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This document is dedicated to the experimental study of the nano-hexapod shown in Figure 0.1.

Figure 0.1: Nano-Hexapod

Note

\.

Here are the documentation of the equipment used for this test bench (lots of them are shwon
in Figure 0.2):

e Voltage Amplifier: PiezoDrive PD200

o Amplified Piezoelectric Actuator: Cedrat APA300ML
e DAC/ADC: Speedgoat 10313

e Encoder: Renishaw Vionic and used Ruler

e Interferometers: Attocube

In Figure 0.3 is shown a block diagram of the experimental setup. When possible, the notations are

consistent with this diagram and summarized in Table 0.1.




Figure 0.2: Nano-Hexapod and the control electronics
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Figure 0.3: Block diagram of the system with named signals




Table 0.1: List of signals

Unit Matlab Vector Elements

Control Input (wanted DAC voltage) vl u U U;
DAC Output Voltage vl u u U
PD200 Output Voltage vl ua Ug Ua,i
Actuator applied force [N] tau T T
Strut motion [m] dL dL dc;
Encoder measured displacement [m] dLm dLt,, ALy,
Force Sensor strain [m] epsilon € €;
Force Sensor Generated Voltage [vl taum Tm T
Measured Generated Voltage [Vl taum Tm Trmi
Motion of the top platform [m,rad] dX dXx dX;
Metrology measured displacement [m,rad]  dXm dX ., dXy, i

This document is divided in the following sections:
e Section 1: the dynamics of the nano-hexapod when the encoders are fixed to the struts is studied.
e Section 2: the same is done when the encoders are fixed to the plates.

e Section 3: a decentralized HAC-LAC strategy is studied and implemented.



1 Encoders fixed to the Struts - Dynamics

In this section, the encoders are fixed to the struts.

It is divided in the following sections:

e Section 1.1: the transfer function matrix from the actuators to the force sensors and to the
encoders is experimentally identified.

e Section 1.2: the obtained FRF matrix is compared with the dynamics of the simscape model

e Section 1.3: decentralized Integral Force Feedback (IFF) is applied and its performances are
evaluated.

e Section 1.4: a modal analysis of the nano-hexapod is performed

1.1 Identification of the dynamics
1.1.1 Load Measurement Data

Matlab

meas_data_l1f = {3};

for i = 1:6
meas_data_1f (i)
meas_data_hf (i)

end

{load(sprintf('mat/frf_data_exc_strut_%i_noise_lf.mat', i), 't', 'va', 'Vs', 'de')};
{load(sprintf('mat/frf_data_exc_strut_%i_noise_hf.mat', i), 't', 'Va', 'Vs', 'de')};

1.1.2 Spectral Analysis - Setup

Matlab

Ts = (meas_data_1f{1}.t(end) - (meas_data_1f{1}.t(1)))/(length(meas_data_1f{1}.t)-1);
Fs = 1/Ts;
win = hanning(ceil (1xFs));

[~, f] = tfestimate(meas_data_l1f{1}.Va, meas_data_1f{1}.de, win, [1, [1, 1/Ts);



i 1f
i_hf

f < 250; % Points for low frequency excitation
f > 250; % Points for high frequency excitation

1.1.3 Transfer function from Actuator to Encoder

First, let’s compute the coherence from the excitation voltage and the displacement as measured by the
encoders (Figure 1.1).

Matlab

%% Coherence
coh_dvf = zeros(length(f), 6, 6);

for i = 1:6
coh_dvf_l1f = mscohere(meas_data_1f{i}.Va, meas_data_1f{i}.de, win, [1, []1, 1/Ts);
coh_dvf_hf = mscohere(meas_data_hf{i}.Va, meas_data_hf{i}.de, win, [1, [1, 1/Ts);
coh_dvf(:,:,i) = [coh_dvf_1f(i_1f, :); coh_dvf_hf(i_hf, :)1;

end
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Figure 1.1: Obtained coherence for the DVF plant

Then the 6x6 transfer function matrix is estimated (Figure 1.2).

Matlab

%% DVF Plant (transfer function from u to dLm)
G_dvf = zeros(length(f), 6, 6);

for i = 1:6
G_dvf_1f = tfestimate(meas_data_l1f{i}.Va, meas_data_1f{i}.de, win, [1, [1, 1/Ts);
G_dvf_hf = tfestimate(meas_data_hf{i}.Va, meas_data_hf{i}.de, win, [], [1, 1/Ts);
G_dvf(:,:,1) = [G_dvf_1f(i_1f, :); G_dvf_hf(i_hf, :)I1;

end

1.1.4 Transfer function from Actuator to Force Sensor

First, let’s compute the coherence from the excitation voltage and the displacement as measured by the
encoders (Figure 1.3).
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Figure 1.2: Measured FRF for the DVF plant

Matlab

%% Coherence for the IFF plant
coh_iff = zeros(length(f), 6, 6);

for i = 1:6
coh_iff_1f = mscohere(meas_data_1f{i}.Va, meas_data_1f{i}.Vs, win, [], []1, 1/Ts);
coh_iff_hf = mscohere(meas_data_hf{i}.Va, meas_data_hf{i}.Vs, win, [1, []1, 1/Ts);
coh_iff(:,:,i) = [coh_iff_1f(i_1f, :); coh_iff_hf(i_hf, :)1;

end

Then the 6x6 transfer function matrix is estimated (Figure 1.4).

Matlab

%% IFF Plant
G_iff = zeros(length(f), 6, 6);

for i = 1:6
G_iff_1f = tfestimate(meas_data_1f{i}.Va, meas_data_l1f{i}.Vs, win, [1, []1, 1/Ts);
G_iff_hf = tfestimate(meas_data_hf{i}.Va, meas_data_hf{i}.Vs, win, [1, [], 1/Ts);
G_iff(:,:,1) = [GLiff_1f(i_1f, :); G_iff_hf(i_hf, :)I;

end
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Figure 1.3: Obtained coherence for the IFF plant
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Figure 1.4: Measured FRF for the IFF plant
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1.1.5 Save ldentified Plants

Matlab
save('matlab/mat/identified_plants_enc_struts.mat', 'f', 'Ts', 'G_iff', 'G_dvf')

1.2 Comparison with the Simscape Model

In this section, the measured dynamics is compared with the dynamics estimated from the Simscape

model.

1.2.1 Load measured FRF

Matlab

load('identified_plants_enc_struts.mat', 'f', 'Ts', 'G_iff', 'G_dvf')

1.2.2 Dynamics from Actuator to Force Sensors

Matlab

n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ...
'flex_top_type', '4dof', ...
'motion_sensor_type', 'struts', ...
'actuator_type', '2dof');

Matlab
clear io; io_i = 1;
io(io_i) = linio([mdl, '/du'l], 1, 'openinput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/dum'l, 1, 'openoutput'); io_i = io_i + 1;

Giff = exp(-s*Ts)*linearize(mdl, io, 0.0, options);

1.2.3 Dynamics from Actuator to Encoder

Matlab

n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ...
'flex_top_type', '4dof', ...
'motion_sensor_type', 'struts', ...
'actuator_type', 'flexible');

12
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Figure 1.6: Off diagonal elements of the IFF Plant
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Matlab

%% Identify the DVF Plant (transfer function from u to dLm)

clear io; io_i = 1;

io(io_i) = linio([mdl, '/du'l, 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs
io(io_i) = linio([mdl, '/D'], 1, 'openoutput'); io_i = io_i + 1; % Encoders

Gdvf = exp(-s*Ts)*linearize(mdl, io, 0.0, options);
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Figure 1.7: Diagonal elements of the DVF Plant

1.2.4 Effect of a change in bending damping of the joints

Matlab

%% Tested bending dampings [Nm/(rad/s)]
cRs = [1e-3, 5e-3, le-2, 5e-2, le-1];

Matlab

%% Identify the DVF Plant (transfer function from u to dLm)

clear io; io_i = 1;

io(io_i) = linio([mdl, '/du'l, 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs
io(io_i) = linio([mdl, '/D']1, 1, 'openoutput'); io_i = io_i + 1; % Encoders

Then the identification is performed for all the values of the bending damping.

14
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Figure 1.8: Off diagonal elements of the DVF Plant

Matlab

% Idenfity the transfer function from actuator to encoder for all bending dampins
Gs = {zeros(length(cRs), 1)};

for i = 1:1length(cRs)

n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof"'
'flex_top_type', '4dof'
'motion_sensor_type', 'struts', ...
'actuator_type', 'flexible', ...
'flex_bot_cRx', cRs(i), ...
'flex_bot_cRy', cRs(i), ...
'flex_top_cRx', cRs(i), ...
'flex_top_cRy', cRs(i));

G = exp(-s*Ts)*xlinearize(mdl, io, 0.0, options);

G.InputName = {'Val', 'Va2', 'Va3', 'Va4', 'Va5', 'Va6'};

G.OutputName = {'dL1', 'dL2', 'dL3', 'dL4', 'dL5', 'dL6'};
Gs(i) = {G};

end

e Could be nice

e Actual damping is very small

1.2.5 Effect of a change in damping factor of the APA

Matlab

%% Tested bending dampings [Nm/(rad/s)]
xis = [1e-3, 5e-3, le-2, 5e-2, le-1];

Matlab

%% Identify the DVF Plant (transfer function from u to dLm)

clear io; io_i = 1;

io(io_i) = linio([mdl, '/du'l, 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs
io(io_i) = linio([mdl, '/D'], 1, 'openoutput'); io_i = io_i + 1; % Encoders

15



Matlab
%% Idenfity the transfer function from actuator to encoder for all bending dampins

Gs = {zeros(length(xis), 1)3};

for i = 1:length(xis)
n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ...
'flex_top_type', '4dof', ...
'motion_sensor_type', 'struts', ...
'actuator_type', 'flexible', ...
'actuator_xi', xis(i));

G = exp(-s*Ts)*linearize(mdl, io, 0.0, options);
G.InputName = {'Val', 'Va2', 'Va3', 'Va4', 'Va5', 'Va6'};
G.OutputName = {'dL1', 'dL2', 'dL3', 'dL4', 'dL5', 'dL6'};

Gs(i) = {G};
end
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Figure 1.9: Effect of the APA damping factor £ on the dynamics from u to dC

Damping factor £ has a large impact on the damping of the “spurious resonances” at 200Hz and
300Hz.

Why is the damping factor does not change the damping of the first peak?
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1.2.6 Effect of a change in stiffness damping coef of the APA
Matlab

m_coef = Tel;
Matlab

k_coefs = [1e-6, 5e-6, le-5, 5e-5, 1e-4];
Matlab

clear io; io_i = 1;
io(io_i) = linio([mdl, '/du'l, 1,
io(io_i) = linio([mdl, '/D'], 1,

'openinput'); io_i = io_i + 1;
'openoutput'); io_i = io_i + 1;

Matlab

Gs = {zeros(length(k_coefs), 1)};

n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ...

for i = 1:1length(k_coefs)
k_coef = k_coefs(i);

G = exp(-s*Ts)*linearize(mdl,
G.InputName = {'val', 'Va2',
G.OutputName = {'dL1", 'dL2',
Gs(i) = {G};

end

'flex_top_type', '4dof', ...

'motion_sensor_type', 'struts', ...

'actuator_type', 'flexible');

io, 0.0, options);
'Va3', 'Va4', 'Va5', 'Va6'};
'dL3', 'dL4', 'dL5', 'dL6'};

1.2.7 Effect of a change in mass damping coef of the APA

Matlab
k_coef = le-6;

Matlab
m_coefs = [lel, 5el, 1e2, 5e2, 1e3];

Matlab

clear io; io_i = 1;
io(io_i) = linio([mdl, '/du'l, 1,
io(io_i) = linio([mdl, '/D'1, 1,

'openinput'); dio_i = io_i + 1;
'openoutput'); io_i = io_i + 1;

17
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Figure 1.10: Effect of a change of the damping “stiffness coeficient” on the transfer function from u to
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Matlab
%% Idenfity the transfer function from actuator to encoder for all bending dampins
Gs = {zeros(length(m_coefs), 1)};
n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ...
'flex_top_type', '4dof', ...
'motion_sensor_type', 'struts', ...
'actuator_type', 'flexible');

for i = 1:length(m_coefs)
m_coef = m_coefs(i);

G = exp(-s*Ts)*linearize(mdl, io, 0.0, options);

G.InputName = {'Val', 'Va2', 'Va3', 'Va4', 'Va5', 'Va6'};
G.OutputName = {'dL1', 'dL2', 'dL3', 'dL4', 'dL5', 'dL6'};

Gs(i) = {G};
end
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Figure 1.11: Effect of a change of the damping “mass coeficient” on the transfer function from u to

ac

1.2.8 Using Flexible model

Matlab
d_aligns = [[-0.05, -0.3, 01;
[ o, 0.5, 0l;
[-0.1, -0.3, oI;
[ o, 0.3, ol;
[-0.05, 0.05, 01;
[o, Q, 0]1*1e-3;

19



Matlab

d_aligns = zeros(6,3);

d_aligns(2,:) = [ 0, 0.3, 0]xle-3;

Matlab

n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ...
'flex_top_type', '4dof', ...
'motion_sensor_type', 'struts', ...
'actuator_type', 'flexible',
'actuator_d_align', d_aligns);

Why do we have smaller resonances when using flexible APA? On the test bench we have the
same resonance as the 2DoF model. Could it be due to the compliance in other dof of the flexible
model?

Matlab

clear io; io_i = 1;
io(io_i) = linio([mdl, '/du'l, 1, 'openinput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/D'], 1, 'openoutput'); io_i = io_i + 1;

Gdvf = exp(-s*Ts)*linearize(mdl, io, 0.0, options);

Matlab
clear io; io_i = 1;
io(io_i) = linio([mdl, '/du'l], 1, 'openinput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/dum'], 1, 'openoutput'); io_i = io_i + 1;

Giff = exp(-s*Ts)*linearize(mdl, io, 0.0, options);

1.2.9 Flexible model + encoders fixed to the plates

Matlab
clear io; io_i = 1;
io(io_i) = linio([mdl, '/du'l], 1, 'openinput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/D'], 1, 'openoutput'); io_i = io_i + 1;
Matlab
d_aligns = [[-0.05, -0.3, 01;
[ o, 0.5, ol;
[-0.1, -0.3, oI;
[ o, 0.3, 0l;
[-0.05, 0.05, 01;
[o, 0, 0]1*1e-3;
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Matlab

%% Initialize Nano-Hexapod

n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ...
'flex_top_type', '4dof', ...
'motion_sensor_type', 'struts', ...
'actuator_type', 'flexible',
'actuator_d_align', d_aligns);

Matlab

Gdvf_struts = exp(-s*Ts)*linearize(mdl, io, 0.0, options);

Matlab

% Initialize Nano-Hexapod
n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ...
'flex_top_type', '4dof', ...
'motion_sensor_type', 'plates', ...
'actuator_type', 'flexible',
'actuator_d_align', d_aligns);

Matlab

Gdvf_plates = exp(-s*Ts)*linearize(mdl, io, 0.0, options);
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Figure 1.12: Comparison of the dynamics from V, to dr when the encoders are fixed to the struts
(blue) and to the plates (red). APA are modeled as a flexible element.
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1.3 Integral Force Feedback

In this section, the Integral Force Feedback (IFF) control strategy is applied to the nano-hexapod. The
main goal of this to add damping to the nano-hexapod’s modes.

The control architecture is shown in Figure 1.13 where Kipr is a diagonal 6 x 6 controller.

The system as then a new input u’, and the transfer function from u’ to dL£,, should be easier to control
than the initial transfer function from u to d.C,,.

u u T
Plant m

——>
dcl,,

Figure 1.13: Integral Force Feedback Strategy

This section is structured as follow:

e Section 1.3.1: Using the Simscape model (APA taken as 2DoF model), the transfer function from
u to T, is identified. Based on the obtained dynamics, the control law is developed and the
optimal gain is estimated using the Root Locus.

e Section 1.3.2: Still using the Simscape model, the effect of the IFF gain on the the transfer
function from 4’ to dL,, is studied.

e Section 1.3.3: The same is performed experimentally: several IFF gains are used and the damped
plant is identified each time.

e Section 1.3.4: The damped model and the identified damped system are compared for the optimal
IFF gain. It is found that IFF indeed adds a lot of damping into the system. However it is not
efficient in damping the spurious struts modes.

e Section 1.3.5: Finally, a “flexible” model of the APA is used in the Simscape model and the
optimally damped model is compared with the measurements.

1.3.1 IFF Control Law and Optimal Gain

Let’s use a model of the Nano-Hexapod with the encoders fixed to the struts and the APA taken as
2DoF model.

Matlab

n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ...
'flex_top_type', '4dof', ...
'motion_sensor_type', 'struts', ...
'actuator_type', '2dof');
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The transfer function from w to 7, is identified.

Matlab
clear io; io_i = 1;
io(io_i) = linio([mdl, '/du'l, 1, 'openinput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/dum'l], 1, 'openoutput'); io_i = io_i + 1;
Giff = exp(-s*Ts)*linearize(mdl, io, 0.0, options);
The IFF controller is defined as shown below:

Matlab

Kiff_gl = -(1/(s + 2xpix40))*...
(s/(s + 2xpi*30))*...
(1/Q1 + s/2/pi/500))*. ..
eye(6);

Then, the poles of the system are shown in the complex plane as a function of the controller gain (i.e.
Root Locus plot) in Figure 1.14. A gain of 400 is chosen as the “optimal” gain as it visually seems to
be the gain that adds the maximum damping to all the suspension modes simultaneously.
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Figure 1.14: Root Locus for the IFF control strategy

Then the “optimal” IFF controller is:

Matlab

Kiff = 400%Kiff_g1;
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And it is saved for further use.

Matlab

save('mat/Kiff.mat', 'Kiff')

The bode plots of the “diagonal” elements of the loop gain are shown in Figure 1.15. It is shown that
the phase and gain margins are quite high and the loop gain is large arround the resonances.

Tmyi/’ui . Kiff - FRF ]
Tm,i/ui . Kiff - Model

10!

100 |

Amplitude [V/V]

._\
S
AN

-180 S S | |
10? 10°
Frequency [Hz]

Figure 1.15: Bode plot of the “decentralized loop gain” Gig(i,4) x Kig(i,1)

1.3.2 Effect of IFF on the plant - Simulations

Still using the Simscape model with encoders fixed to the struts and 2DoF APA, the IFF strategy is
tested.

Matlab

n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ...
'flex_top_type', '4dof', ...
'motion_sensor_type', 'struts', ...
'actuator_type', '2dof', ...
'controller_type', 'iff');

The following IFF gains are tried:

24



Matlab

iff_gains = [4, 10, 20, 40, 100, 200, 400];

And the transfer functions from u’ to dL,, are identified for all the IFF gains.

Matlab
Gd_iff = {zeros(1, length(iff_gains))};
clear io; io_i = 1;
io(io_i) = linio([mdl, '/du'], 1, 'openinput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/dL'], 1, 'openoutput'); io_i = io_i + 1;

for i = 1:length(iff_gains)
Kiff = iff_gains(i)*Kiff_glxeye(6);
Gd_iff (i) = {exp(-s*Ts)*linearize(mdl, io, 0.0, options)};

isstable(Gd_iff{i})
end

The obtained dynamics are shown in Figure 1.16.
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Figure 1.16: Effect of the IFF gain g on the transfer function from 7 to dC,,
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1.3.3 Effect of IFF on the plant - Experimental Results

The IFF strategy is applied experimentally and the transfer function from ' to dC,, is identified for
all the defined values of the gain.

Load Data

First load the identification data.

Matlab

meas_iff_gains = {};

for i = 1:length(iff_gains)
meas_iff_gains(i) = {load(sprintf('mat/iff_strut_1_noise_g_%i.mat', iff_gains(i)), 't', 'Vexc', 'Vs', 'de', 'u')};
end

Spectral Analysis - Setup

And define the useful variables that will be used for the identification using the tfestimate function.

Matlab

Ts = (meas_iff_gains{1}.t(end) - (meas_iff_gains{1}.t(1)))/(length(meas_iff_gains{1}.t)-1);

Fs = 1/Ts;

win = hanning(ceil(1*Fs));

[~, f] = tfestimate(meas_iff_gains{1}.Vexc, meas_iff_gains{1}.de, win, [1, [1, 1/Ts);

DVF Plant

The transfer functions are estimated for all the values of the gain.

Matlab

G_iff_gains = {};

for i = 1:length(iff_gains)
G_iff_gains{i} = tfestimate(meas_iff_gains{i}.Vexc, meas_iff_gains{i}.de(:,1), win, []1, [1, 1/Ts);
end

The obtained dynamics as shown in the bode plot in Figure 1.17. The dashed curves are the results
obtained using the model, and the solid curves the results from the experimental identification.

The bode plot is then zoomed on the suspension modes of the nano-hexapod in Figure 1.18.

26



1073

10"
>
B0
) F
e
=
= -6
2 10
g
= r 100
9iff =
-7
10 3 girs = 10 gisyr = 200
3 giff = 20 gisy = 400

10° 10°
Frequency [Hz]

Figure 1.17: Transfer function from u to d£,, for multiple values of the IFF gain

27



=
9
IS

Amplitude [m/V]

! |
= 90} 1 i
<)

o, ! |
) 0r 1

% |
= 1

a9t I |

|

-180 ! 1

102

Frequency [Hz]

Figure 1.18: Transfer function from u to d£,, for multiple values of the IFF gain (Zoom)

28



The IFF control strategy is very effective for the damping of the suspension modes. It however
does not damp the modes at 200Hz, 300Hz and 400Hz (flexible modes of the APA).
Also, the experimental results and the models obtained from the Simscape model are in agree-

ment concerning the damped system (up to the flexible modes).

Experimental Results - Comparison of the un-damped and fully damped system

The un-damped and damped experimental plants are compared in Figure 1.19 (diagonal terms).

It is very clear that all the suspension modes are very well damped thanks to IFF. However, there is
little to no effect on the flexible modes of the struts and of the plate.
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3 3

—
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Figure 1.19: Comparison of the diagonal elements of the tranfer function from w to d£,, without
active damping and with optimal IFF gain

1.3.4 Experimental Results - Damped Plant with Optimal gain

Let’s now look at the 6 x 6 damped plant with the optimal gain g = 400.

29



Load Data

The experimental data are loaded.

Matlab

%% Load Identification Data
meas_iff_struts = {};

for i = 1:6
meas_iff_struts(i) = {load(sprintf('mat/iff_strut_%i_noise_g_400.mat', i), 't', 'Vexc', 'Vs', 'de', 'u')};
end

Spectral Analysis - Setup

And the parameters useful for the spectral analysis are defined.

Matlab

%% Setup useful variables
% Sampling Time [s]
Ts = (meas_iff_struts{1}.t(end) - (meas_iff_struts{1}.t(1)))/(length(meas_iff_struts{1}.t)-1);

% Sampling Frequency [Hz]
Fs = 1/Ts;

% Hannning Windows
win = hanning(ceil(1*Fs));

% And we get the frequency vector
[~, f] = tfestimate(meas_iff_struts{1}.Vexc, meas_iff_struts{1}.de, win, [], [], 1/Ts);

DVF Plant

Finally, the 6 x 6 plant is identified using the tfestimate function.

Matlab
%% DVF Plant (transfer function from u to dLm)
G_iff_opt = {};
for i = 1:6
G_iff_opt{i} = tfestimate(meas_iff_struts{i}.Vexc, meas_iff_struts{i}.de, win, [1, [], 1/Ts);
end

The obtained diagonal elements are compared with the model in Figure 1.20.

And all the off-diagonal elements are compared with the model in Figure 1.21.

With the IFF control strategy applied and the optimal gain used, the suspension modes are very
well damped. Remains the un-damped flexible modes of the APA (200Hz, 300Hz, 400Hz), and

the modes of the plates (700Hz).
The Simscape model and the experimental results are in very good agreement.
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Figure 1.20: Comparison of the diagonal elements of the transfer functions from u to dL,, with active
damping (IFF) applied with an optimal gain g = 400
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Figure 1.21: Comparison of the off-diagonal elements of the transfer functions from w to dL,, with
active damping (IFF) applied with an optimal gain g = 400
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1.3.5 Comparison with the Flexible model

When using the 2-DoF model for the APA, the flexible modes of the struts were not modelled, and
it was the main limitation of the model. Now, let’s use a flexible model for the APA, and see if the
obtained damped plant using the model is similar to the measured dynamics.

First, the nano-hexapod is initialized.

Matlab

%% Estimated misalignement of the struts
d_aligns = [[-0.05, -0.3, 0];

, 0];

, 01;

, 0l;

5, 01;

0, ) 0]]1*1e-3;

%% Initialize Nano-Hexapod

n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ...
'flex_top_type', '4dof', ...
'motion_sensor_type', 'struts', ...
'actuator_type', 'flexible', ...
'actuator_d_align', d_aligns, ...
'controller_type', 'iff');

And the “optimal” controller is loaded.

Matlab

%% Optimal IFF controller
load('Kiff.mat', 'Kiff');

The transfer function from w’ to dL,, is identified using the Simscape model.

Matlab

%% Linearized inputs/outputs
clear io; io_i = 1;
io(io_i) = linio([mdl, '/du'l, 1, 'openinput'); io_i

, io_i + 1; % Actuator Inputs
io(io_i) = linio([mdl, '/dL'], 1, 'openoutput'); io_i

= io_i + 1; % Strut Displacement (encoder)
%% Identification of the plant
Gd_iff = exp(-sxTs)xlinearize(mdl, io, 0.0, options);

The obtained diagonal elements are shown in Figure 1.22 while the off-diagonal elements are shown in
Figure 1.23.

Using flexible models for the APA, the agreement between the Simscape model of the nano-
hexapod and the measured FRF is very good.

Only the flexible mode of the top-plate is not appearing in the model which is very logical as
the top plate is taken as a solid body.

33



H
9
L

Amplitude dL,, /v’ [m/V]
2

dL,/u, - FRF AL i/u} - Model|

1180 F .
102 103

Frequency [Hz]

Figure 1.22: Diagonal elements of the transfer function from u’ to d£,, - comparison of the measured
FRF and the identified dynamics using the flexible model
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Figure 1.23: Off-diagonal elements of the transfer function from u’ to d£,, - comparison of the mea-
sured FRF and the identified dynamics using the flexible model
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1.3.6 Conclusion

The decentralized Integral Force Feedback strategy applied on the nano-hexapod is very effective
in damping all the suspension modes.

The Simscape model (especially when using a flexible model for the APA) is shown to be very
accurate, even when IFF is applied.

1.4 Modal Analysis

Several 3-axis accelerometers are fixed on the top platform of the nano-hexapod as shown in Figure
1.28.

Figure 1.24: Location of the accelerometers on top of the nano-hexapod

The top platform is then excited using an instrumented hammer as shown in Figure 1.25.

From this experiment, the resonance frequencies and the associated mode shapes can be computed
(Section 1.4.1). Then, in Section 1.4.2; the vertical compliance of the nano-hexapod is experimentally
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Figure 1.25: Example of an excitation using an instrumented hammer
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estimated. Finally, in Section 1.4.3, the measured compliance is compare with the estimated one from
the Simscape model.

1.4.1 Obtained Mode Shapes

We can observe the mode shapes of the first 6 modes that are the suspension modes (the plate is
behaving as a solid body) in Figure 1.26.
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Figure 1.26: Measured mode shapes for the first six modes

Then, there is a mode at 692Hz which corresponds to a flexible mode of the top plate (Figure 1.27).

Figure 1.27: First flexible mode at 692Hz

The obtained modes are summarized in Table 1.1.

1.4.2 Nano-Hexapod Compliance - Effect of IFF

In this section, we wish to estimated the effectiveness of the IFF strategy concerning the compliance.
The top plate is excited vertically using the instrumented hammer two times:

1. no control loop is used
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Table 1.1: Description of the identified modes
Mode Freq. [Hz] Description

1 105 Suspension Mode: Y-translation

2 107 Suspension Mode: X-translation

3 131 Suspension Mode: Z-translation

4 161 Suspension Mode: Y-tilt

5 162 Suspension Mode: X-tilt

6 180 Suspension Mode: Z-rotation

7 692 (flexible) Membrane mode of the top platform

2. decentralized IFF is used

The data is loaded.

Matlab

frf_ol = load('Measurement_Z_axis.mat');
frf_iff = load('Measurement_Z_axis_damped.mat');

The mean vertical motion of the top platform is computed by averaging all 5 accelerometers.

Matlab

d_frf_ol = 10/5x(frf_ol.FFT1_H1_4_1_RMS_Y_Mod + frf_ol.FFT1_H1_7_1_RMS_Y_Mod + frf_ol.FFT1_H1_10_1_RMS_Y_Mod +

— frf_ol.FFT1_H1_13_1_RMS_Y_Mod + frf_ol.FFT1_H1_16_1_RMS_Y_Mod)./(2*pixfrf_ol.FFT1_H1_16_1_RMS_X_Val).*2;
d_frf_iff = 10/5x(frf_iff.FFT1_H1_4_1_RMS_Y_Mod + frf_iff.FFT1_H1_7_1_RMS_Y_Mod + frf_iff.FFT1_H1_10_1_RMS_Y_Mod +
— frf_iff .FFT1_H1_13_1_RMS_Y_Mod + frf_iff.FFT1_H1_16_1_RMS_Y_Mod)./(2xpixfrf_iff.FFT1_H1_16_1_RMS_X_Val)."2;

The vertical compliance (magnitude of the transfer function from a vertical force applied on the top
plate to the vertical motion of the top plate) is shown in Figure 1.28.
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Figure 1.28: Measured vertical compliance with and without IFF
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Important

From Figure 1.28, it is clear that the IFF control strategy is very effective in damping the
suspensions modes of the nano-hexapod. It also has the effect of (slightly) degrading the vertical
compliance at low frequency.

It also seems some damping can be added to the modes at around 205Hz which are flexible
modes of the struts.

1.4.3 Comparison with the Simscape Model

Let’s now compare the measured vertical compliance with the vertical compliance as estimated from
the Simscape model.

The transfer function from a vertical external force to the absolute motion of the top platform is
identified (with and without IFF) using the Simscape model. The comparison is done in Figure 1.29.
Again, the model is quite accurate!
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Figure 1.29: Measured vertical compliance with and without IFF

1.5 Conclusion

Important

From the previous analysis, several conclusions can be drawn:

e Decentralized IFF is very effective in damping the “suspension” modes of the nano-hexapod
(Figure 1.19)

e Decentralized IFF does not damp the “spurious” modes of the struts nor the flexible modes
of the top plate (Figure 1.19)

e Even though the Simscape model and the experimentally measured FRF are in good agree-
ment (Figures 1.22 and 1.23), the obtain dynamics from the control inputs w and the
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encoders dL,, is very difficult to control

Therefore, in the following sections, the encoders will be fixed to the plates. The goal is to be
less sensitive to the flexible modes of the struts.
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2 Encoders fixed to the plates - Dynamics

In this section, the encoders are fixed to the plates rather than to the struts as shown in Figure 2.1.

/ -

Figure 2.1: Nano-Hexapod with encoders fixed to the struts
It is structured as follow:
e Section 2.1: The dynamics of the nano-hexapod is identified.
e Section 2.2: The identified dynamics is compared with the Simscape model.

e Section 2.3: The Integral Force Feedback (IFF) control strategy is applied and the dynamics of
the damped nano-hexapod is identified and compare with the Simscape model.
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2.1 Identification of the dynamics

In this section, the dynamics of the nano-hexapod with the encoders fixed to the plates is identified.

First, the measurement data are loaded in Section 2.1.1, then the transfer function matrix from the
actuators to the encoders are estimated in Section 2.1.2. Finally, the transfer function matrix from the
actuators to the force sensors is estimated in Section 2.1.3.

2.1.1 Data Loading and Spectral Analysis Setup

The actuators are excited one by one using a low pass filtered white noise. For each excitation, the 6
force sensors and 6 encoders are measured and saved.

Matlab

meas_data_l1f = {};

for i = 1:6
meas_data_1f(i) = {load(sprintf('mat/frf_exc_strut_%i_enc_plates_noise.mat', i), 't', 'Va', 'Vs', 'de')};
end

2.1.2 Transfer function from Actuator to Encoder

Let’s compute the coherence from the excitation voltage uw and the displacement dL,, as measured by
the encoders.

Matlab
coh_dvf = zeros(length(f), 6, 6);
for i = 1:6
coh_dvf(:, :, i) = mscohere(meas_data_lf{i}.Va, meas_data_l1f{i}.de, win, [1, [1, 1/Ts);
end

The obtained coherence shown in Figure 2.2 is quite good up to 400Hz.

Then the 6x6 transfer function matrix is estimated.

Matlab
G_dvf = zeros(length(f), 6, 6);
for i = 1:6
G_dvf(:,:,1) = tfestimate(meas_data_1f{i}.Va, meas_data_1f{i}.de, win, [], [1, 1/Ts);
end

The diagonal and off-diagonal terms of this transfer function matrix are shown in Figure 2.3.
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Figure 2.3: Measured FRF for the DVF plant
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Important

From Figure 2.3, we can draw few conclusions on the transfer functions from u to dL,, when
the encoders are fixed to the plates:

e the decoupling is rather good at low frequency (below the first suspension mode). The low
frequency gain is constant for the off diagonal terms, whereas when the encoders where
fixed to the struts, the low frequency gain of the off-diagonal terms were going to zero
(Figure 1.2).

e the flexible modes of the struts at 226Hz and 337Hz are indeed shown in the transfer
functions, but their amplitudes are rather low.

e the diagonal terms have alternating poles and zeros up to at least 600Hz: the flexible
modes of the struts are not affecting the alternating pole/zero pattern. This what not the
case when the encoders were fixed to the struts (Figure 1.2).

2.1.3 Transfer function from Actuator to Force Sensor

Let’s now compute the coherence from the excitation voltage u and the voltage 7, generated by the
Force senors.

Matlab
%% Coherence for the IFF plant
coh_iff = zeros(length(f), 6, 6);
for i = 1:6
coh_iff(:,:,i) = mscohere(meas_data_1f{i}.Va, meas_data_1f{i}.Vs, win, []1, []1, 1/Ts);
end

The coherence is shown in Figure 2.4, and is very good for from 10Hz up to 2kHz.
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Figure 2.4: Obtained coherence for the IFF plant

Then the 6x6 transfer function matrix is estimated.
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Matlab

%% IFF Plant
G_iff = zeros(length(f), 6, 6);

for i = 1:6
G_iff(:,:,i) = tfestimate(meas_data_lf{i}.Va, meas_data_1f{i}.Vs, win, [1, [], 1/Ts);
end

The bode plot of the diagonal and off-diagonal terms are shown in Figure 2.5.
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Figure 2.5: Measured FRF for the IFF plant

Important

It is shown in Figure 2.6 that:
e The IFF plant has alternating poles and zeros

e The first flexible mode of the struts as 235Hz is appearing, and therefore is should be
possible to add some damping to this mode using IFF

e The decoupling is quite good at low frequency (below the first model) as well as high
frequency (above the last suspension mode, except near the flexible modes of the top
plate)
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2.1.4 Save ldentified Plants

The identified dynamics is saved for further use.

Matlab
save('mat/identified_plants_enc_plates.mat', 'f', 'Ts', 'G_iff', 'G_dvf')

2.2 Comparison with the Simscape Model

In this section, the measured dynamics done in Section 2.1 is compared with the dynamics estimated
from the Simscape model.

2.2.1 Identification Setup

The nano-hexapod is initialized with the APA taken as flexible models.

Matlab

n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ...
'flex_top_type', '4dof', ...
'motion_sensor_type', 'plates', ...
'actuator_type', 'flexible');

2.2.2 Dynamics from Actuator to Force Sensors

Then the transfer function from w to 7, is identified using the Simscape model.

Matlab
clear io; io_i = 1;
io(io_i) = linio([mdl, '/du'l, 1, 'openinput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Fm'], 1, 'openoutput'); io_i = io_i + 1;

Giff = exp(-s*Ts)*linearize(mdl, io, 0.0, options);

The identified dynamics is compared with the measured FRF:

e Figure 2.6: the individual transfer function from w; (the DAC voltage for the first actuator) to
the force sensors of all 6 struts are compared

e Figure 2.7: all the diagonal elements are compared

e Figure 2.8: all the off-diagonal elements are compared
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2.2.3 Dynamics from Actuator to Encoder

Now, the dynamics from the DAC voltage u to the encoders dL,, is estimated using the Simscape
model.

Matlab
clear io; io_i = 1;
io(io_i) = linio([mdl, '/du'l, 1, 'openinput'); ido_i = io_i + 1;
io(io_i) = linio([mdl, '/dL'1], 1, 'openoutput'); io_i = io_i + 1;

Gdvf = exp(-s*Ts)*linearize(mdl, io, 0.0, options);

The identified dynamics is compared with the measured FRF:

e Figure 2.9: the individual transfer function from us (the DAC voltage for the actuator number 3)
to the six encoders

e Figure 2.10: all the diagonal elements are compared

e Figure 2.11: all the off-diagonal elements are compared
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Figure 2.9: DVF Plant for the first actuator input and all the encoders
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2.2.4 Flexible Top Plate

Matlab

%% Initialize Nano-Hexapod

n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '2dof', ...
'flex_top_type', '3dof', ...
‘motion_sensor_type', 'struts', ...
'actuator_type', '2dof', ...
'top_plate_type', 'rigid');

Matlab
%% Identify the DVF Plant (transfer function from u to dLm)
clear io; io_i = 1;
io(io_i) = linio([mdl, '/du'l, 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs
io(io_i) = linio([mdl, '/dL'], 1, 'openoutput'); io_i = io_i + 1; % Encoders

Gdvf = linearize(mdl, io, 0.0, options);

Matlab
size(Gdvf)
isstable(Gdvf)
Matlab
[sys,g] = balreal(Gdvf); % Compute balanced realization
elim = (g<le-4); % Small entries of g are negligible states
rsys = modred(sys,elim); % Remove negligible states
size(rsys)
Matlab
%% Identify the IFF Plant (transfer function from u to taum)
clear io; io_i = 1;
io(io_i) = linio([mdl, '/du'l, 1, ‘openinput'); io_i = io_i + 1; % Actuator Inputs
io(io_i) = linio([mdl, '/Fm'], 1, 'openoutput'); io_i = io_i + 1; % Force Sensors

Giff = exp(-s*Ts)*linearize(mdl, io, 0.0, options);

2.2.5 Conclusion

The Simscape model is quite accurate for the transfer function matrices from w to 7, and from
u to dL,, except at frequencies of the flexible modes of the top-plate. The Simscape model can
therefore be used to develop the control strategies.

2.3 Integral Force Feedback

In this section, the Integral Force Feedback (IFF) control strategy is applied to the nano-hexapod in
order to add damping to the suspension modes.
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The control architecture is shown in Figure 2.12:
e T,, is the measured voltage of the 6 force sensors
e Kipp is the 6 x 6 diagonal controller
e wu is the plant input (voltage generated by the 6 DACs)

e u' is the new plant inputs with added damping

Kirr <
u’ u T >
Plant m
>
dLl,,

Figure 2.12: Integral Force Feedback Strategy

e Section 2.3.1

2.3.1 Effect of IFF on the plant - Simscape Model

The nano-hexapod is initialized with flexible APA and the encoders fixed to the struts.

Matlab

n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ...
'flex_top_type', '4dof', ...
'motion_sensor_type', 'plates', ...
'actuator_type', 'flexible');

The same controller as the one developed when the encoder were fixed to the struts is used.

Matlab

load('Kiff.mat', 'Kiff')

The transfer function from u’ to dL,, is identified.

Matlab

clear io; io_i = 1;
io(io_i) = linio([mdl, '/du'l, 1, ‘'openinput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/dL'], 1, 'openoutput'); io_i = io_i + 1;

First in Open-Loop:
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Matlab

Gd_ol = exp(-s*Ts)xlinearize(mdl, io, 0.0, options);

And then with the IFF controller:

Matlab

n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ...
'flex_top_type', '4dof', ...
'motion_sensor_type', 'plates', ...
'actuator_type', 'flexible', ...
'controller_type', 'iff');

Gd_iff = exp(-s*Ts)*linearize(mdl, io, 0.0, options);

It is first verified that the system is stable:

Matlab

isstable(Gd_iff)

Results

The diagonal and off-diagonal terms of the 6 x 6 transfer function matrices identified are compared in
Figure 2.13. It is shown, as was the case when the encoders were fixed to the struts, that the IFF
control strategy is very effective in damping the suspension modes of the nano-hexapod.

2.3.2 Effect of IFF on the plant - FRF

The IFF control strategy is experimentally implemented. The (damped) transfer function from u’ to
dL,, is experimentally identified.

The identification data are loaded:

Matlab

meas_iff_plates = {};

for i = 1:6
meas_iff_plates(i) = {load(sprintf('mat/frf_exc_iff_strut_%i_enc_plates_noise.mat', i), 't', 'Va', 'Vs', 'de', 'u')};
end

And the parameters used for the transfer function estimation are defined below.

Matlab

Ts = (meas_iff_plates{1}.t(end) - (meas_iff_plates{1}.t(1)))/(length(meas_iff_plates{1}.t)-1);

win = hanning(ceil(1/Ts));
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Figure 2.13: Effect of the IFF control strategy on the transfer function from 7 to d.,,
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% And we get the frequency vector
[~, f] = tfestimate(meas_iff_plates{1}.Va, meas_iff_plates{1}.de, win, [1, [1, 1/Ts);

The estimation is performed using the tfestimate command.

Matlab
%% Estimation of the transfer function matrix from u to dL when IFF is applied
G_enc_iff_opt = zeros(length(f), 6, 6);

for i = 1:6
G_enc_iff_opt(:,:,i) = tfestimate(meas_iff_plates{i}.Va, meas_iff_plates{i}.de, win, [], [1, 1/Ts);
end

The obtained diagonal and off-diagonal elements of the transfer function from u’ to dC,, are shown in
Figure 2.14 both without and with IFF.
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Figure 2.14: Effect of the IFF control strategy on the transfer function from 7 to d.,,

As was predicted with the Simscape model, the IFF control strategy is very effective in damping
the suspension modes of the nano-hexapod. Little damping is also applied on the first flexible
mode of the strut at 235Hz. However, no damping is applied on other modes, such as the flexible
modes of the top plate.
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2.3.3 Comparison of the measured FRF and the Simscape model

Let’s now compare the obtained damped plants obtained experimentally with the one extracted from
Simscape:

e Figure 2.15: the individual transfer function from u} to the six encoders are comapred
e Figure 2.16: all the diagonal elements are compared

e Figure 2.17: all the off-diagonal elements are compared
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Figure 2.15: FRF from one actuator to all the encoders when the plant is damped using IFF

From Figures 2.16 and 2.17, it is clear that the Simscape model very well represents the dynamics
of the nano-hexapod. This is true to around 400Hz, then the dynamics depends on the flexible
modes of the top plate which are not modelled.

2.3.4 Save Damped Plant

The experimentally identified plant is saved for further use.
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Matlab
save('matlab/mat/damped_plant_enc_plates.mat', 'f', 'Ts', 'G_enc_iff_opt")

Matlab
save('mat/damped_plant_enc_plates.mat', 'f', 'Ts', 'G_enc_iff_opt')

2.4 Effect of Payload mass - Robust IFF

In this section, the encoders are fixed to the plates, and we identify the dynamics for several payloads.
The added payload are half cylinders, and three layers can be added for a total of around 40kg (Figure
2.18).

Figure 2.18: Picture of the nano-hexapod with added mass
First the dynamics from u to dL,, and T, is identified. Then, the Integral Force Feedback controller

is developed and applied as shown in Figure 2.19. Finally, the dynamics from u’ to d£,, is identified
and the added damping can be estimated.
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Nano-Hexapod

Figure 2.19: Block Diagram of the experimental setup and model

2.4.1 Measured Frequency Response Functions

The identification is performed without added mass, and with one, two and three layers of added
cylinders.

Matlab

i_masses = 0:3;

The following data are loaded:
e Va: the excitation voltage (corresponding to w;)
e Vs: the generated voltage by the 6 force sensors (corresponding to 7, )

e de: the measured motion by the 6 encoders (corresponding to d.LC,,)

Matlab
meas_added_mass = {};
for i_mass = i_masses
for i_strut = 1:6
meas_added_mass(i_strut, i_mass+1) = {load(sprintf('frf_data_exc_strut_%i_realigned_vib_table_%im.mat', i_strut,
s i_mass), 't', 'va', 'Vs', 'de')};
end

end

The window win and the frequency vector f are defined.

Matlab

Ts = (meas_added_mass{1,1}.t(end) - (meas_added_mass{1,1}.t(1)))/(length(meas_added_mass{1,1}.t)-1);

win = hanning(ceil(1/Ts));

[~, f]1 = tfestimate(meas_added_mass{1,1}.Va, meas_added_mass{1,1}.de, win, [1, [1, 1/Ts);
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Finally the 6 x 6 transfer function matrices from u to d£,, and from w to 7, are identified:

Matlab

G_dL = {};

for

i_mass = i_masses
G_dL(i_mass+1) = {zeros(length(f), 6, 6)};
for i_strut = 1:6
G_dL{i_mass+13}(:,:,i_strut) = tfestimate(meas_added_mass{i_strut, i_mass+1}.Va, meas_added_mass{i_strut, i_mass+1}.de,

— win, [1, [1, 1/Ts);
end

end

G_tau = {};

for i_mass = i_masses

end

G_tau(i_mass+1) = {zeros(length(f), 6, 6)};
for i_strut = 1:6
G_tau{i_mass+1}(:,:,i_strut) = tfestimate(meas_added_mass{i_strut, i_mass+1}.Va, meas_added_mass{i_strut, i_mass+1}.Vs,
win, [1, [1, 1/Ts);
end

The identified dynamics are then saved for further use.

Matlab

save('mat/frf_vib_table_m.mat', 'f', 'Ts', 'G_tau', 'G_dL")

2.4.2 Transfer function from Actuators to Encoders

The transfer functions from w; to dL,, ; are shown in Figure 2.20.

Important

From Figure 2.20, we can observe few things:

e The obtained dynamics is changing a lot between the case without mass and when there
is at least one added mass.

e Between 1, 2 and 3 added masses, the dynamics is not much different, and it would be
easier to design a controller only for these cases.

e The flexible modes of the top plate is first decreased a lot when the first mass is added
(from 700Hz to 400Hz). This is due to the fact that the added mass is composed of two
half cylinders which are not fixed together. Therefore is adds a lot of mass to the top plate
without adding a lot of rigidity in one direction. When more than 1 mass layer is added,
the half cylinders are added with some angles such that rigidity are added in all directions
(see Figure 2.18). In that case, the frequency of these flexible modes are increased. In
practice, the payload should be one solid body, and we should not see a massive decrease
of the frequency of this flexible mode.

e Flexible modes of the top plate are becoming less problematic as masses are added.

e First flexible mode of the strut at 230Hz is not much decreased when mass is added.
However, its apparent amplitude is much decreased.
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Figure 2.20: Measured Frequency Response Functions from u; to dC,, ; for all 4 payload conditions
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2.4.3 Transfer function from Actuators to Force Sensors

The transfer functions from u; to 7, ; are shown in Figure 2.21.
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Figure 2.21: Measured Frequency Response Functions from u; to 7, ; for all 4 payload conditions

From Figure 2.21, we can see that for all added payloads, the transfer function from wu; to 7, ;
always has alternating poles and zeros.

2.5 Comparison with the Simscape model

2.5.1 System ldentification

Let’s initialize the simscape model with the nano-hexapod fixed on top of the vibration table.

Matlab

support.type = 1; % On top of vibration table

The model of the nano-hexapod is defined as shown bellow:

64



Matlab

n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '2dof"’
'flex_top_type', '3dof', ...
'motion_sensor_type', 'plates', ...
'actuator_type', '2dof');

And finally, we add the same payloads as during the experiments:

Matlab

payload.type = 1;

First perform the identification for the transfer functions from u to dL,,:

Matlab

clear io; io_i = 1;
io(io_i) = linio([mdl, '/du'l, 1, 'openinput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/dL'], 1, 'openoutput'); io_i = io_i + 1;

G_dL = {};

for i = i_masses

fprintf('i = %i\n', i)

payload.type = i;

G_dL(i+1) = {exp(-sxfrf_ol.Ts)xlinearize(mdl, io, 9.0, options)};
end

Matlab
clear io; io_i = 1;
io(io_i) = linio([mdl, '/du'], 1, 'openinput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Fm'], 1, 'openoutput'); io_i = io_i + 1;
G_tau = {};
for i = 0:3

fprintf('i = %i\n', i)

payload.type = i;

G_tau(i+1) = {exp(-sxfrf_ol.Ts)xlinearize(mdl, io, 0.0, options)};
end

The identified dynamics are then saved for further use.

Matlab

save('mat/sim_vib_table_m.mat', 'G_tau', 'G_dL')

2.5.2 Transfer function from Actuators to Encoders

The measured FRF and the identified dynamics from u; to dL,, ; are compared in Figure 2.22. A zoom
near the “suspension” modes is shown in Figure 2.23.
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Figure 2.22: Comparison of the transfer functions from u; to dZ,, ; - measured FRF and identification
from the Simscape model
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Figure 2.23: Comparison of the transfer functions from u; to dZ,, ; - measured FRF and identification
from the Simscape model (Zoom)
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The Simscape model is very accurately representing the measured dynamics up. Only the flexible
modes of the struts and of the top plate are not represented here as these elements are modelled

as rigid bodies.

2.5.3 Transfer function from Actuators to Force Sensors

The measured FRF and the identified dynamics from w; to 7, ; are compared in Figure 2.24. A zoom
near the “suspension” modes is shown in Figure 2.25.
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Figure 2.24: Comparison of the transfer functions from w; to 7, ; - measured FRF and identification
from the Simscape model

2.6 Integral Force Feedback Controller

2.6.1 Robust IFF Controller

Based on the measured FRF from w; to 7y, ;, the following IFF controller is developed:
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Figure 2.25: Comparison of the transfer functions from w; to 7, ; - measured FRF and identification
from the Simscape model (Zoom)
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Matlab

Kiff_gl = (1/(s + 2*pi*20))*...
(s/(s + 2%pix20))*. ..
(/1 + s/2/pi/400));

Then, the Root Locus plot of Figure 2.26 is used to estimate the optimal gain. This Root Locus plot
is computed from the Simscape model.
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Figure 2.26: Root Locus for the IFF control strategy (for all payload conditions).

The found optimal IFF controller is:

Matlab
g_opt = -2e2;
Kiff = g_optxKiff_gl*eye(6);
It is saved for further use.

Matlab

save('mat/Kiff_opt.mat', 'Kiff")

The corresponding experimental loop gains are shown in Figure 2.27.
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Figure 2.27: Loop gain for the Integral Force Feedback controller
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Important

Based on the above analysis:

e The same IFF controller can be used to damp the suspension modes for all payload con-
ditions

e The IFF controller should be robust

2.6.2 Estimated Damped Plant from the Simscape model

Let’s initialize the simscape model with the nano-hexapod fixed on top of the vibration table.

Matlab

support.type = 1; % On top of vibration table

The model of the nano-hexapod is defined as shown bellow:

Matlab

%% Initialize the Simscape model in closed loop

n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '2dof', ...
'flex_top_type', '3dof', ...
'motion_sensor_type', 'plates', ...
'actuator_type', '2dof', ...
'controller_type', 'iff');

And finally, we add the same payloads as during the experiments:

Matlab

payload.type = 1; % Payload / 1 "mass layer”

Matlab

%% Identify the (damped) transfer function from u to dLm
clear io; io_i = 1;
io(io_i) = linio([mdl, '/du'l, 1, ‘'openinput'); io_i

B io_i + 1; % Actuator Inputs
io(io_i) = linio([mdl, '/dL'], 1, 'openoutput'); io_i

io_i + 1; % Plate Displacement (encoder)

%% Identify for all add masses
GdL = {};

for i = i_masses

payload.type = i;

G_dL(i+1) = {exp(-s*frf_ol.Ts)*linearize(mdl, io, 0.0, options)};
end

The identified dynamics are then saved for further use.

Matlab

save('mat/sim_iff_vib_table_m.mat', 'G_dL');
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Matlab

sim_iff = load('sim_iff_vib_table_m.mat', 'G_dL');
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Figure 2.28: Transfer function from wu; to dL,, ; (without active damping) and from «} to dL,, ; (with
IFF)

2.6.3 Compute the identified FRF with IFF

The identification is performed without added mass, and with one, two and three layers of added
cylinders.

Matlab

i_masses = 0:3;

The following data are loaded:
e Va: the excitation voltage for the damped plant (corresponding to u})

e de: the measured motion by the 6 encoders (corresponding to d.C,,)

Matlab

meas_added_mass = {};
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for i_mass = i_masses
for i_strut = 1:6
meas_iff_mass(i_strut, i_mass+1) = {load(sprintf('frf_data_exc_strut_%i_iff_vib_table_%im.mat', i_strut, i_mass), 't',
— 'Va', 'de")};
end
end

The window win and the frequency vector f are defined.

Matlab

% Sampling Time [s]
Ts = (meas_iff_mass{1,1}.t(end) - (meas_iff_mass{1,1}.t(1)))/(length(meas_iff_mass{1,1}.t)-1);

% Hannning Windows
win = hanning(ceil(1/Ts));

% And we get the frequency vector
[~, f1 = tfestimate(meas_iff_mass{1,1}.Va, meas_iff_mass{1,1}.de, win, [1, [1, 1/Ts);

Finally the 6 x 6 transfer function matrix from «’ to dC,, is estimated:

Matlab

6% DVF Plant (transfer function from u to dLm)
G_dL = {};

for i_mass = i_masses
G_dL(i_mass+1) = {zeros(length(f), 6, 6)};
for i_strut = 1:6
G_dL{i_mass+1}(:,:,i_strut) = tfestimate(meas_iff_mass{i_strut, i_mass+1}.Va, meas_iff_mass{i_strut, i_mass+1}.de, win,
— [1, [1, 1/Ts);
end
end

The identified dynamics are then saved for further use.

Matlab

save('mat/frf_iff_vib_table_m.mat', 'f', 'Ts', 'G_dL');

2.6.4 Comparison of the measured FRF and the Simscape model

The following figures are computed:
e Figure 2.29: the measured damped FRF are displayed

e Figure 2.30: the open-loop and damped FRF are compared (diagonal elements)

e Figure 2.31: the obtained damped FRF is compared with the identified damped from using the
Simscape model

The IFF control strategy effectively damps all the suspensions modes of the nano-hexapod
whatever the payload is. The obtained plant is easier to control (provided the flexible modes of
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Figure 2.29: Diagonal and off-diagonal of the measured FRF matrix for the damped plant
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l the top platform are well damped). J

2.6.5 Change of coupling with IFF

The added damping using IFF reduces the coupling in the system near the suspensions modes that are
damped. It can be estimated by taking the ratio of the diagonal-term and the off-diagonal term.

This is shown in Figure 2.32.
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Figure 2.32: Comparison of the coupling with and without IFF

2.7 Un-Balanced mass

2.7.1 Introduction
2.7.2 Compute the identified FRF with IFF

The following data are loaded:

e Va: the excitation voltage for the damped plant (corresponding to u})
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Figure 2.33: Nano-Hexapod with unbalanced payload
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e de: the measured motion by the 6 encoders (corresponding to dC,,)

Matlab

%% Load Identification Data
meas_added_mass = {zeros(6,1)};

for i_strut = 1:6
meas_iff_mass(i_strut) = {load(sprintf('frf_data_exc_strut_%i_iff_vib_table_Im_unbalanced.mat', i_strut), 't', 'Va',

— 'de")};
end

The window win and the frequency vector f are defined.

Matlab

% Sampling Time [s]
Ts = (meas_iff_mass{1}.t(end) - (meas_iff_mass{1}.t(1)))/(length(meas_iff_mass{1}.t)-1);

% Hannning Windows
win = hanning(ceil(1/Ts));

% And we get the frequency vector
[~, f]1 = tfestimate(meas_iff_mass{1}.Va, meas_iff_mass{1}.de, win, [1, [], 1/Ts);

Finally the 6 x 6 transfer function matrix from u’ to dC,, is estimated:

Matlab

%% DVF Plant (transfer function from u to dLm)
G_dL = zeros(length(f), 6, 6);
for i_strut = 1:6
G_dL(:,:,i_strut) = tfestimate(meas_iff_mass{i_strut}.Va, meas_iff_mass{i_strut}.de, win, [1, [1, 1/Ts);
end

The identified dynamics are then saved for further use.

Matlab
save('mat/frf_iff_unbalanced_vib_table_m.mat', 'f', 'Ts', 'G_dL');

2.7.3 Effect of an unbalanced payload

The transfer functions from w; to dL; are shown in Figure 2.34. Due to the unbalanced payload, the
system is not symmetrical anymore, and therefore each of the diagonal elements are not equal. This is
due to the fact that each strut is not affected by the same inertia.

2.8 Conclusion

In this section, the dynamics of the nano-hexapod with the encoders fixed to the plates is studied.
It has been found that:

e The measured dynamics is in agreement with the dynamics of the simscape model, up to
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the flexible modes of the top plate. See figures 2.7 and 2.8 for the transfer function to the
force sensors and Figures 2.10 and 2.11for the transfer functions to the encoders

The Integral Force Feedback strategy is very effective in damping the suspension modes of
the nano-hexapod (Figure 2.14).

The transfer function from u’ to dL,, show nice dynamical properties and is a much better
candidate for the high-authority-control than when the encoders were fixed to the struts.
At least up to the flexible modes of the top plate, the diagonal elements of the transfer
function matrix have alternating poles and zeros, and the phase is moving smoothly. Only
the flexible modes of the top plates seems to be problematic for control.
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3 Decentralized High Authority Control
with Integral Force Feedback

In this section is studied the HAC-IFF architecture for the Nano-Hexapod. More precisely:
e The LAC control is a decentralized integral force feedback as studied in Section 2.3
e The HAC control is a decentralized controller working in the frame of the struts

The corresponding control architecture is shown in Figure 3.1 with:
e 7y : the 6 x 1 reference signal in the cartesian frame

e 140: the 6 x 1 reference signal transformed in the frame of the struts thanks to the inverse
kinematic

e €4r: the 6 x 1 length error of the 6 struts
e u': input of the damped plant

e u: generated DAC voltages

e T,,: measured force sensors

e dL,,: measured displacement of the struts by the encoders

Y

TX, | 1overse Tac €dL U u Uy, dLm
K, PD200 Plant

Y

Kinematics

Y

Kirr |«

Figure 3.1: HAC-LAC: IFF + Control in the frame of the legs
This part is structured as follow:
e Section 3.1: some reference tracking tests are performed

e Section 3.2: the decentralized high authority controller is tuned using the Simscape model and is
implemented and tested experimentally
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e Section 3.3: an interaction analysis is performed, from which the best decoupling strategy can be
determined

e Section 3.4: Robust High Authority Controller are designed

3.1 Reference Tracking - Trajectories

In this section, several trajectories representing the wanted pose (position and orientation) of the top
platform with respect to the bottom platform are defined.

These trajectories will be used to test the HAC-LAC architecture.

In order to transform the wanted pose to the wanted displacement of the 6 struts, the inverse kinematic
is required. As a first approximation, the Jacobian matrix J can be used instead of using the full inverse

kinematic equations.

Therefore, the control architecture with the input trajectory rx, is shown in Figure 3.2.

Tx, TdL €dL u’ U Ug, dLm
—>] J K, PD200 Plant

Y

Kirr |

Figure 3.2: HAC-LAC: IFF + Control in the frame of the legs
In the following sections, several reference trajectories are defined:
e Section 3.1.1: simple scans in the Y-Z plane
e Section 3.1.2: scans in tilt are performed

e Section 3.1.3: scans with X-Y-Z translations in order to draw the word “NASS”

3.1.1 Y-Z Scans

A function generateYZScanTrajectory has been developed (accessible here) in order to easily generate
scans in the Y-Z plane.

For instance, the following generated trajectory is represented in Figure 3.3.

Matlab

Rx_yz = generateYZScanTrajectory(...
'y_tot', 4e-6, ...
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Figure 3.3: Generated scan in the Y-Z plane

The Y and Z positions as a function of time are shown in Figure 3.4.

—6
9 x10 .

Y motion
7 motion

Displacement [m]

0 1 2 3 4 ) 6
Time [s]

Figure 3.4: Y and Z trajectories as a function of time

Using the Jacobian matrix, it is possible to compute the wanted struts lengths as a function of time:

Tdc = J’r‘,—yn (31)
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Matlab

dL_ref = [J*Rx_yz(:, 2:7)']";

ot

The reference signal for the strut length is shown in Figure 3.

%1076

Strut Motion [m]

Time [s]

Figure 3.5: Trajectories for the 6 individual struts

3.1.2 Tilt Scans

A function generalSpiralAngleTrajectory has been developed in order to easily generate R, R, tilt
scans.

For instance, the following generated trajectory is represented in Figure 3.6.

Matlab

R_tilt = generateSpiralAngleTrajectory(...
'R_tot', 20e-6, ...

'n_turn', 5, ...
'Ts', le-3, ...
"t_turn', 1, ...
't_end', 1);

The reference signal for the strut length is shown in Figure 3.7.

3.1.3 “NASS" reference path

In this section, a reference path that “draws” the work “NASS” is developed.

First, a series of points representing each letter are defined. Between each letter, a negative Z motion
is performed.
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Figure 3.7: Trajectories for the 6 individual struts - Tilt scan
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Matlab

ref_path = [ ...

5,4,1; 6,4,1; 7,3,1; 7,2,1; 4,2,1; 4,3,1; 5,4,1; 6,4,1; 7,3,1; 7,0,1;
,0,15 11,2,15 8,2,1; 8,4,1; 11,4,1;
2,0,0;

5,0,1; 15,2,1; 12,2,1; 12,4,1; 15,4,1;

ref_path = ref_path - (max(ref_path) - min(ref_path))/2;

X_max = 10e-6;
Y_max = 4e-6;
Z_max = 2e-6;

ref_path = ([X_max, Y_max, Z_max]./max(ref_path)).xref_path;

Then, using the generateXYZTrajectory function, the 6 x 1 trajectory signal is computed.

Matlab

Rx_nass = generateXYZTrajectory('points', ref_path);

The trajectory in the X-Y plane is shown in Figure 3.8 (the transitions between the letters are removed).

N /N |

_4 1 1 1
-10 -5 0 ) 10

X [pm]
Figure 3.8: Reference path corresponding to the “NASS” acronym
It can also be better viewed in a 3D representation as in Figure 3.9.

3.2 First Basic High Authority Controller

In this section, a simple decentralized high authority controller K is developed to work without any
payload.
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Figure 3.9: Reference path that draws “NASS” - 3D view

The diagonal controller is tuned using classical Loop Shaping in Section 3.2.1. The stability is verified
in Section 3.2.2 using the Simscape model.

3.2.1 HAC Controller

Let’s first try to design a first decentralized controller with:
e a bandwidth of 100Hz
e sufficient phase margin
e simple and understandable components

After some very basic and manual loop shaping, A diagonal controller is developed. Each diagonal
terms are identical and are composed of:

e A lead around 100Hz
e A first order low pass filter starting at 200Hz to add some robustness to high frequency modes
e A notch at 700Hz to cancel the flexible modes of the top plate

e A pure integrator

Matlab

a = 2;
wc = 2*%pix100;

H_lead = (1 + s/(wc/sqrt(a)))/(1 + s/(wc*xsgrt(a)));

H_lpf = 1/(1 + s/2/pi/200);

gm = 0.02;
xi = 0.3;
wn = 2*pi*700;
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H_notch = (s*2 + 2*gmxxi*wn*s + wn"2)/(s"2 + 2*xixwnxs + wn*2);

Khac_iff_struts = -(1/(2.87e-5)) * ...
H_lead * ...
H_notch * ...
(2*pix100/s) * ...
eye(6);

This controller is saved for further use.

Matlab

save('mat/Khac_iff_struts.mat', 'Khac_iff_struts')

The experimental loop gain is computed and shown in Figure 3.10.

Matlab

L_hac_iff_struts = pagemtimes(permute(frf_iff.G_dL{1}, [2 3 1]), squeeze(freqresp(Khac_iff_struts, frf_iff.f, 'Hz')));
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Figure 3.10: Diagonal and off-diagonal elements of the Loop gain for “HAC-IFF-Struts”
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3.2.2 Verification of the Stability using the Simscape model

The HAC-IFF control strategy is implemented using Simscape.

Matlab

n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ...
'flex_top_type', '4dof', ...
'motion_sensor_type', 'plates', ...
'actuator_type', 'flexible', ...
'controller_type', 'hac-iff-struts');

Matlab
clear io; io_i = 1;
io(io_i) = linio([mdl, '/du'], 1, 'openinput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/dL'1, 1, 'openoutput'); io_i = io_i + 1;
We identify the closed-loop system.

Matlab
Gd_iff_hac_opt = linearize(mdl, io, 0.0, options);
And verify that it is indeed stable.

Matlab
isstable(Gd_iff_hac_opt)

Results

3.2.3 Experimental Validation

Both the Integral Force Feedback controller (developed in Section 2.3) and the high authority controller
working in the frame of the struts (developed in Section 3.2) are implemented experimentally.

Two reference tracking experiments are performed to evaluate the stability and performances of the
implemented control.

Matlab

load('hac_iff_struts_yz_scans.mat', 't', 'de')

The position of the top-platform is estimated using the Jacobian matrix:
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Matlab

%% Pose of the top platform from the encoder values
load('jacobian.mat', 'J');
Xe = [inv(J)*de']";

Matlab

%% Generate the Y-Z trajectory scan
Rx_yz = generateYZScanTrajectory(...

'y_tot', 4e-6, ... % Length of Y scans [m]

'z_tot', 8e-6, ... % Total Z distance [m]

'n', 5, ... % Number of Y scans

'Ts', 1e-3, ... % Sampling Time [s]

ti't, 1, ... % Time to go to initial position [s]
"tw', 9, ... % Waiting time between each points [s]
'ty', 0.6, ... % Time for a scan in Y [s]

'tz', 0.2); % Time for a scan in Z [s]

The reference path as well as the measured position are partially shown in the Y-Z plane in Figure 3.11.
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Figure 3.11: Measured position X,, and reference signal ry, in the Y-Z plane - Zoom on a change of
direction

Important

It is clear from Figure 3.11 that the position of the nano-hexapod effectively tracks to reference
signal. However, oscillations with amplitudes as large as 50nm can be observe.

It turns out that the frequency of these oscillations is 100Hz which is corresponding to the
crossover frequency of the High Authority Control loop. This clearly indicates poor stability
margins. In the next section, the controller is re-designed to improve the stability margins.
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3.2.4 Controller with increased stability margins

The High Authority Controller is re-designed in order to improve the stability margins.

Matlab

5.

a )
2%pi%x110;

wC

H_lead = (1 + s/(wc/sqrt(a)))/(1 + s/(wc*xsqrt(a)));

H_1pf = 1/(1 + s/2/pi/300);

gm = 0.02;
xi = 0.5;
wn = 2*pi*700;

H_notch = (s*2 + 2*gm*xi*wnxs + wn*2)/(s*2 + 2*xi*wn*s + wn*2);

Khac_iff_struts = -2.2e4 * ...
H_lead * ...
H_1lpf * ...
H_notch * ...
(2xpix100/s) * ...
eye(6);

The bode plot of the new loop gain is shown in Figure 3.12.
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Figure 3.12: Loop Gain for the updated decentralized HAC controller
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This new controller is implemented experimentally and several tracking tests are performed.

Matlab

%% Load Measurements
load('hac_iff_more_lead_nass_scan.mat', 't', 'de')

The pose of the top platform is estimated from the encoder position using the Jacobian matrix.

Matlab

%% Compute the pose of the top platform
load('jacobian.mat', 'J');
Xe = [inv(J)*de']";

The measured motion as well as the trajectory are shown in Figure 3.13.

x1076
2

0.5 !
-5 205 x107°

x [pm]

Figure 3.13: Measured position X,, and reference signal rx, for the “NASS” trajectory

The trajectory and measured motion are also shown in the X-Y plane in Figure 3.14.

The orientation errors during all the scans are shown in Figure 3.15.

Using the updated High Authority Controller, the nano-hexapod can follow trajectories with
high accuracy (the position errors are in the order of 50nm peak to peak, and the orientation
errors 300nrad peak to peak).
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Figure 3.14: Reference path and measured motion in the X-Y plane
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Figure 3.15: Orientation errors during the scan
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3.3 Interaction Analysis and Decoupling

In this section, the interaction in the identified plant is estimated using the Relative Gain Array (RGA)

[2, Chap. 3.4].
Then, several decoupling strategies are compared for the nano-hexapod.

The RGA Matrix is defined as follow:
RGA(G(f)) = G(f) x (G(/)™H)"

Then, the RGA number is defined:
RGA-num(f) = ||T - RGA(G(f))]|sum

In this section, the plant with 2 added mass is studied.

3.3.1 Parameters

Matlab

(3.2)

(3.3)

we = 100;
[~, i_wc] = min(abs(frf_iff.f - wc));

Matlab

frf_coupled = frf_iff.G_dL{2};
G_coupled = sim_iff.G_dL{2};

3.3.2 No Decoupling (Decentralized)

_— G —

Figure 3.16: Block diagram representing the plant.

3.3.3 Static Decoupling

The DC gain is evaluated from the model as be have bad low frequency identification.

-62011.5 3910.6 4299.3 660.7  -4016.5  -4373.6
3914.4 -61991.2  -4356.8  -4019.2 640.2 4281.6
-4020.0  -4370.5 -62004.5 3914.6 4295.8 653.8
660.9 4292.4 3903.3 -62012.2  -4366.5  -4008.9
4302.8 655.6  -4025.8  -4377.8 -62006.0 3919.7
-43779  -4013.2 668.6 4303.7 3906.8 -62019.3
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Figure 3.17: Bode Plot of the decentralized plant (diagonal and off-diagonal terms)
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Figure 3.18: RGA number for the decentralized plant

Figure 3.19: Decoupling using the inverse of the DC gain of the plant
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Figure 3.21: RGA number for the statically decoupled plant

98



3.3.4 Decoupling at the Crossover

Figure 3.22: Decoupling using the inverse of a dynamical model G of the plant dynamics G
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-5731.7 224717 66701.4 3070.2  -13205.6 -21944.6
-23305.5  -14542.6 2743.2  70097.6  24846.8  -5295.0
-14882.9 -22957.8  -5344.4  25786.2  70484.6 2979.9
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Figure 3.23: Bode Plot of the plant decoupled at the crossover

Matlab

RGA_wc = zeros(size(frf_coupled));
for i = 1:length(frf_iff.f)

RGA_wc(i,:,:) = squeeze(G_dL_wc(i,:,:)).*inv(squeeze(G_dL_wc(i,:,:))).";
end

RGA_wc_sum = zeros(size(RGA_wc, 1), 1);
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for i = 1:size(RGA_wc, 1)
RGA_wc_sum(i) = sum(sum(abs(eye(6) - squeeze(RGA_wc(i,:,:)))));
end
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Figure 3.24: RGA number for the plant decoupled at the crossover

3.3.5 SVD Decoupling

1Gsvp
U V_T 7') G dﬁ) U*l

Figure 3.25: Decoupling using the Singular Value Decomposition

Matlab

RGA_svd = zeros(size(frf_coupled));
for i = 1:length(frf_iff.f)

RGA_svd(i,:,:) = squeeze(G_dL_svd(i,:,:)).*inv(squeeze(G_dL_svd(i,:,:))).";

end

RGA_svd_sum = zeros(size(RGA_svd, 1), 1);
for i = 1:length(frf_iff.f)

RGA_svd_sum(i) = sum(sum(abs(eye(6) - squeeze(RGA_svd(i,:,:)))));
end

Matlab

figure;

plot(frf_iff.f, RGA_svd_sum, 'k-');

set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
xlabel('Frequency [Hz]'); ylabel('RGA Number');
xlim([10, 1e3]1); ylim([1e-2, 1e2]);
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Figure 3.26: Bode Plot of the plant decoupled using the Singular Value Decomposition
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Figure 3.27: RGA number for the plant decoupled using the SVD
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3.3.6 Dynamic decoupling
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Figure 3.29: Bode Plot of the dynamically decoupled plant

3.3.7 Jacobian Decoupling - Center of Stiffness
3.3.8 Jacobian Decoupling - Center of Mass

3.3.9 Decoupling Comparison

Let’s now compare all of the decoupling methods (Figure 3.37).
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Figure 3.30: RGA number for the dynamically decoupled plant

Figure 3.31: Decoupling using Jacobian matrices evaluated at the Center of Stiffness
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Figure 3.32: Bode Plot of the plant decoupled using the Jacobian evaluated at the “center of stiffness”
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Figure 3.33: RGA number for the plant decoupled using the Jacobian evaluted at the Center of Stiff-
ness

Xy

Figure 3.34: Decoupling using Jacobian matrices evaluated at the Center of Mass

Important

From Figure 3.37, the following remarks are made:
e Decentralized plant: well decoupled below suspension modes

e Static inversion: similar to the decentralized plant as the decentralized plant has already
a good decoupling at low frequency

e Crossover inversion: the decoupling is improved around the crossover frequency as com-
pared to the decentralized plant. However, the decoupling is increased at lower frequency.

e SVD decoupling: Very good decoupling up to 235Hz. Especially between 100Hz and
200Hz.

e Dynamic Inversion: the plant is very well decoupled at frequencies where the model is
accurate (below 235Hz where flexible modes are not modelled).

e Jacobian - Stiffness: good decoupling at low frequency. The decoupling increases at
the frequency of the suspension modes, but is acceptable up to the strut flexible modes
(235Hz).

e Jacobian - Mass: bad decoupling at low frequency. Better decoupling above the fre-
quency of the suspension modes, and acceptable decoupling up to the strut flexible modes
(235Hz).
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Figure 3.35: Bode Plot of the plant decoupled using the Jacobian evaluated at the Center of Mass
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Figure 3.36: RGA number for the plant decoupled using the Jacobian evaluted at the Center of Mass
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Figure 3.37: Comparison of the obtained RGA-numbers for all the decoupling methods

3.3.10 Decoupling Robustness

Let’s now see how the decoupling is changing when changing the payload’s mass.

Matlab

frf_new = frf_iff.G_dL{3};

The obtained RGA-numbers are shown in Figure 3.38.

From Figure 3.38:

e The decoupling using the Jacobian evaluated at the “center of stiffness” seems to give the
most robust results.
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Figure 3.38: Change of the RGA-number with a change of the payload. Indication of the robustness
of the inversion method.

3.3.11 Conclusion

Important

Several decoupling methods can be used:
e SVD
e Inverse

e Jacobian (CoK)

Table 3.1: Summary of the interaction analysis and different decoupling strategies

Method RGA Diag Plant Robustness
Decentralized - Equal ++
Static dec. - Equal ++
Crossover dec. - Equal 0

SVD ++ Diff +
Dynamic dec. ++ Unity, equal -
Jacobian - CoK + Diff ++
Jacobian - CoM 0 Diff +
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3.4 Robust High Authority Controller

In this section we wish to develop a robust High Authority Controller (HAC) that is working for all
payloads.

(1]

3.4.1 Using Jacobian evaluated at the center of stiffness

Decoupled Plant

Matlab

G_nom = frf_iff.G_dL{2}; % Nominal Plant
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Figure 3.39: Bode plot of the decoupled plant using the Jacobian evaluated at the Center of Stiffness

SISO Controller Design

As the diagonal elements of the plant are not equal, several SISO controllers are designed and then
combined to form a diagonal controller. All the diagonal terms of the controller consists of:
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e A double integrator to have high gain at low frequency
e A lead around the crossover frequency to increase stability margins
e Two second order low pass filters above the crossover frequency to increase the robustness to high

frequency modes

Obtained Loop Gain

Loop Gain

N

10° 10! 10? 10°
Frequency [Hz|

Figure 3.40: Bode plot of the Loop Gain when using the Jacobian evaluated at the Center of Stiffness
to decouple the system

Matlab

%% Controller to be implemented
Kd = inv(J_cok')*input_normalizexss(Kd_diag)*inv(Js_cok);

Verification of the Stability

Now the stability of the feedback loop is verified using the generalized Nyquist criteria.
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Figure 3.41: Loci of L(jw) in the complex plane.

save('mat/Khac_iff_struts_jacobian_cok.mat"',

Sensitivity transfer function from the model

The results are shown in Figure 3.42.

3.4.2 Using Singular Value Decomposition

Decoupled Plant

Matlab

G_nom = frf_iff.G_dL{2};
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Figure 3.42: Estimated sensitivity transfer functions for the HAC controller using the Jacobian esti-
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Figure 3.43: Bode plot of the decoupled plant using the SVD
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Figure 3.44: Bode plot of Loop Gain when using the SVD

Stability Verification

Matlab

%% Compute the Eigenvalues of the loop gain
Ldet = zeros(3, 6, length(frf_iff.f));

for i = 1:3
Lmimo = pagemtimes(permute(frf_iff.G_dL{i}, [2,3,1]),squeeze(freqresp(Kd, frf_iff.f, 'Hz')));
for i_f = 2:length(frf_iff.f)
Ldet(i,:, i_f) = eig(squeeze(Lmimo(:,:,i_f)));
end
end

Save for further analysis

Matlab

save('mat/Khac_iff_struts_svd.mat', 'Kd")
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Measured Sensitivity Transfer Function

The sensitivity transfer function is estimated by adding a reference signal R, consisting of a low pass
filtered white noise, and measuring the position error F, at the same time.

The transfer function from R, to E, is the sensitivity transfer function.

In order to identify the sensitivity transfer function for all directions, six reference signals are used, one
for each direction.

An example is shown in Figure 3.46 where both the reference signal and the measured position are
shown for translations in the x direction.

The sensitivity transfer functions estimated for all directions are shown in Figure 3.47.

Important

From Figure 3.47:
e The sensitivity transfer functions are similar for all directions
e The disturbance attenuation at 1Hz is almost a factor 1000 as wanted

o The sensitivity transfer functions for R, and R, have high peak values which indicate poor
stability margins.
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Figure 3.47: Measured diagonal elements of the sensitivity transfer function matrix.
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Sensitivity transfer function from the model
The sensitivity transfer function is now estimated using the model and compared with the one mea-
sured.

The results are shown in Figure 3.48. The model is quite effective in estimating the sensitivity transfer
functions except around 60Hz were there is a peak for the measurement.
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Figure 3.48: Comparison of the measured sensitivity transfer functions with the model
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4 Nano-Hexapod fixed on the Spindle

4.1 Change of dynamics when fixed on the Spindle

4.1.1 Measured Frequency Response Functions

The identification only performed without any payload.
The following data are loaded:
e Va: the excitation voltage (corresponding to u;)
e Vs: the generated voltage by the 6 force sensors (corresponding to 7, )

e de: the measured motion by the 6 encoders (corresponding to d.C,,)

Matlab

meas_added_mass = {};

for i_strut = 1:6

meas_added_mass(i_strut) = {load(sprintf('frf_data_exc_strut_%i_spindle_Om.mat', i_strut), 't', 'Va', 'Vs', 'de')};
end

The window win and the frequency vector f are defined.

Matlab

Ts = (meas_added_mass{1}.t(end) - (meas_added_mass{1}.t(1)))/(length(meas_added_mass{1}.t)-1);
win = hanning(ceil(1/Ts));

[~, f] = tfestimate(meas_added_mass{1}.Va, meas_added_mass{1}.de, win, [1, [1, 1/Ts);

Finally the 6 x 6 transfer function matrices from u to d£,, and from w to 7, are identified:

Matlab

G_dL = zeros(length(f), 6, 6);
for i_strut = 1:6

G_dL(:,:,i_strut) = tfestimate(meas_added_mass{i_strut}.Va, meas_added_mass{i_strut}.de, win, [], [], 1/Ts);
end

G_tau = zeros(length(f), 6, 6);

for i_strut = 1:6
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G_tau(:,:,i_strut) = tfestimate(meas_added_mass{i_strut}.Va, meas_added_mass{i_strut}.Vs, win, [1, [1, 1/Ts);
end

The identified dynamics are then saved for further use.

Matlab

save('mat/frf_spindle_m.mat', 'f', 'Ts', 'G_tau', 'G_dL")

4.1.2 Transfer function from Actuator to Encoder

The transfer functions from u; to dL,, ; are shown in Figure 4.1.
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Figure 4.1: Measured Frequency Response Functions from u; to dZ,, ; when the nano-hexapod is fixed
to the Spindle

The dynamics of the nano-hexapod when fixed on the Spindle is compared with the dynamics when the
nano-hexapod is fixed on the “vibration table” in Figure 4.2.

4.1.3 Transfer function from Actuator to Force Sensor

The transfer functions from w; to 7, are shown in Figure 4.3.
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Figure 4.2: Comparison of the dynamics from u to d£ when the nano-hexapod is fixed on top of the
Spindle and when it is fixed on top of the “Vibration Table”.
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Figure 4.3: Measured Frequency Response Functions from u; to 7,,; when the nano-hexapod is fixed
to the Spindle
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The dynamics of the nano-hexapod when fixed on the Spindle is compared with the dynamics when the
nano-hexapod is fixed on the “vibration table” in Figure 4.4.
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Figure 4.4: Comparison of the dynamics from u to d£ when the nano-hexapod is fixed on top of the
Spindle and when it is fixed on top of the “Vibration Table”.

4.1.4 Conclusion

The dynamics of the nano-hexapod does not change a lot when it is fixed to the Spindle. The
“suspension” modes are just increased a little bit due to the added stiffness of the spindle as
compared to the vibration table.

4.2 Dynamics of the Damped plant

As the dynamics is not much changed when the nano-hexapod is fixed on top of the Spindle, the same
IFF controller is used to damp the plant.
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4.2.1 Measured Frequency Response Functions

The identification is performed without added mass, and with one, two and three layers of added
cylinders.
Matlab

i_masses = 0:3;

The following data are loaded:
e Va: the excitation voltage (corresponding to u;)
e Vs: the generated voltage by the 6 force sensors (corresponding to 7,)

e de: the measured motion by the 6 encoders (corresponding to d.C,,)

Matlab

meas_added_mass = {};

for i_mass = i_masses
for i_strut = 1:6
meas_added_mass(i_strut, i_mass+1) = {load(sprintf('frf_data_exc_strut_%i_spindle_%im_iff.mat', i_strut, i_mass),
< 'Va', 'Vs', 'de")};
end
end

e,

The window win and the frequency vector f are defined.

Matlab

Ts = (meas_added_mass{1,1}.t(end) - (meas_added_mass{1,1}.t(1)))/(length(meas_added_mass{1,1}.t)-1);
win = hanning(ceil(1/Ts));

[~, f] = tfestimate(meas_added_mass{1,1}.Va, meas_added_mass{1,1}.de, win, [1, [1, 1/Ts);

Finally the 6 x 6 transfer function matrices from u to d£,, and from w to 7, are identified:

Matlab

G_dL = {3};
for i_mass = i_masses

G_dL(i_mass+1) = {zeros(length(f), 6, 6)3};

for i_strut = 1:6

G_dL{i_mass+1}(:,:,i_strut) = tfestimate(meas_added_mass{i_strut, i_mass+1}.Va, meas_added_mass{i_strut, i_mass+1}.de,

— win, [1, [], 1/Ts);

end
end

The identified dynamics are then saved for further use.
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Matlab

save('mat/frf_spindle_iff_m.mat', 'f', 'Ts', 'G_dL')

4.2.2 Effect of Integral Force Feedback
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Figure 4.5: Effect of Integral Force Feedback on the transfer function from u; to d.;

4.2.3 Effect of the payload

From Figure 4.6 we can see that the coupling is quite large when payloads are added to the
nano-hexapod. This was not the case when the nano-hexapod was fixed to the vibration table.

What is causing the resonances at 20Hz, 25Hz and 30Hz when there is some added payload?
Why the coupling is much larger than when the nano-hexapod was on top of the isolation table?
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4.2.4 Effe

ct of rotation

The identified plants with and without spindle’s rotation are compared in Figure 4.7. It is shown
that the rotational speed as little effect on the plant dynamics.

Figure 4.7:
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Comparison of the damped plant when the spindle is not rotating and when it is rotating
at 60RPM
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5 Functions

5.1 generateXYZTrajectory

Function description

Matlab
function [ref] = generateXYZTrajectory(args)
Optional Parameters
Matlab
arguments
args.points double {mustBeNumeric} = zeros(2, 3)
args.ti (1,1) double {mustBeNumeric, mustBeNonnegative} =
args.tw (1,1) double {mustBeNumeric, mustBeNonnegative} = 0.5
args.tm (1,1) double {mustBeNumeric, mustBeNonnegative} =
args.Ts (1,1) double {mustBeNumeric, mustBePositive} = le-3
end
Initialize Time Vectors
Matlab

time_i = 0:args.Ts:args.ti;
time_w = 0:args.Ts:args.tw;
time_m = 0:args.Ts:args.tm;

XYZ Trajectory
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Matlab

xyz = (args.points(1,:))'*(time_i/args.ti);

xyz = [xyz, xyz(:,end).*ones(size(time_w))];

for i = 2:size(args.points, 1)
xyz = [xyz, xyz(:,end) + (args.points(i,:)' - xyz(:,end))*(time_m/args.tm)];
xyz = [xyz, xyz(:,end).xones(size(time_w))];

end

xyz = [xyz, xyz(:,end) - xyz(:,end)*(time_i/args.ti)];

Reference Signal

Matlab
t = 0:args.Ts:args.Tsx(length(xyz) - 1);

Matlab
ref = zeros(length(xyz), 7);
ref(:, 1) = t;
ref(:, 2:4) = xyz';
5.2 generateYZScanTrajectory
Function description

Matlab
function [ref] = generateYZScanTrajectory(args)
Optional Parameters

Matlab

arguments
args.y_tot (1,1) double {mustBeNumeric, mustBePositive} = 10e-6

126



args.z_tot (1,1) double

args.n (1,1) double

args.Ts (1,1) double

args.ti (1,1) double
args.tw (1,1) double
args.ty (1,1) double
args.tz (1,1) double

end

{mustBeNumeric,
{mustBeInteger,
{mustBeNumeric,
{mustBeNumeric,
{mustBeNumeric,

{mustBeNumeric,
{mustBeNumeric,

mustBePositive} = 10e-6
mustBePositive} = 10
mustBePositive} = le-4
mustBeNonnegative} =
mustBeNonnegative} =

mustBeNonnegative} =
mustBeNonnegative} =

Initialize Time Vectors

Matlab
time_i = 0:args.Ts:args.ti;
time_w = 0:args.Ts:args.tw;
time_y = 0:args.Ts:args.ty;
time_z = 0:args.Ts:args.tz;
Y and Z vectors
Matlab

y = (time_i/args.ti)x(args.y_tot/2);

y = Ly, y(end)*ones(size(time_w))];

for i = 1:args.n
if mod(i,2) ==

0

y = [y, -(args.y_tot/2) + (time_y/args.ty)*args.y_tot];

else

y = [y, (args.y_tot/2) - (time_y/args.ty)*args.y_tot];

end

if i < args.n

y = [y, y(end)*ones(size(time_z))1;

end
end

y = [y, y(end)*ones(size(time_w))1;

<
1

[y, y(end) - y(end)*time_i/args.til;

Matlab
z = (time_i/args.ti)x(args.z_tot/2);
z = [z, z(end)*ones(size(time_w))];
for i = 1:args.n
z = [z, z(end)*ones(size(time_y))1;
if i < args.n
z = [z, z(end) - (time_z/args.tz)*args.z_tot/(args.n-1)]1;
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end
end

z = [z, z(end)*ones(size(time_w))];

z = [z, z(end) - z(end)*time_i/args.til;

Reference Signal

Matlab
t = 0:args.Ts:args.Tsx(length(y) - 1);

Matlab
ref = zeros(length(y), 7);
ref(:, 1) = t;
ref(:, 3) = y;
ref(:, 4) = z;

5.3 generateSpiralAngleTrajectory
Function description

Matlab

function [ref] = generateSpiralAngleTrajectory(args)

Optional Parameters

arguments
args.R_tot (1,1) double {mustBeNumeric, mustBePositive}
args.n_turn (1,1) double {mustBeInteger, mustBePositive

0e-6
3
args.Ts (1,1) double {mustBeNumeric, mustBePositive} e-3
3
3

args.t_turn (1,1) double {mustBeNumeric, mustBePositive
args.t_end (1,1) double {mustBeNumeric, mustBePositive
end

1
5
1
1
1
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Initialize Time Vectors

Matlab
time_s = 0:args.Ts:args.n_turn*args.t_turn;
time_e = 0:args.Ts:args.t_end;
Rx and Ry vectors
Matlab
Rx = sin(2xpi*time_s/args.t_turn).*(args.R_totxtime_s/(args.n_turnxargs.t_turn));
Ry = cos(2#pixtime_s/args.t_turn).x(args.R_tot*time_s/(args.n_turn*args.t_turn));
Matlab
Rx = [Rx, 0*time_e];
Ry = [Ry, Ry(end) - Ry(end)xtime_e/args.t_end];
Reference Signal
Matlab
t = 0:args.Ts:args.Tsx(length(Rx) - 1);
Matlab
ref = zeros(length(Rx), 7);
ref(:, 1) = t;
ref(:, 5) = Rx;
ref(:, 6) = Ry;

5.4 getTransformationMatrixAcc
Function description

Matlab

function [M] = getTransformationMatrixAcc(Opm, Osm)
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Transformation matrix from motion of the solid body to accelerometer
measurements

Let’s try to estimate the x-y-z acceleration of any point of the solid body from the acceleration/angular
acceleration of the solid body expressed in {O}. For any point p; of the solid body (corresponding to
an accelerometer), we can write:

Qi x vw wm
Qiy | = |Vy | TPi X |Wy (5.1)
7% Uz Wz

We can write the cross product as a matrix product using the skew-symmetric transformation:

A,z Vg 0 Di,z —Piy Wy
Uiy | = || + |=Piz O Piw |- |Wy (5.2)
A~ Uz Diy —Dix 0 Wz

Pix)

If we now want to know the (scalar) acceleration a; of the point p; in the direction of the accelerometer
direction §;, we can just project the 3d acceleration on §;:

i x U:L‘ Wz
_ T _ T | T .
a; =8; + |Qiy| =5; * [Uy| + (Sz ’Pi,[X]) T | Wy (5.3)
(2% Uz Wy

Which is equivalent as a simple vector multiplication:

a; = [87 37 P x] = [T &7 P ] 9% (5.4)

3

And finally we can combine the 6 (line) vectors for the 6 accelerometers to write that in a matrix form.
We obtain Eq. (5.5).

Important

The transformation from solid body acceleration ©Z from sensor measured acceleration @ is:
s T
51 81 - Piix

Ox (5.5)

U
|

T T
56 S - Fo[x]

M

with §; the unit vector representing the measured direction of the i’th accelerometer expressed in
frame {O} and P; [x] the skew-symmetric matrix representing the cross product of the position
of the i’th accelerometer expressed in frame {O}.

Let’s define such matrix using matlab:

130



Matlab

M = zeros(length(Opm), 6);

for i = 1:1length(Opm)
Ri = [o, opm(3,i), -Opm(2,i);
-Opm(3,i), 0, Opm(1,1);
Opm(2,i), -Opm(1,i), 01;
M(i, 1:3) = Osm(:,i)";

M(i, 4:6) Osm(:,1)"*Ri;
end
Matlab
end
5.5 getJacobianNanoHexapod
Function description
Matlab

function [J] = getJacobianNanoHexapod(Hbm)

Transformation matrix from motion of the solid body to accelerometer
measurements

Matlab

Fa = [[-86.05, -74.78, 22.49],
[ 86.05, =-74.78, 22.49],
[ 107.79, -37.13, 22.49],
[ 21.74, 111.91, 22.49],
[-21.74, 111.91, 22.49],
[-107.79, -37.13, 22.49]]'xle-3;

Mb = [[-28.47, -106.25, -22.501,
[ 28.47, -106.25, -22.501,
[ 106.25, 28.47, -22.501,
[ 77.78, 77.78, =-22.501,
[-77.78, 77.78, =-22.501,
[-106.25, 28.47, =-22.5011'*1e-3;

H = 95e-3;
Fb = Mb + [0; 0; HI;

Fb - Fa;
si./vecnorm(si);

si
si

Bb = Mb - [0; 0; Hbm];

J = [si', cross(Bb, si)'l;
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