new plant inputs with added damping

Plant

KIFF

+ τm

dLm

uu′

Figure 2.12: Integral Force Feedback Strategy

• Section 2.3.1

2.3.1 Effect of IFF on the plant - Simscape Model

The nano-hexapod is initialized with flexible APA and the encoders fixed to the struts.
Matlab

%% Initialize the Simscape model in closed loop
n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ...

'flex_top_type', '4dof', ...
'motion_sensor_type', 'plates', ...
'actuator_type', 'flexible');

The same controller as the one developed when the encoder were fixed to the struts is used.

51



Matlab
%% Optimal IFF controller
load('Kiff.mat', 'Kiff')

The transfer function from u′ to dLm is identified.
Matlab

%% Identify the (damped) transfer function from u to dLm for different values of the IFF gain
clear io; io_i = 1;
io(io_i) = linio([mdl, '/du'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs
io(io_i) = linio([mdl, '/dL'], 1, 'openoutput'); io_i = io_i + 1; % Plate Displacement (encoder)

First in Open-Loop:
Matlab

%% Transfer function from u to dL (open-loop)
Gd_ol = exp(-s*Ts)*linearize(mdl, io, 0.0, options);

And then with the IFF controller:
Matlab

%% Initialize the Simscape model in closed loop
n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ...

'flex_top_type', '4dof', ...
'motion_sensor_type', 'plates', ...
'actuator_type', 'flexible', ...
'controller_type', 'iff');

%% Transfer function from u to dL (IFF)
Gd_iff = exp(-s*Ts)*linearize(mdl, io, 0.0, options);

It is first verified that the system is stable:
Matlab

isstable(Gd_iff)

Results
1

The diagonal and off-diagonal terms of the 6× 6 transfer function matrices identified are compared in
Figure 2.13. It is shown, as was the case when the encoders were fixed to the struts, that the IFF
control strategy is very effective in damping the suspension modes of the nano-hexapod.

2.3.2 Effect of IFF on the plant - FRF

The IFF control strategy is experimentally implemented. The (damped) transfer function from u′ to
dLm is experimentally identified.

The identification data are loaded:

52



10!10

10!8

10!6

10!4

10!2

A
m
p
li
tu

d
e
[m

/V
]

OL - Diag
IFF - Diag

OL - O,-diag
IFF - O,-diag

102 103

Frequency [Hz]

-180

-90

0

90

180

P
h
as

e
[d
eg

]

Figure 2.13: Effect of the IFF control strategy on the transfer function from τ to dLm

53



Matlab
%% Load Identification Data
meas_iff_plates = {};

for i = 1:6
meas_iff_plates(i) = {load(sprintf('mat/frf_exc_iff_strut_%i_enc_plates_noise.mat', i), 't', 'Va', 'Vs', 'de', 'u')};

end

And the parameters used for the transfer function estimation are defined below.

Matlab
% Sampling Time [s]
Ts = (meas_iff_plates{1}.t(end) - (meas_iff_plates{1}.t(1)))/(length(meas_iff_plates{1}.t)-1);

% Hannning Windows
win = hanning(ceil(1*Fs));

% And we get the frequency vector
[~, f] = tfestimate(meas_iff_plates{1}.Va, meas_iff_plates{1}.de, win, [], [], 1/Ts);

The estimation is performed using the tfestimate command.

Matlab
%% Estimation of the transfer function matrix from u to dL when IFF is applied
G_enc_iff_opt = zeros(length(f), 6, 6);

for i = 1:6
G_enc_iff_opt(:,:,i) = tfestimate(meas_iff_plates{i}.Va, meas_iff_plates{i}.de, win, [], [], 1/Ts);

end

The obtained diagonal and off-diagonal elements of the transfer function from u′ to dLm are shown in
Figure 2.14 both without and with IFF.

Important

As was predicted with the Simscape model, the IFF control strategy is very effective in damping
the suspension modes of the nano-hexapod. Little damping is also applied on the first flexible
mode of the strut at 235Hz. However, no damping is applied on other modes, such as the flexible
modes of the top plate.

2.3.3 Comparison of the measured FRF and the Simscape model

Let’s now compare the obtained damped plants obtained experimentally with the one extracted from
Simscape:

• Figure 2.15: the individual transfer function from u′1 to the six encoders are comapred

• Figure 2.16: all the diagonal elements are compared

• Figure 2.17: all the off-diagonal elements are compared

54



10!8

10!6

10!4

A
m
p
li
tu

d
e
[m

/V
]

OL - Diag
IFF - Diag

OL - O,-diag
IFF - O,-diag

102 103

Frequency [Hz]

-180

-90

0

90

180

P
h
as

e
[d
eg

]

Figure 2.14: Effect of the IFF control strategy on the transfer function from τ to dLm

Important

From Figures 2.16 and 2.17, it is clear that the Simscape model very well represents the dynamics
of the nano-hexapod. This is true to around 400Hz, then the dynamics depends on the flexible
modes of the top plate which are not modelled.

2.3.4 Save Damped Plant

The experimentally identified plant is saved for further use.

Matlab
save('matlab/mat/damped_plant_enc_plates.mat', 'f', 'Ts', 'G_enc_iff_opt')

Matlab
save('mat/damped_plant_enc_plates.mat', 'f', 'Ts', 'G_enc_iff_opt')

55



10!8

10!6

10!4

A
m
p
li
tu
d
e
[m
/
V
]

d=m1=u1 d=m2=u1 d=m3=u1

Meas.
Model

102

Frequency [Hz]

10!8

10!6

10!4

A
m
p
li
tu
d
e
[m
/
V
]

d=m4=u1

102

Frequency [Hz]

d=m5=u1

102

Frequency [Hz]

d=m6=u1

Figure 2.15: FRF from one actuator to all the encoders when the plant is damped using IFF

56



10!8

10!7

10!6

10!5

10!4

A
m
p
li
tu
d
e

d
e
=V

ex
c
[m

/V
]

dLm;i=ui - FRF dLm;i=ui - Model

102 103

Frequency [Hz]

-180

-90

0

90

180

P
h
as
e
[d
eg
]

Figure 2.16: Comparison of the diagonal elements of the transfer functions from u to dLm with active
damping (IFF) applied with an optimal gain g = 400

57



10!8

10!7

10!6

10!5

10!4

A
m
p
li
tu
d
e

d
e
=V

ex
c
[m

/V
]

dLm;i=uj - FRF dLm;i=uj - Model

102 103

Frequency [Hz]

-180

-90

0

90

180

P
h
as
e
[d
eg
]

Figure 2.17: Comparison of the off-diagonal elements of the transfer functions from u to dLm with
active damping (IFF) applied with an optimal gain g = 400

58



2.4 Conclusion

Important

In this section, the dynamics of the nano-hexapod with the encoders fixed to the plates is studied.
It has been found that:

• The measured dynamics is in agreement with the dynamics of the simscape model, up to
the flexible modes of the top plate. See figures 2.7 and 2.8 for the transfer function to the
force sensors and Figures 2.10 and 2.11for the transfer functions to the encoders

• The Integral Force Feedback strategy is very effective in damping the suspension modes of
the nano-hexapod (Figure 2.14).

• The transfer function from u′ to dLm show nice dynamical properties and is a much better
candidate for the high-authority-control than when the encoders were fixed to the struts.
At least up to the flexible modes of the top plate, the diagonal elements of the transfer
function matrix have alternating poles and zeros, and the phase is moving smoothly. Only
the flexible modes of the top plates seems to be problematic for control.

59



3 Decentralized High Authority Control
with Integral Force Feedback

In this section is studied the HAC-LAC architecture for the Nano-Hexapod. More precisely:

• The LAC control is a decentralized force feedback as studied in Section 2.3

• The HAC control is a decentralized controller working in the frame of the struts

The corresponding control architecture is shown in Figure 3.1 with:

• rXn
: the 6× 1 reference signal in the cartesian frame

• rdL: the 6 × 1 reference signal transformed in the frame of the struts thanks to the inverse
kinematic

• εdL: the 6× 1 length error of the 6 struts

• u′: input of the damped plant

• u: generated DAC voltages

• τm: measured force sensors

• dLm: measured displacement of the struts by the encoders

Plant

KIFF

+KL+
−

Inverse
Kinematics

τmu

dLm

εdL u′rdLrXn

Figure 3.1: HAC-LAC: IFF + Control in the frame of the legs

• Section 3.1: the decentralized high authority controller is tuned using the Simscape model

• Section 3.3: the controller is implemented and tested experimentally

• Section 3.2: some reference tracking tests are performed

60



3.1 High Authority Controller

In this section, the decentralized high authority controllerKL is first tuned using the Simscape model.

3.1.1 Simscape Model

First initialized the nano-hexapod with a flexible APA model and with the IFF control strategy.

Matlab
%% Initialize the Simscape model
n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ...

'flex_top_type', '4dof', ...
'motion_sensor_type', 'plates', ...
'actuator_type', 'flexible', ...
'controller_type', 'iff');

Then the controller is loaded

Matlab
%% Load the decentralized IFF controller
load('Kiff.mat', 'Kiff')

The inputs and outputs for the transfer function estimation are defined.

Matlab
%% Identify the (damped) transfer function from u to dLm for different values of the IFF gain
clear io; io_i = 1;
io(io_i) = linio([mdl, '/du'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs
io(io_i) = linio([mdl, '/dL'], 1, 'openoutput'); io_i = io_i + 1; % Plate Displacement (encoder)

And the plant from u′ to dLm is identified and the bode plot of its diagonal terms are shown in Figure
3.2.

Matlab
%% Identified of the damped TF from u' to dL
Gd_iff_opt = exp(-s*Ts)*linearize(mdl, io, 0.0, options);

3.1.2 HAC Controller

Let’s first try to design a first decentralized controller with:

• a bandwidth of 100Hz

• sufficient phase margin

• simple and understandable components

61



10!8

10!7

10!6

10!5

10!4

A
m
p
li
tu
d
e

d
L

m
=u

0
[m

/V
]

Diagonal
O,-Diag

102 103

Frequency [Hz]

-180

-90

0

90

180

P
h
as
e
[d
eg
]

Figure 3.2: Transfer functions from u to dLm with IFF (diagonal and off-diagonal elements)

62



After some very basic and manual loop shaping, the following controller is developed:
Matlab

%% Lead to increase phase margin
a = 2; % Amount of phase lead / width of the phase lead / high frequency gain
wc = 2*pi*100; % Frequency with the maximum phase lead [rad/s]

H_lead = (1 + s/(wc/sqrt(a)))/(1 + s/(wc*sqrt(a)));

%% Low Pass filter to increase robustness
H_lpf = 1/(1 + s/2/pi/200);

%% Notch at the top-plate resonance
gm = 0.02;
xi = 0.3;
wn = 2*pi*700;

H_notch = (s^2 + 2*gm*xi*wn*s + wn^2)/(s^2 + 2*xi*wn*s + wn^2);

%% Decentralized HAC
Khac_iff_struts = -(1/(2.87e-5)) * ... % Gain

H_lead * ... % Lead
H_notch * ... % Notch
(2*pi*100/s) * ... % Integrator
eye(6); % 6x6 Diagonal

This controller is saved for further use.
Matlab

save('mat/Khac_iff_struts.mat', 'Khac_iff_struts')

The Loop Gain is computed and shown in Figure 3.3.
Matlab

Lhac_iff_struts = Khac_iff_struts*Gd_iff_opt;

3.1.3 Verification of the Stability using the Simscape model

The HAC-IFF control strategy is implemented using Simscape.
Matlab

%% Initialize the Simscape model in closed loop
n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ...

'flex_top_type', '4dof', ...
'motion_sensor_type', 'plates', ...
'actuator_type', 'flexible', ...
'controller_type', 'hac-iff-struts');

We identify the closed-loop system.
Matlab

%% Identification
Gd_iff_hac_opt = linearize(mdl, io, 0.0, options);

And verify that it is indeed stable.

63



10!3

10!2

10!1

100

101

102

L
o
op

G
ai
n

[-
]

Diagonal
O,-Diag

101 102 103

Frequency [Hz]

-180

-90

0

90

180

P
h
as

e
[d

eg
]

Figure 3.3: Diagonal and off-diagonal elements of the Loop gain for “HAC-IFF-Struts”

64



Matlab
%% Verify the stability
isstable(Gd_iff_hac_opt)

Results
1

3.1.4 Experimental Loop Gain

Now, the loop gain is estimated from the measured FRF.

Matlab
L_frf = zeros(size(G_enc_iff_opt));

for i = 1:size(G_enc_iff_opt, 1)
L_frf(i, :, :) = squeeze(G_enc_iff_opt(i,:,:))*freqresp(Khac_iff_struts, f(i), 'Hz');

end

The bode plot of the loop gain is shown in Figure 3.4.

10!3

10!2

10!1

100

101

102

L
o
op

G
ai
n

[-
]

Diagonal
O,-Diag

100 101 102 103

Frequency [Hz]

-180

-90

0

90

180

P
h
as

e
[d

eg
]

Figure 3.4: Diagonal and Off-diagonal elements of the Loop gain (experimental data)

65



3.2 Reference Tracking - Trajectories

In this section, several trajectories representing the wanted pose (position and orientation) of the top
platform with respect to the bottom platform are defined.

These trajectories will be used to test the HAC-LAC architecture.

In order to transform the wanted pose to the wanted displacement of the 6 struts, the inverse kinematic
is required. As a first approximation, the Jacobian matrix can be used instead of using the full inverse
kinematic equations.

Therefore, the control architecture with the input trajectory rXn is shown in Figure 3.5.

Plant

KIFF

+KL+
−

J

τm

u

dL

εdLm u′rdLrXn

Figure 3.5: HAC-LAC: IFF + Control in the frame of the legs

In the following sections, several reference trajectories are defined:

• Section 3.2.1: simple scans in the Y-Z plane

• Section 3.2.2: scans in tilt are performed

• Section 3.2.3: scans with X-Y-Z translations in order to draw the word “NASS”

3.2.1 Y-Z Scans

Generate the Scan

A function generateYZScanTrajectory has been developed (accessible here) in order to easily generate
scans in the Y-Z plane.

For instance, the following generated trajectory is represented in Figure 3.6.
Matlab

%% Generate the Y-Z trajectory scan
Rx_yz = generateYZScanTrajectory(...

'y_tot', 4e-6, ... % Length of Y scans [m]
'z_tot', 8e-6, ... % Total Z distance [m]
'n', 5, ... % Number of Y scans
'Ts', 1e-3, ... % Sampling Time [s]
'ti', 2, ... % Time to go to initial position [s]

66



'tw', 0.5, ... % Waiting time between each points [s]
'ty', 2, ... % Time for a scan in Y [s]
'tz', 1); % Time for a scan in Z [s]

-2 -1 0 1 2

y [m] #10!6

-4

-2

0

2

4

z
[m

]

#10!6

Figure 3.6: Generated scan in the Y-Z plane

The Y and Z positions as a function of time are shown in Figure 3.7.

0 5 10 15 20

Time [s]

-4

-2

0

2

4

D
is
p
la

ce
m

en
t
[m

]

#10!6

Y motion
Z motion

Figure 3.7: Y and Z trajectories as a function of time

Reference Signal for the Strut lengths

Using the Jacobian matrix, it is possible to compute the wanted struts lengths as a function of time:

rdL = JrXn (3.1)

67



Matlab
dL_ref = [n_hexapod.geometry.J*Rx_yz(:, 2:7)']';

The reference signal for the strut length is shown in Figure 3.8.

0 5 10 15 20

Time [s]

-5

-4

-3

-2

-1

0

1

2

3

4

5
S
tr

u
t
M

o
ti
o
n

[m
]

#10!6

rdL1

rdL2

rdL3

rdL4

rdL5

rdL6

Figure 3.8: Trajectories for the 6 individual struts

Time domain simulation with 2DoF model

Before trying to follow this reference with the nano-hexapod, let’s try to do it using the Simscape
model.

The nano-hexapod is initialized with the APA modelled as 2DoF system (for the simulation to run
quickly).

Matlab
%% Initialize the Simscape model in closed loop
n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '2dof', ...

'flex_top_type', '3dof', ...
'motion_sensor_type', 'plates', ...
'actuator_type', '2dof', ...
'controller_type', 'hac-iff-struts');

The reference path as well as the measured motion are compared in Figure 3.9.

The motion errors are computed and shown in Figure 3.10. It is clear that the hexapod is indeed tracking
the reference path. However, in this simulation, no disturbances are included nor sensor noises.

68



-3 -2 -1 0 1 2 3

X displacement [7m]

-5

-4

-3

-2

-1

0

1

2

3

4

5

Y
d
is
p
la

ce
m

en
t
[7

m
]

Meas. Motion
Reference Path

Figure 3.9: Simulated Y-Z motion

0 5 10 15 20

Time [s]

-10

-8

-6

-4

-2

0

2

4

6

8

10

P
o
si
ti
on

E
rr

o
rs

[n
m

]

0x
0y
0z

0 5 10 15 20

Time [s]

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

O
ri
en

ta
ti
o
n

E
rr

o
rs

[7
ra

d
]

0Rx

0Ry

0Rz

Figure 3.10: Positioning errors as a function of time

69



3.2.2 Tilt Scans

3.2.3 “NASS” reference path

In this section, a reference path that “draws” the work “NASS” is developed.

First, a series of points representing each letter are defined. Between each letter, a negative Z motion
is performed.

Matlab
%% List of points that draws "NASS"
ref_path = [ ...

0, 0,0; % Initial Position
0,0,1; 0,4,1; 3,0,1; 3,4,1; % N
3,4,0; 4,0,0; % Transition
4,0,1; 4,3,1; 5,4,1; 6,4,1; 7,3,1; 7,2,1; 4,2,1; 4,3,1; 5,4,1; 6,4,1; 7,3,1; 7,0,1; % A
7,0,0; 8,0,0; % Transition
8,0,1; 11,0,1; 11,2,1; 8,2,1; 8,4,1; 11,4,1; % S
11,4,0; 12,0,0; % Transition
12,0,1; 15,0,1; 15,2,1; 12,2,1; 12,4,1; 15,4,1; % S
15,4,0;

];

%% Center the trajectory arround zero
ref_path = ref_path - (max(ref_path) - min(ref_path))/2;

%% Define the X-Y-Z cuboid dimensions containing the trajectory
X_max = 10e-6;
Y_max = 4e-6;
Z_max = 2e-6;

ref_path = ([X_max, Y_max, Z_max]./max(ref_path)).*ref_path; % [m]

Then, using the generateXYZTrajectory function, the 6× 1 trajectory signal is computed.

Matlab
%% Generating the trajectory
Rx_nass = generateXYZTrajectory('points', ref_path);

The trajectory in the X-Y plane is shown in Figure 3.11 (the transitions between the letters are removed).

-10 -5 0 5 10

X [7m]

-4

-2

0

2

4

Y
[7

m
]

Figure 3.11: Reference path corresponding to the “NASS” acronym

70



It can also be better viewed in a 3D representation as in Figure 3.12.

-2

5

0

z
[7

m
]

y [7m]

0

2

x [7m]

1050-5 -5-10

Figure 3.12: Reference path that draws “NASS” - 3D view

3.3 First Experimental Tests with the HAC

Both the Integral Force Feedback controller (developed in Section 2.3) and the high authority controller
working in the frame of the struts (developed in Section 3.1) are implemented experimentally.

3.3.1 Initial Controller

The controller designed in Section 3.1 is implemented experimentally and some reference tracking tests
are performed.

Matlab
%% Load the experimental data
load('hac_iff_struts_yz_scans.mat', 't', 'de')

The position of the top-platform is estimated using the Jacobian matrix:
Matlab

%% Pose of the top platform from the encoder values
load('jacobian.mat', 'J');
Xe = [inv(J)*de']';

The reference path as well as the measured position are partially shown in the Y-Z plane in Figure 3.13.

Important

It is clear from Figure 3.13 that the position of the nano-hexapod effectively tracks to reference
signal. However, oscillations with amplitudes as large as 50nm can be observe.

71



-2 0 2

Y [7m]

-4

-2

0

2

4

Z
[7

m
]

1.6 1.7 1.8 1.9 2 2.1

Y [7m]

-4.1

-4

-3.9

-3.8

-3.7

-3.6

Z
[7

m
]

Xn

rXn

Figure 3.13: Measured position Xn and reference signal rXn
in the Y-Z plane - Zoom on a change of

direction

It turns out that the frequency of these oscillations is 100Hz which is corresponding to the
crossover frequency of the High Authority Control loop. This clearly indicates poor stability
margins. In the next section, the controller is re-designed to improve the stability margins.

3.3.2 Controller with increased stability margins

The High Authority Controller is re-designed in order to improve the stability margins.

Matlab
%% Lead
a = 5; % Amount of phase lead / width of the phase lead / high frequency gain
wc = 2*pi*110; % Frequency with the maximum phase lead [rad/s]

H_lead = (1 + s/(wc/sqrt(a)))/(1 + s/(wc*sqrt(a)));

%% Low Pass Filter
H_lpf = 1/(1 + s/2/pi/300);

%% Notch
gm = 0.02;
xi = 0.5;
wn = 2*pi*700;

H_notch = (s^2 + 2*gm*xi*wn*s + wn^2)/(s^2 + 2*xi*wn*s + wn^2);

%% HAC Controller
Khac_iff_struts = -2.2e4 * ... % Gain

H_lead * ... % Lead
H_lpf * ... % Lead
H_notch * ... % Notch
(2*pi*100/s) * ... % Integrator
eye(6); % 6x6 Diagonal

72



The bode plot of the new loop gain is shown in Figure 3.14.

10!3

10!2

10!1

100

101

102

L
o
op

G
ai
n

[-
]

Diagonal
O,-Diag

100 101 102 103

Frequency [Hz]

-180

-90

0

90

180

P
h
as

e
[d

eg
]

Figure 3.14: Loop Gain for the updated decentralized HAC controller

This new controller is implemented experimentally and several tracking tests are performed.

Matlab
%% Load Measurements
load('hac_iff_more_lead_nass_scan.mat', 't', 'de')

The pose of the top platform is estimated from the encoder position using the Jacobian matrix.

Matlab
%% Compute the pose of the top platform
load('jacobian.mat', 'J');
Xe = [inv(J)*de']';

The measured motion as well as the trajectory are shown in Figure 3.15.

The trajectory and measured motion are also shown in the X-Y plane in Figure 3.16.

The orientations errors as a function of time are shown in Figure 3.17.

73



-2

5

-1

0

#10!6

z
[7

m
]

y [7m]

#10!6

0

1

2

1

x [7m]
#10!5

0.5
0-5 -0.5

-1

Figure 3.15: Measured position Xn and reference signal rXn
for the “NASS” trajectory

-10 -5 0 5 10

X [7m]

-4

-2

0

2

4

Y
[7

m
]

4.5 4.6 4.7

X [7m]

-0.15

-0.1

-0.05

0

Y
[7

m
]

Figure 3.16: Reference path and measured motion in the X-Y plane

74



10 20 30 40 50 60

Time [s]

-0.2

-0.1

0

0.1

0.2

O
ri
en

ta
ti
o
n

E
rr

o
r
[7

ra
d
] 03x

03y
03z

Figure 3.17: Orientation errors as a function of time during the “NASS” trajectory

Important

Using the updated High Authority Controller, the nano-hexapod can follow trajectories with
high accuracy (the position errors are in the order of 50nm peak to peak, and the orientation
errors 300nrad peak to peak).

75



4 Functions

4.1 generateXYZTrajectory

Function description

Matlab
function [ref] = generateXYZTrajectory(args)
% generateXYZTrajectory -
%
% Syntax: [ref] = generateXYZTrajectory(args)
%
% Inputs:
% - args
%
% Outputs:
% - ref - Reference Signal

Optional Parameters

Matlab
arguments

args.points double {mustBeNumeric} = zeros(2, 3) % [m]

args.ti (1,1) double {mustBeNumeric, mustBePositive} = 1 % Time to go to first point and after last point [s]
args.tw (1,1) double {mustBeNumeric, mustBePositive} = 0.5 % Time wait between each point [s]
args.tm (1,1) double {mustBeNumeric, mustBePositive} = 1 % Motion time between points [s]

args.Ts (1,1) double {mustBeNumeric, mustBePositive} = 1e-3 % Sampling Time [s]
end

Initialize Time Vectors

Matlab
time_i = 0:args.Ts:args.ti;
time_w = 0:args.Ts:args.tw;
time_m = 0:args.Ts:args.tm;

XYZ Trajectory

76



Matlab
% Go to initial position
xyz = (args.points(1,:))'*(time_i/args.ti);

% Wait
xyz = [xyz, xyz(:,end).*ones(size(time_w))];

% Scans
for i = 2:size(args.points, 1)

% Go to next point
xyz = [xyz, xyz(:,end) + (args.points(i,:)' - xyz(:,end))*(time_m/args.tm)];
% Wait a litle bit
xyz = [xyz, xyz(:,end).*ones(size(time_w))];

end

% End motion
xyz = [xyz, xyz(:,end) - xyz(:,end)*(time_i/args.ti)];

Reference Signal

Matlab
t = 0:args.Ts:args.Ts*(length(xyz) - 1);

Matlab
ref = zeros(length(xyz), 7);

ref(:, 1) = t;
ref(:, 2:4) = xyz';

4.2 generateYZScanTrajectory

Function description

Matlab
function [ref] = generateYZScanTrajectory(args)
% generateYZScanTrajectory -
%
% Syntax: [ref] = generateYZScanTrajectory(args)
%
% Inputs:
% - args
%
% Outputs:
% - ref - Reference Signal

Optional Parameters

Matlab
arguments

args.y_tot (1,1) double {mustBeNumeric} = 10e-6 % [m]

77



args.z_tot (1,1) double {mustBeNumeric} = 10e-6 % [m]

args.n (1,1) double {mustBeInteger, mustBePositive} = 10 % [-]

args.Ts (1,1) double {mustBeNumeric, mustBePositive} = 1e-4 % [s]

args.ti (1,1) double {mustBeNumeric, mustBePositive} = 1 % [s]
args.tw (1,1) double {mustBeNumeric, mustBePositive} = 1 % [s]
args.ty (1,1) double {mustBeNumeric, mustBePositive} = 1 % [s]
args.tz (1,1) double {mustBeNumeric, mustBePositive} = 1 % [s]

end

Initialize Time Vectors

Matlab
time_i = 0:args.Ts:args.ti;
time_w = 0:args.Ts:args.tw;
time_y = 0:args.Ts:args.ty;
time_z = 0:args.Ts:args.tz;

Y and Z vectors

Matlab
% Go to initial position
y = (time_i/args.ti)*(args.y_tot/2);

% Wait
y = [y, y(end)*ones(size(time_w))];

% Scans
for i = 1:args.n

if mod(i,2) == 0
y = [y, -(args.y_tot/2) + (time_y/args.ty)*args.y_tot];

else
y = [y, (args.y_tot/2) - (time_y/args.ty)*args.y_tot];

end

if i < args.n
y = [y, y(end)*ones(size(time_z))];

end
end

% Wait a litle bit
y = [y, y(end)*ones(size(time_w))];

% End motion
y = [y, y(end) - y(end)*time_i/args.ti];

Matlab
% Go to initial position
z = (time_i/args.ti)*(args.z_tot/2);

% Wait
z = [z, z(end)*ones(size(time_w))];

% Scans
for i = 1:args.n

z = [z, z(end)*ones(size(time_y))];

if i < args.n
z = [z, z(end) - (time_z/args.tz)*args.z_tot/(args.n-1)];

78



end
end

% Wait a litle bit
z = [z, z(end)*ones(size(time_w))];

% End motion
z = [z, z(end) - z(end)*time_i/args.ti];

Reference Signal

Matlab
t = 0:args.Ts:args.Ts*(length(y) - 1);

Matlab
ref = zeros(length(y), 7);

ref(:, 1) = t;
ref(:, 3) = y;
ref(:, 4) = z;

4.3 getTransformationMatrixAcc

Function description

Matlab
function [M] = getTransformationMatrixAcc(Opm, Osm)
% getTransformationMatrixAcc -
%
% Syntax: [M] = getTransformationMatrixAcc(Opm, Osm)
%
% Inputs:
% - Opm - Nx3 (N = number of accelerometer measurements) X,Y,Z position of accelerometers
% - Opm - Nx3 (N = number of accelerometer measurements) Unit vectors representing the accelerometer orientation
%
% Outputs:
% - M - Transformation Matrix

Transformation matrix from motion of the solid body to accelerometer
measurements

Let’s try to estimate the x-y-z acceleration of any point of the solid body from the acceleration/angular
acceleration of the solid body expressed in {O}. For any point pi of the solid body (corresponding to
an accelerometer), we can write: ai,xai,y

ai,z

 =

v̇xv̇y
v̇z

+ pi ×

ω̇x

ω̇y

ω̇z

 (4.1)

79



We can write the cross product as a matrix product using the skew-symmetric transformation:ai,xai,y
ai,z

 =

v̇xv̇y
v̇z

+

 0 pi,z −pi,y
−pi,z 0 pi,x
pi,y −pi,x 0


︸ ︷︷ ︸

Pi,[×]

·

ω̇x

ω̇y

ω̇z

 (4.2)

If we now want to know the (scalar) acceleration ai of the point pi in the direction of the accelerometer
direction ŝi, we can just project the 3d acceleration on ŝi:

ai = ŝTi ·

ai,xai,y
ai,z

 = ŝTi ·

v̇xv̇y
v̇z

+
(
ŝTi · Pi,[×]

)
·

ω̇x

ω̇y

ω̇z

 (4.3)

Which is equivalent as a simple vector multiplication:

ai =
[
ŝTi ŝTi · Pi,[×]

]

v̇x
v̇y
v̇z
ω̇x

ω̇y

ω̇z

 =
[
ŝTi ŝTi · Pi,[×]

]
O~x (4.4)

And finally we can combine the 6 (line) vectors for the 6 accelerometers to write that in a matrix form.
We obtain Eq. (4.5).

Important

The transformation from solid body acceleration O~x from sensor measured acceleration ~a is:

~a =

ŝ
T
1 ŝT1 · P1,[×]
...

...
ŝT6 ŝT6 · P6,[×]


︸ ︷︷ ︸

M

O~x (4.5)

with ŝi the unit vector representing the measured direction of the i’th accelerometer expressed in
frame {O} and Pi,[×] the skew-symmetric matrix representing the cross product of the position
of the i’th accelerometer expressed in frame {O}.

Let’s define such matrix using matlab:

Matlab
M = zeros(length(Opm), 6);

for i = 1:length(Opm)
Ri = [0, Opm(3,i), -Opm(2,i);

-Opm(3,i), 0, Opm(1,i);
Opm(2,i), -Opm(1,i), 0];

M(i, 1:3) = Osm(:,i)';
M(i, 4:6) = Osm(:,i)'*Ri;

end

80



Matlab
end

4.4 getJacobianNanoHexapod

Function description

Matlab
function [J] = getJacobianNanoHexapod(Hbm)
% getJacobianNanoHexapod -
%
% Syntax: [J] = getJacobianNanoHexapod(Hbm)
%
% Inputs:
% - Hbm - Height of {B} w.r.t. {M} [m]
%
% Outputs:
% - J - Jacobian Matrix

Transformation matrix from motion of the solid body to accelerometer
measurements

Matlab
Fa = [[-86.05, -74.78, 22.49],

[ 86.05, -74.78, 22.49],
[ 107.79, -37.13, 22.49],
[ 21.74, 111.91, 22.49],
[-21.74, 111.91, 22.49],
[-107.79, -37.13, 22.49]]'*1e-3; % Ai w.r.t. {F} [m]

Mb = [[-28.47, -106.25, -22.50],
[ 28.47, -106.25, -22.50],
[ 106.25, 28.47, -22.50],
[ 77.78, 77.78, -22.50],
[-77.78, 77.78, -22.50],
[-106.25, 28.47, -22.50]]'*1e-3; % Bi w.r.t. {M} [m]

H = 95e-3; % Stewart platform height [m]
Fb = Mb + [0; 0; H]; % Bi w.r.t. {F} [m]

si = Fb - Fa;
si = si./vecnorm(si); % Normalize

Bb = Mb - [0; 0; Hbm];

J = [si', cross(Bb, si)'];

81


	Encoders fixed to the Struts - Dynamics
	Identification of the dynamics
	Load Measurement Data
	Spectral Analysis - Setup
	Transfer function from Actuator to Encoder
	Transfer function from Actuator to Force Sensor
	Save Identified Plants

	Comparison with the Simscape Model
	Load measured FRF
	Dynamics from Actuator to Force Sensors
	Dynamics from Actuator to Encoder
	Effect of a change in bending damping of the joints
	Effect of a change in damping factor of the APA
	Effect of a change in stiffness damping coef of the APA
	Effect of a change in mass damping coef of the APA
	Using Flexible model
	Flexible model + encoders fixed to the plates

	Integral Force Feedback
	IFF Control Law and Optimal Gain
	Effect of IFF on the plant - Simulations
	Effect of IFF on the plant - Experimental Results
	Experimental Results - Damped Plant with Optimal gain
	Comparison with the Flexible model
	Conclusion

	Modal Analysis
	Obtained Mode Shapes
	Nano-Hexapod Compliance - Effect of IFF
	Comparison with the Simscape Model

	Conclusion

	Encoders fixed to the plates - Dynamics
	Identification of the dynamics
	Data Loading and Spectral Analysis Setup
	Transfer function from Actuator to Encoder
	Transfer function from Actuator to Force Sensor
	Save Identified Plants

	Comparison with the Simscape Model
	Identification Setup
	Dynamics from Actuator to Force Sensors
	Dynamics from Actuator to Encoder
	Conclusion

	Integral Force Feedback
	Effect of IFF on the plant - Simscape Model
	Effect of IFF on the plant - FRF
	Comparison of the measured FRF and the Simscape model
	Save Damped Plant

	Conclusion

	Decentralized High Authority Control with Integral Force Feedback
	High Authority Controller
	Simscape Model
	HAC Controller
	Verification of the Stability using the Simscape model
	Experimental Loop Gain

	Reference Tracking - Trajectories
	Y-Z Scans
	Tilt Scans
	``NASS'' reference path

	First Experimental Tests with the HAC
	Initial Controller
	Controller with increased stability margins


	Functions
	generateXYZTrajectory
	generateYZScanTrajectory
	getTransformationMatrixAcc
	getJacobianNanoHexapod


