
Nano-Hexapod - Test Bench

Dehaeze Thomas

August 12, 2021

Contents

1 Encoders fixed to the Struts - Dynamics 8
1.1 Identification of the dynamics . 8

1.1.1 Load Measurement Data . 8
1.1.2 Spectral Analysis - Setup . 8
1.1.3 Transfer function from Actuator to Encoder . 9
1.1.4 Transfer function from Actuator to Force Sensor 9
1.1.5 Save Identified Plants . 12

1.2 Comparison with the Simscape Model . 12
1.2.1 Load measured FRF . 12
1.2.2 Dynamics from Actuator to Force Sensors . 12
1.2.3 Dynamics from Actuator to Encoder . 12
1.2.4 Effect of a change in bending damping of the joints 14
1.2.5 Effect of a change in damping factor of the APA 15
1.2.6 Effect of a change in stiffness damping coef of the APA 17
1.2.7 Effect of a change in mass damping coef of the APA 17
1.2.8 Using Flexible model . 19
1.2.9 Flexible model + encoders fixed to the plates . 20

1.3 Integral Force Feedback . 22
1.3.1 IFF Control Law and Optimal Gain . 22
1.3.2 Effect of IFF on the plant - Simulations . 24
1.3.3 Effect of IFF on the plant - Experimental Results 26
1.3.4 Experimental Results - Damped Plant with Optimal gain 29
1.3.5 Comparison with the Flexible model . 33
1.3.6 Conclusion . 36

1.4 Modal Analysis . 36
1.4.1 Obtained Mode Shapes . 38
1.4.2 Nano-Hexapod Compliance - Effect of IFF . 38
1.4.3 Comparison with the Simscape Model . 40

1.5 Conclusion . 40

2 Encoders fixed to the plates - Dynamics 42
2.1 Identification of the dynamics . 43

2.1.1 Data Loading and Spectral Analysis Setup . 43
2.1.2 Transfer function from Actuator to Encoder . 43
2.1.3 Transfer function from Actuator to Force Sensor 45
2.1.4 Save Identified Plants . 47

2.2 Comparison with the Simscape Model . 47
2.2.1 Identification Setup . 47
2.2.2 Dynamics from Actuator to Force Sensors . 47
2.2.3 Dynamics from Actuator to Encoder . 50
2.2.4 Flexible Top Plate . 52
2.2.5 Conclusion . 52

2.3 Integral Force Feedback . 52
2.3.1 Effect of IFF on the plant - Simscape Model . 53

2

2.3.2 Effect of IFF on the plant - FRF . 54
2.3.3 Comparison of the measured FRF and the Simscape model 57
2.3.4 Save Damped Plant . 57

2.4 Effect of Payload mass - Robust IFF . 60
2.4.1 Measured Frequency Response Functions . 61
2.4.2 Transfer function from Actuators to Encoders . 62
2.4.3 Transfer function from Actuators to Force Sensors 64

2.5 Comparison with the Simscape model . 64
2.5.1 System Identification . 64
2.5.2 Transfer function from Actuators to Encoders . 65
2.5.3 Transfer function from Actuators to Force Sensors 68

2.6 Integral Force Feedback Controller . 68
2.6.1 Robust IFF Controller . 68
2.6.2 Estimated Damped Plant from the Simscape model 72
2.6.3 Compute the identified FRF with IFF . 73
2.6.4 Comparison of the measured FRF and the Simscape model 74
2.6.5 Change of coupling with IFF . 78

2.7 Un-Balanced mass . 78
2.7.1 Introduction . 78
2.7.2 Compute the identified FRF with IFF . 78
2.7.3 Effect of an unbalanced payload . 80

2.8 Conclusion . 80

3 Decentralized High Authority Control with Integral Force Feedback 83
3.1 Reference Tracking - Trajectories . 84

3.1.1 Y-Z Scans . 84
3.1.2 Tilt Scans . 86
3.1.3 “NASS” reference path . 86

3.2 First Basic High Authority Controller . 88
3.2.1 HAC Controller . 89
3.2.2 Verification of the Stability using the Simscape model 91
3.2.3 Experimental Validation . 91
3.2.4 Controller with increased stability margins . 93

3.3 Interaction Analysis and Decoupling . 96
3.3.1 Parameters . 96
3.3.2 No Decoupling (Decentralized) . 96
3.3.3 Static Decoupling . 96
3.3.4 Decoupling at the Crossover . 99
3.3.5 SVD Decoupling . 100
3.3.6 Dynamic decoupling . 102
3.3.7 Jacobian Decoupling - Center of Stiffness . 102
3.3.8 Jacobian Decoupling - Center of Mass . 102
3.3.9 Decoupling Comparison . 102
3.3.10 Decoupling Robustness . 106
3.3.11 Conclusion . 107

3.4 Robust High Authority Controller . 108
3.4.1 Using Jacobian evaluated at the center of stiffness 108
3.4.2 Using Singular Value Decomposition . 110

4 Nano-Hexapod fixed on the Spindle 116
4.1 Change of dynamics when fixed on the Spindle . 116

4.1.1 Measured Frequency Response Functions . 116
4.1.2 Transfer function from Actuator to Encoder . 117

3

4.1.3 Transfer function from Actuator to Force Sensor 117
4.1.4 Conclusion . 120

4.2 Dynamics of the Damped plant . 120
4.2.1 Measured Frequency Response Functions . 121
4.2.2 Effect of Integral Force Feedback . 122
4.2.3 Effect of the payload . 122
4.2.4 Effect of rotation . 124

5 Functions 125
5.1 generateXYZTrajectory . 125
5.2 generateYZScanTrajectory . 126
5.3 generateSpiralAngleTrajectory . 128
5.4 getTransformationMatrixAcc . 129
5.5 getJacobianNanoHexapod . 131

4

This document is dedicated to the experimental study of the nano-hexapod shown in Figure 0.1.

Figure 0.1: Nano-Hexapod

Note

Here are the documentation of the equipment used for this test bench (lots of them are shwon
in Figure 0.2):

• Voltage Amplifier: PiezoDrive PD200

• Amplified Piezoelectric Actuator: Cedrat APA300ML

• DAC/ADC: Speedgoat IO313

• Encoder: Renishaw Vionic and used Ruler

• Interferometers: Attocube

In Figure 0.3 is shown a block diagram of the experimental setup. When possible, the notations are
consistent with this diagram and summarized in Table 0.1.

5

Figure 0.2: Nano-Hexapod and the control electronics

Nano-Hexapod

Mechanics
Actuator

stacks
PD200DAC

Sensor

stack
ADC

Encoder

u

[V]
/

ũ

[V]
ua

[V]
τ

[N]
ε

[m]
τ̃m

[V]
/
τm

[V]

dL
[m]

/
dLm

[m]

Figure 0.3: Block diagram of the system with named signals

6

Table 0.1: List of signals

Unit Matlab Vector Elements

Control Input (wanted DAC voltage) [V] u u ui
DAC Output Voltage [V] u ũ ũi
PD200 Output Voltage [V] ua ua ua,i
Actuator applied force [N] tau τ τi

Strut motion [m] dL dL dLi

Encoder measured displacement [m] dLm dLm dLm,i

Force Sensor strain [m] epsilon ε εi
Force Sensor Generated Voltage [V] taum τ̃m τ̃m,i

Measured Generated Voltage [V] taum τm τm,i

Motion of the top platform [m,rad] dX dX dXi

Metrology measured displacement [m,rad] dXm dXm dXm,i

This document is divided in the following sections:

• Section 1: the dynamics of the nano-hexapod when the encoders are fixed to the struts is studied.

• Section 2: the same is done when the encoders are fixed to the plates.

• Section 3: a decentralized HAC-LAC strategy is studied and implemented.

7

1 Encoders fixed to the Struts - Dynamics

In this section, the encoders are fixed to the struts.

It is divided in the following sections:

• Section 1.1: the transfer function matrix from the actuators to the force sensors and to the
encoders is experimentally identified.

• Section 1.2: the obtained FRF matrix is compared with the dynamics of the simscape model

• Section 1.3: decentralized Integral Force Feedback (IFF) is applied and its performances are
evaluated.

• Section 1.4: a modal analysis of the nano-hexapod is performed

1.1 Identification of the dynamics

1.1.1 Load Measurement Data

Matlab
%% Load Identification Data
meas_data_lf = {};

for i = 1:6
meas_data_lf(i) = {load(sprintf('mat/frf_data_exc_strut_%i_noise_lf.mat', i), 't', 'Va', 'Vs', 'de')};
meas_data_hf(i) = {load(sprintf('mat/frf_data_exc_strut_%i_noise_hf.mat', i), 't', 'Va', 'Vs', 'de')};

end

1.1.2 Spectral Analysis - Setup

Matlab
%% Setup useful variables
% Sampling Time [s]
Ts = (meas_data_lf{1}.t(end) - (meas_data_lf{1}.t(1)))/(length(meas_data_lf{1}.t)-1);

% Sampling Frequency [Hz]
Fs = 1/Ts;

% Hannning Windows
win = hanning(ceil(1*Fs));

% And we get the frequency vector
[~, f] = tfestimate(meas_data_lf{1}.Va, meas_data_lf{1}.de, win, [], [], 1/Ts);

8

i_lf = f < 250; % Points for low frequency excitation
i_hf = f > 250; % Points for high frequency excitation

1.1.3 Transfer function from Actuator to Encoder

First, let’s compute the coherence from the excitation voltage and the displacement as measured by the
encoders (Figure 1.1).

Matlab
%% Coherence
coh_dvf = zeros(length(f), 6, 6);

for i = 1:6
coh_dvf_lf = mscohere(meas_data_lf{i}.Va, meas_data_lf{i}.de, win, [], [], 1/Ts);
coh_dvf_hf = mscohere(meas_data_hf{i}.Va, meas_data_hf{i}.de, win, [], [], 1/Ts);
coh_dvf(:,:,i) = [coh_dvf_lf(i_lf, :); coh_dvf_hf(i_hf, :)];

end

102 103

Frequency [Hz]

0

0.2

0.4

0.6

0.8

1

C
o
h
er

en
ce

[-
]

Gdvf (1; 1)
Gdvf (2; 2)
Gdvf (3; 3)

Gdvf (4; 4)
Gdvf (5; 5)
Gdvf (6; 6)

Gdvf (i; j)

Figure 1.1: Obtained coherence for the DVF plant

Then the 6x6 transfer function matrix is estimated (Figure 1.2).
Matlab

%% DVF Plant (transfer function from u to dLm)
G_dvf = zeros(length(f), 6, 6);

for i = 1:6
G_dvf_lf = tfestimate(meas_data_lf{i}.Va, meas_data_lf{i}.de, win, [], [], 1/Ts);
G_dvf_hf = tfestimate(meas_data_hf{i}.Va, meas_data_hf{i}.de, win, [], [], 1/Ts);
G_dvf(:,:,i) = [G_dvf_lf(i_lf, :); G_dvf_hf(i_hf, :)];

end

1.1.4 Transfer function from Actuator to Force Sensor

First, let’s compute the coherence from the excitation voltage and the displacement as measured by the
encoders (Figure 1.3).

9

10!8

10!6

10!4

A
m

p
li
tu

d
e

d
e
=V

a
[m

/V
]

Gdvf (1; 1)
Gdvf (2; 2)
Gdvf (3; 3)

Gdvf (4; 4)
Gdvf (5; 5)
Gdvf (6; 6)

Gdvf (i; j)

102 103

Frequency [Hz]

-180

-90

0

90

180

P
h
as

e
[d

eg
]

Figure 1.2: Measured FRF for the DVF plant

Matlab
%% Coherence for the IFF plant
coh_iff = zeros(length(f), 6, 6);

for i = 1:6
coh_iff_lf = mscohere(meas_data_lf{i}.Va, meas_data_lf{i}.Vs, win, [], [], 1/Ts);
coh_iff_hf = mscohere(meas_data_hf{i}.Va, meas_data_hf{i}.Vs, win, [], [], 1/Ts);
coh_iff(:,:,i) = [coh_iff_lf(i_lf, :); coh_iff_hf(i_hf, :)];

end

Then the 6x6 transfer function matrix is estimated (Figure 1.4).

Matlab
%% IFF Plant
G_iff = zeros(length(f), 6, 6);

for i = 1:6
G_iff_lf = tfestimate(meas_data_lf{i}.Va, meas_data_lf{i}.Vs, win, [], [], 1/Ts);
G_iff_hf = tfestimate(meas_data_hf{i}.Va, meas_data_hf{i}.Vs, win, [], [], 1/Ts);
G_iff(:,:,i) = [G_iff_lf(i_lf, :); G_iff_hf(i_hf, :)];

end

10

102 103

Frequency [Hz]

0

0.2

0.4

0.6

0.8

1

C
o
h
er

en
ce

[-
]

Giff (1; 1)
Giff (2; 2)
Giff (3; 3)

Giff (4; 4)
Giff (5; 5)
Giff (6; 6)

Giff (i; j)

Figure 1.3: Obtained coherence for the IFF plant

10!3

10!2

10!1

100

101

102

A
m
p
li
tu
d
e

V
s
=V

a
[V

/V
]

Giff (1; 1)
Giff (2; 2)
Giff (3; 3)

Giff (4; 4)
Giff (5; 5)
Giff (6; 6)

Giff (i; j)

102 103

Frequency [Hz]

-180

-90

0

90

180

P
h
as
e
[d
eg
]

Figure 1.4: Measured FRF for the IFF plant

11

1.1.5 Save Identified Plants

Matlab
save('matlab/mat/identified_plants_enc_struts.mat', 'f', 'Ts', 'G_iff', 'G_dvf')

1.2 Comparison with the Simscape Model

In this section, the measured dynamics is compared with the dynamics estimated from the Simscape
model.

1.2.1 Load measured FRF

Matlab
%% Load data
load('identified_plants_enc_struts.mat', 'f', 'Ts', 'G_iff', 'G_dvf')

1.2.2 Dynamics from Actuator to Force Sensors

Matlab
%% Initialize Nano-Hexapod
n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ...

'flex_top_type', '4dof', ...
'motion_sensor_type', 'struts', ...
'actuator_type', '2dof');

Matlab
%% Identify the IFF Plant (transfer function from u to taum)
clear io; io_i = 1;
io(io_i) = linio([mdl, '/du'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs
io(io_i) = linio([mdl, '/dum'], 1, 'openoutput'); io_i = io_i + 1; % Force Sensors

Giff = exp(-s*Ts)*linearize(mdl, io, 0.0, options);

1.2.3 Dynamics from Actuator to Encoder

Matlab
%% Initialization of the Nano-Hexapod
n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ...

'flex_top_type', '4dof', ...
'motion_sensor_type', 'struts', ...
'actuator_type', 'flexible');

12

10!2

10!1

100

101

102

A
m
p
li
tu
d
e
[V
/V
]

=m;i=ui - FRF
=m;i=ui - Model

102 103

Frequency [Hz]

-180

-90

0

90

180

P
h
as
e
[d
eg
]

Figure 1.5: Diagonal elements of the IFF Plant

102 103

Frequency [Hz]

10!2

100

102

A
m

p
li
tu

d
e

[V
/V

]

=m;i=uj - FRF
=m;i=uj - Model

Figure 1.6: Off diagonal elements of the IFF Plant

13

Matlab
%% Identify the DVF Plant (transfer function from u to dLm)
clear io; io_i = 1;
io(io_i) = linio([mdl, '/du'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs
io(io_i) = linio([mdl, '/D'], 1, 'openoutput'); io_i = io_i + 1; % Encoders

Gdvf = exp(-s*Ts)*linearize(mdl, io, 0.0, options);

10!8

10!7

10!6

10!5

10!4

10!3

A
m
p
li
tu
d
e
[m

/V
]

dLm;i=ui - FRF
dLm;i=ui - Model

102 103

Frequency [Hz]

-180

-90

0

90

180

P
h
as
e
[d
eg
]

Figure 1.7: Diagonal elements of the DVF Plant

1.2.4 Effect of a change in bending damping of the joints

Matlab
%% Tested bending dampings [Nm/(rad/s)]
cRs = [1e-3, 5e-3, 1e-2, 5e-2, 1e-1];

Matlab
%% Identify the DVF Plant (transfer function from u to dLm)
clear io; io_i = 1;
io(io_i) = linio([mdl, '/du'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs
io(io_i) = linio([mdl, '/D'], 1, 'openoutput'); io_i = io_i + 1; % Encoders

Then the identification is performed for all the values of the bending damping.

14

102 103

Frequency [Hz]

10!8

10!6

10!4

A
m
p
li
tu
d
e
[m

/
V
]

dLm;i=uj - FRF
dLm;i=uj - Model

Figure 1.8: Off diagonal elements of the DVF Plant

Matlab
%% Idenfity the transfer function from actuator to encoder for all bending dampins
Gs = {zeros(length(cRs), 1)};

for i = 1:length(cRs)
n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ...

'flex_top_type', '4dof', ...
'motion_sensor_type', 'struts', ...
'actuator_type', 'flexible', ...
'flex_bot_cRx', cRs(i), ...
'flex_bot_cRy', cRs(i), ...
'flex_top_cRx', cRs(i), ...
'flex_top_cRy', cRs(i));

G = exp(-s*Ts)*linearize(mdl, io, 0.0, options);
G.InputName = {'Va1', 'Va2', 'Va3', 'Va4', 'Va5', 'Va6'};
G.OutputName = {'dL1', 'dL2', 'dL3', 'dL4', 'dL5', 'dL6'};

Gs(i) = {G};
end

• Could be nice

• Actual damping is very small

1.2.5 Effect of a change in damping factor of the APA

Matlab
%% Tested bending dampings [Nm/(rad/s)]
xis = [1e-3, 5e-3, 1e-2, 5e-2, 1e-1];

Matlab
%% Identify the DVF Plant (transfer function from u to dLm)
clear io; io_i = 1;
io(io_i) = linio([mdl, '/du'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs
io(io_i) = linio([mdl, '/D'], 1, 'openoutput'); io_i = io_i + 1; % Encoders

15

Matlab
%% Idenfity the transfer function from actuator to encoder for all bending dampins
Gs = {zeros(length(xis), 1)};

for i = 1:length(xis)
n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ...

'flex_top_type', '4dof', ...
'motion_sensor_type', 'struts', ...
'actuator_type', 'flexible', ...
'actuator_xi', xis(i));

G = exp(-s*Ts)*linearize(mdl, io, 0.0, options);
G.InputName = {'Va1', 'Va2', 'Va3', 'Va4', 'Va5', 'Va6'};
G.OutputName = {'dL1', 'dL2', 'dL3', 'dL4', 'dL5', 'dL6'};

Gs(i) = {G};
end

10!8

10!7

10!6

10!5

10!4

10!3

A
m

p
li
tu

d
e

d
L
=V

a
[m

/V
]

9 = 0:001
9 = 0:005
9 = 0:010
9 = 0:050
9 = 0:100

102 103

Frequency [Hz]

-180

-90

0

90

180

P
h
as

e
[d

eg
]

Figure 1.9: Effect of the APA damping factor ξ on the dynamics from u to dL

Important

Damping factor ξ has a large impact on the damping of the “spurious resonances” at 200Hz and
300Hz.

Question

Why is the damping factor does not change the damping of the first peak?

16

1.2.6 Effect of a change in stiffness damping coef of the APA

Matlab
m_coef = 1e1;

Matlab
%% Tested bending dampings [Nm/(rad/s)]
k_coefs = [1e-6, 5e-6, 1e-5, 5e-5, 1e-4];

Matlab
%% Identify the DVF Plant (transfer function from u to dLm)
clear io; io_i = 1;
io(io_i) = linio([mdl, '/du'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs
io(io_i) = linio([mdl, '/D'], 1, 'openoutput'); io_i = io_i + 1; % Encoders

Matlab
%% Idenfity the transfer function from actuator to encoder for all bending dampins
Gs = {zeros(length(k_coefs), 1)};
n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ...

'flex_top_type', '4dof', ...
'motion_sensor_type', 'struts', ...
'actuator_type', 'flexible');

for i = 1:length(k_coefs)
k_coef = k_coefs(i);

G = exp(-s*Ts)*linearize(mdl, io, 0.0, options);
G.InputName = {'Va1', 'Va2', 'Va3', 'Va4', 'Va5', 'Va6'};
G.OutputName = {'dL1', 'dL2', 'dL3', 'dL4', 'dL5', 'dL6'};

Gs(i) = {G};
end

1.2.7 Effect of a change in mass damping coef of the APA

Matlab
k_coef = 1e-6;

Matlab
%% Tested bending dampings [Nm/(rad/s)]
m_coefs = [1e1, 5e1, 1e2, 5e2, 1e3];

Matlab
%% Identify the DVF Plant (transfer function from u to dLm)
clear io; io_i = 1;
io(io_i) = linio([mdl, '/du'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs
io(io_i) = linio([mdl, '/D'], 1, 'openoutput'); io_i = io_i + 1; % Encoders

17

10!8

10!7

10!6

10!5

10!4

10!3

A
m
p
li
tu
d
e

d
L
=V

a
[m

/V
]

kcoef = 1e-06
kcoef = 5e-06
kcoef = 1e-05
kcoef = 5e-05
kcoef = 1e-04

102 103

Frequency [Hz]

-180

-90

0

90

180

P
h
as
e
[d
eg
]

Figure 1.10: Effect of a change of the damping “stiffness coeficient” on the transfer function from u to
dL

18

Matlab
%% Idenfity the transfer function from actuator to encoder for all bending dampins
Gs = {zeros(length(m_coefs), 1)};
n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ...

'flex_top_type', '4dof', ...
'motion_sensor_type', 'struts', ...
'actuator_type', 'flexible');

for i = 1:length(m_coefs)
m_coef = m_coefs(i);

G = exp(-s*Ts)*linearize(mdl, io, 0.0, options);
G.InputName = {'Va1', 'Va2', 'Va3', 'Va4', 'Va5', 'Va6'};
G.OutputName = {'dL1', 'dL2', 'dL3', 'dL4', 'dL5', 'dL6'};

Gs(i) = {G};
end

10!8

10!7

10!6

10!5

10!4

10!3

A
m
p
li
tu
d
e

d
L
=V

a
[m

/V
]

mcoef = 1e+01
mcoef = 5e+01
mcoef = 1e+02
mcoef = 5e+02
mcoef = 1e+03

102 103

Frequency [Hz]

-180

-90

0

90

180

P
h
as
e
[d
eg
]

Figure 1.11: Effect of a change of the damping “mass coeficient” on the transfer function from u to
dL

1.2.8 Using Flexible model

Matlab
d_aligns = [[-0.05, -0.3, 0];

[0, 0.5, 0];
[-0.1, -0.3, 0];
[0, 0.3, 0];
[-0.05, 0.05, 0];
[0, 0, 0]]*1e-3;

19

Matlab
d_aligns = zeros(6,3);
% d_aligns(1,:) = [-0.05, -0.3, 0]*1e-3;
d_aligns(2,:) = [0, 0.3, 0]*1e-3;

Matlab
%% Initialize Nano-Hexapod
n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ...

'flex_top_type', '4dof', ...
'motion_sensor_type', 'struts', ...
'actuator_type', 'flexible', ...
'actuator_d_align', d_aligns);

Question

Why do we have smaller resonances when using flexible APA? On the test bench we have the
same resonance as the 2DoF model. Could it be due to the compliance in other dof of the flexible
model?

Matlab
%% Identify the DVF Plant (transfer function from u to dLm)
clear io; io_i = 1;
io(io_i) = linio([mdl, '/du'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs
io(io_i) = linio([mdl, '/D'], 1, 'openoutput'); io_i = io_i + 1; % Encoders

Gdvf = exp(-s*Ts)*linearize(mdl, io, 0.0, options);

Matlab
%% Identify the IFF Plant (transfer function from u to taum)
clear io; io_i = 1;
io(io_i) = linio([mdl, '/du'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs
io(io_i) = linio([mdl, '/dum'], 1, 'openoutput'); io_i = io_i + 1; % Force Sensors

Giff = exp(-s*Ts)*linearize(mdl, io, 0.0, options);

1.2.9 Flexible model + encoders fixed to the plates

Matlab
%% Identify the IFF Plant (transfer function from u to taum)
clear io; io_i = 1;
io(io_i) = linio([mdl, '/du'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs
io(io_i) = linio([mdl, '/D'], 1, 'openoutput'); io_i = io_i + 1; % Force Sensors

Matlab
d_aligns = [[-0.05, -0.3, 0];

[0, 0.5, 0];
[-0.1, -0.3, 0];
[0, 0.3, 0];
[-0.05, 0.05, 0];
[0, 0, 0]]*1e-3;

20

Matlab
%% Initialize Nano-Hexapod
n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ...

'flex_top_type', '4dof', ...
'motion_sensor_type', 'struts', ...
'actuator_type', 'flexible', ...
'actuator_d_align', d_aligns);

Matlab
Gdvf_struts = exp(-s*Ts)*linearize(mdl, io, 0.0, options);

Matlab
%% Initialize Nano-Hexapod
n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ...

'flex_top_type', '4dof', ...
'motion_sensor_type', 'plates', ...
'actuator_type', 'flexible', ...
'actuator_d_align', d_aligns);

Matlab
Gdvf_plates = exp(-s*Ts)*linearize(mdl, io, 0.0, options);

10!8

10!7

10!6

10!5

10!4

10!3

A
m
p
li
tu
d
e

d
L
=V

a
[m

/V
]

Struts
Plates

102 103

Frequency [Hz]

-180

-90

0

90

180

P
h
as
e
[d
eg
]

Figure 1.12: Comparison of the dynamics from Va to dL when the encoders are fixed to the struts
(blue) and to the plates (red). APA are modeled as a flexible element.

21

1.3 Integral Force Feedback

In this section, the Integral Force Feedback (IFF) control strategy is applied to the nano-hexapod. The
main goal of this to add damping to the nano-hexapod’s modes.

The control architecture is shown in Figure 1.13 where KIFF is a diagonal 6× 6 controller.

The system as then a new input u′, and the transfer function from u′ to dLm should be easier to control
than the initial transfer function from u to dLm.

Plant

KIFF

+ τm

dLm

uu′

Figure 1.13: Integral Force Feedback Strategy

This section is structured as follow:

• Section 1.3.1: Using the Simscape model (APA taken as 2DoF model), the transfer function from
u to τm is identified. Based on the obtained dynamics, the control law is developed and the
optimal gain is estimated using the Root Locus.

• Section 1.3.2: Still using the Simscape model, the effect of the IFF gain on the the transfer
function from u′ to dLm is studied.

• Section 1.3.3: The same is performed experimentally: several IFF gains are used and the damped
plant is identified each time.

• Section 1.3.4: The damped model and the identified damped system are compared for the optimal
IFF gain. It is found that IFF indeed adds a lot of damping into the system. However it is not
efficient in damping the spurious struts modes.

• Section 1.3.5: Finally, a “flexible” model of the APA is used in the Simscape model and the
optimally damped model is compared with the measurements.

1.3.1 IFF Control Law and Optimal Gain

Let’s use a model of the Nano-Hexapod with the encoders fixed to the struts and the APA taken as
2DoF model.

Matlab
%% Initialize Nano-Hexapod
n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ...

'flex_top_type', '4dof', ...
'motion_sensor_type', 'struts', ...
'actuator_type', '2dof');

22

The transfer function from u to τm is identified.

Matlab
%% Identify the IFF Plant (transfer function from u to taum)
clear io; io_i = 1;
io(io_i) = linio([mdl, '/du'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs
io(io_i) = linio([mdl, '/dum'], 1, 'openoutput'); io_i = io_i + 1; % Force Sensors

Giff = exp(-s*Ts)*linearize(mdl, io, 0.0, options);

The IFF controller is defined as shown below:

Matlab
%% IFF Controller
Kiff_g1 = -(1/(s + 2*pi*40))*... % LPF: provides integral action above 40Hz

(s/(s + 2*pi*30))*... % HPF: limit low frequency gain
(1/(1 + s/2/pi/500))*... % LPF: more robust to high frequency resonances
eye(6); % Diagonal 6x6 controller

Then, the poles of the system are shown in the complex plane as a function of the controller gain (i.e.
Root Locus plot) in Figure 1.14. A gain of 400 is chosen as the “optimal” gain as it visually seems to
be the gain that adds the maximum damping to all the suspension modes simultaneously.

-1200 -1000 -800 -600 -400 -200 0

Real Part

0

200

400

600

800

1000

1200

Im
a
g
in

a
ry

P
a
rt

g = 0
g = 400

Figure 1.14: Root Locus for the IFF control strategy

Then the “optimal” IFF controller is:

Matlab
%% IFF controller with Optimal gain
Kiff = 400*Kiff_g1;

23

And it is saved for further use.
Matlab

save('mat/Kiff.mat', 'Kiff')

The bode plots of the “diagonal” elements of the loop gain are shown in Figure 1.15. It is shown that
the phase and gain margins are quite high and the loop gain is large arround the resonances.

10!2

10!1

100

101

102

A
m
p
li
tu
d
e
[V
/V
]

=m;i=ui "Kiff - FRF
=m;i=ui "Kiff - Model

102 103

Frequency [Hz]

-180

-90

0

90

180

P
h
as
e
[d
eg
]

Figure 1.15: Bode plot of the “decentralized loop gain” Giff(i, i)×Kiff(i, i)

1.3.2 Effect of IFF on the plant - Simulations

Still using the Simscape model with encoders fixed to the struts and 2DoF APA, the IFF strategy is
tested.

Matlab
%% Initialize the Simscape model in closed loop
n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ...

'flex_top_type', '4dof', ...
'motion_sensor_type', 'struts', ...
'actuator_type', '2dof', ...
'controller_type', 'iff');

The following IFF gains are tried:

24

Matlab
%% Tested IFF gains
iff_gains = [4, 10, 20, 40, 100, 200, 400];

And the transfer functions from u′ to dLm are identified for all the IFF gains.

Matlab
%% Identify the (damped) transfer function from u to dLm for different values of the IFF gain
Gd_iff = {zeros(1, length(iff_gains))};

clear io; io_i = 1;
io(io_i) = linio([mdl, '/du'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs
io(io_i) = linio([mdl, '/dL'], 1, 'openoutput'); io_i = io_i + 1; % Strut Displacement (encoder)

for i = 1:length(iff_gains)
Kiff = iff_gains(i)*Kiff_g1*eye(6); % IFF Controller
Gd_iff(i) = {exp(-s*Ts)*linearize(mdl, io, 0.0, options)};

isstable(Gd_iff{i})
end

The obtained dynamics are shown in Figure 1.16.

10!8

10!7

10!6

10!5

10!4

10!3

A
m

p
li
tu

d
e

[m
/V

]

g = 4
g = 10
g = 20
g = 40

g = 100
g = 200
g = 400
g = 1000

102 103

Frequency [Hz]

-180

-90

0

90

180

P
h
a
se

[d
eg

]

Figure 1.16: Effect of the IFF gain g on the transfer function from τ to dLm

25

1.3.3 Effect of IFF on the plant - Experimental Results

The IFF strategy is applied experimentally and the transfer function from u′ to dLm is identified for
all the defined values of the gain.

Load Data

First load the identification data.

Matlab
%% Load Identification Data
meas_iff_gains = {};

for i = 1:length(iff_gains)
meas_iff_gains(i) = {load(sprintf('mat/iff_strut_1_noise_g_%i.mat', iff_gains(i)), 't', 'Vexc', 'Vs', 'de', 'u')};

end

Spectral Analysis - Setup

And define the useful variables that will be used for the identification using the tfestimate function.

Matlab
%% Setup useful variables
% Sampling Time [s]
Ts = (meas_iff_gains{1}.t(end) - (meas_iff_gains{1}.t(1)))/(length(meas_iff_gains{1}.t)-1);

% Sampling Frequency [Hz]
Fs = 1/Ts;

% Hannning Windows
win = hanning(ceil(1*Fs));

% And we get the frequency vector
[~, f] = tfestimate(meas_iff_gains{1}.Vexc, meas_iff_gains{1}.de, win, [], [], 1/Ts);

DVF Plant

The transfer functions are estimated for all the values of the gain.

Matlab
%% DVF Plant (transfer function from u to dLm)
G_iff_gains = {};

for i = 1:length(iff_gains)
G_iff_gains{i} = tfestimate(meas_iff_gains{i}.Vexc, meas_iff_gains{i}.de(:,1), win, [], [], 1/Ts);

end

The obtained dynamics as shown in the bode plot in Figure 1.17. The dashed curves are the results
obtained using the model, and the solid curves the results from the experimental identification.

The bode plot is then zoomed on the suspension modes of the nano-hexapod in Figure 1.18.

26

10!8

10!7

10!6

10!5

10!4

10!3

A
m

p
li
tu

d
e

[m
/V

]

giff = 4
giff = 10
giff = 20
giff = 40

giff = 100
giff = 200
giff = 400

102 103

Frequency [Hz]

-180

-90

0

90

180

P
h
as

e
[d

eg
]

Figure 1.17: Transfer function from u to dLm for multiple values of the IFF gain

27

10!5

10!4

A
m
p
li
tu
d
e
[m

/V
]

giff = 4
giff = 10
giff = 20
giff = 40

giff = 100
giff = 200
giff = 400

102

Frequency [Hz]

-180

-90

0

90

180

P
h
as
e
[d
eg
]

Figure 1.18: Transfer function from u to dLm for multiple values of the IFF gain (Zoom)

28

Important

The IFF control strategy is very effective for the damping of the suspension modes. It however
does not damp the modes at 200Hz, 300Hz and 400Hz (flexible modes of the APA).
Also, the experimental results and the models obtained from the Simscape model are in agree-
ment concerning the damped system (up to the flexible modes).

Experimental Results - Comparison of the un-damped and fully damped system

The un-damped and damped experimental plants are compared in Figure 1.19 (diagonal terms).

It is very clear that all the suspension modes are very well damped thanks to IFF. However, there is
little to no effect on the flexible modes of the struts and of the plate.

10!8

10!6

10!4

A
m
p
li
tu
d
e

d
e
=V

ex
c
[m

/V
]

Un-Damped Optimal gain

102 103

Frequency [Hz]

-180

-90

0

90

180

P
h
as
e
[d
eg
]

Figure 1.19: Comparison of the diagonal elements of the tranfer function from u to dLm without
active damping and with optimal IFF gain

1.3.4 Experimental Results - Damped Plant with Optimal gain

Let’s now look at the 6× 6 damped plant with the optimal gain g = 400.

29

Load Data

The experimental data are loaded.

Matlab
%% Load Identification Data
meas_iff_struts = {};

for i = 1:6
meas_iff_struts(i) = {load(sprintf('mat/iff_strut_%i_noise_g_400.mat', i), 't', 'Vexc', 'Vs', 'de', 'u')};

end

Spectral Analysis - Setup

And the parameters useful for the spectral analysis are defined.

Matlab
%% Setup useful variables
% Sampling Time [s]
Ts = (meas_iff_struts{1}.t(end) - (meas_iff_struts{1}.t(1)))/(length(meas_iff_struts{1}.t)-1);

% Sampling Frequency [Hz]
Fs = 1/Ts;

% Hannning Windows
win = hanning(ceil(1*Fs));

% And we get the frequency vector
[~, f] = tfestimate(meas_iff_struts{1}.Vexc, meas_iff_struts{1}.de, win, [], [], 1/Ts);

DVF Plant

Finally, the 6× 6 plant is identified using the tfestimate function.

Matlab
%% DVF Plant (transfer function from u to dLm)
G_iff_opt = {};

for i = 1:6
G_iff_opt{i} = tfestimate(meas_iff_struts{i}.Vexc, meas_iff_struts{i}.de, win, [], [], 1/Ts);

end

The obtained diagonal elements are compared with the model in Figure 1.20.

And all the off-diagonal elements are compared with the model in Figure 1.21.

Important

With the IFF control strategy applied and the optimal gain used, the suspension modes are very
well damped. Remains the un-damped flexible modes of the APA (200Hz, 300Hz, 400Hz), and
the modes of the plates (700Hz).
The Simscape model and the experimental results are in very good agreement.

30

10!8

10!6

10!4

A
m
p
li
tu

d
e

d
e
=V

ex
c
[m

/V
]

dLm;i=ui - FRF dLm;i=ui - Model

102 103

Frequency [Hz]

-180

-90

0

90

180

P
h
as

e
[d
eg

]

Figure 1.20: Comparison of the diagonal elements of the transfer functions from u to dLm with active
damping (IFF) applied with an optimal gain g = 400

31

10!8

10!6

10!4

A
m
p
li
tu

d
e

d
e
=V

ex
c
[m

/V
]

dLm;i=uj - FRF dLm;i=uj - Model

102 103

Frequency [Hz]

-180

-90

0

90

180

P
h
as

e
[d
eg

]

Figure 1.21: Comparison of the off-diagonal elements of the transfer functions from u to dLm with
active damping (IFF) applied with an optimal gain g = 400

32

1.3.5 Comparison with the Flexible model

When using the 2-DoF model for the APA, the flexible modes of the struts were not modelled, and
it was the main limitation of the model. Now, let’s use a flexible model for the APA, and see if the
obtained damped plant using the model is similar to the measured dynamics.

First, the nano-hexapod is initialized.

Matlab
%% Estimated misalignement of the struts
d_aligns = [[-0.05, -0.3, 0];

[0, 0.5, 0];
[-0.1, -0.3, 0];
[0, 0.3, 0];
[-0.05, 0.05, 0];
[0, 0, 0]]*1e-3;

%% Initialize Nano-Hexapod
n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ...

'flex_top_type', '4dof', ...
'motion_sensor_type', 'struts', ...
'actuator_type', 'flexible', ...
'actuator_d_align', d_aligns, ...
'controller_type', 'iff');

And the “optimal” controller is loaded.

Matlab
%% Optimal IFF controller
load('Kiff.mat', 'Kiff');

The transfer function from u′ to dLm is identified using the Simscape model.

Matlab
%% Linearized inputs/outputs
clear io; io_i = 1;
io(io_i) = linio([mdl, '/du'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs
io(io_i) = linio([mdl, '/dL'], 1, 'openoutput'); io_i = io_i + 1; % Strut Displacement (encoder)

%% Identification of the plant
Gd_iff = exp(-s*Ts)*linearize(mdl, io, 0.0, options);

The obtained diagonal elements are shown in Figure 1.22 while the off-diagonal elements are shown in
Figure 1.23.

Important

Using flexible models for the APA, the agreement between the Simscape model of the nano-
hexapod and the measured FRF is very good.
Only the flexible mode of the top-plate is not appearing in the model which is very logical as
the top plate is taken as a solid body.

33

10!8

10!6

10!4

A
m
p
li
tu

d
e

d
L

m
=u

0
[m

/V
]

dLm;i=u
0
i - FRF dLm;i=u

0
i - Model

102 103

Frequency [Hz]

-180

-90

0

90

180

P
h
as

e
[d
eg

]

Figure 1.22: Diagonal elements of the transfer function from u′ to dLm - comparison of the measured
FRF and the identified dynamics using the flexible model

34

10!8

10!6

10!4

A
m
p
li
tu

d
e

d
L

m
=u

0
[m

/V
]

dLm;i=u
0
j - FRF dLm;i=u

0
j - Model

102 103

Frequency [Hz]

-180

-90

0

90

180

P
h
as

e
[d
eg

]

Figure 1.23: Off-diagonal elements of the transfer function from u′ to dLm - comparison of the mea-
sured FRF and the identified dynamics using the flexible model

35

1.3.6 Conclusion

Important

The decentralized Integral Force Feedback strategy applied on the nano-hexapod is very effective
in damping all the suspension modes.
The Simscape model (especially when using a flexible model for the APA) is shown to be very
accurate, even when IFF is applied.

1.4 Modal Analysis

Several 3-axis accelerometers are fixed on the top platform of the nano-hexapod as shown in Figure
1.28.

Figure 1.24: Location of the accelerometers on top of the nano-hexapod

The top platform is then excited using an instrumented hammer as shown in Figure 1.25.

From this experiment, the resonance frequencies and the associated mode shapes can be computed
(Section 1.4.1). Then, in Section 1.4.2, the vertical compliance of the nano-hexapod is experimentally

36

Figure 1.25: Example of an excitation using an instrumented hammer

37

estimated. Finally, in Section 1.4.3, the measured compliance is compare with the estimated one from
the Simscape model.

1.4.1 Obtained Mode Shapes

We can observe the mode shapes of the first 6 modes that are the suspension modes (the plate is
behaving as a solid body) in Figure 1.26.

Figure 1.26: Measured mode shapes for the first six modes

Then, there is a mode at 692Hz which corresponds to a flexible mode of the top plate (Figure 1.27).

Figure 1.27: First flexible mode at 692Hz

The obtained modes are summarized in Table 1.1.

1.4.2 Nano-Hexapod Compliance - Effect of IFF

In this section, we wish to estimated the effectiveness of the IFF strategy concerning the compliance.

The top plate is excited vertically using the instrumented hammer two times:

1. no control loop is used

38

Table 1.1: Description of the identified modes

Mode Freq. [Hz] Description

1 105 Suspension Mode: Y-translation
2 107 Suspension Mode: X-translation
3 131 Suspension Mode: Z-translation
4 161 Suspension Mode: Y-tilt
5 162 Suspension Mode: X-tilt
6 180 Suspension Mode: Z-rotation
7 692 (flexible) Membrane mode of the top platform

2. decentralized IFF is used

The data is loaded.

Matlab
frf_ol = load('Measurement_Z_axis.mat'); % Open-Loop
frf_iff = load('Measurement_Z_axis_damped.mat'); % IFF

The mean vertical motion of the top platform is computed by averaging all 5 accelerometers.

Matlab
%% Multiply by 10 (gain in m/s^2/V) and divide by 5 (number of accelerometers)
d_frf_ol = 10/5*(frf_ol.FFT1_H1_4_1_RMS_Y_Mod + frf_ol.FFT1_H1_7_1_RMS_Y_Mod + frf_ol.FFT1_H1_10_1_RMS_Y_Mod +

frf_ol.FFT1_H1_13_1_RMS_Y_Mod + frf_ol.FFT1_H1_16_1_RMS_Y_Mod)./(2*pi*frf_ol.FFT1_H1_16_1_RMS_X_Val).^2;↪→
d_frf_iff = 10/5*(frf_iff.FFT1_H1_4_1_RMS_Y_Mod + frf_iff.FFT1_H1_7_1_RMS_Y_Mod + frf_iff.FFT1_H1_10_1_RMS_Y_Mod +

frf_iff.FFT1_H1_13_1_RMS_Y_Mod + frf_iff.FFT1_H1_16_1_RMS_Y_Mod)./(2*pi*frf_iff.FFT1_H1_16_1_RMS_X_Val).^2;↪→

The vertical compliance (magnitude of the transfer function from a vertical force applied on the top
plate to the vertical motion of the top plate) is shown in Figure 1.28.

102 103

Frequency [Hz]

10!8

10!6

V
er

ti
ca

l
C
om

p
li
an

ce
[m

=N
]

OL
IFF

Figure 1.28: Measured vertical compliance with and without IFF

39

Important

From Figure 1.28, it is clear that the IFF control strategy is very effective in damping the
suspensions modes of the nano-hexapod. It also has the effect of (slightly) degrading the vertical
compliance at low frequency.
It also seems some damping can be added to the modes at around 205Hz which are flexible
modes of the struts.

1.4.3 Comparison with the Simscape Model

Let’s now compare the measured vertical compliance with the vertical compliance as estimated from
the Simscape model.

The transfer function from a vertical external force to the absolute motion of the top platform is
identified (with and without IFF) using the Simscape model. The comparison is done in Figure 1.29.
Again, the model is quite accurate!

102 103

Frequency [Hz]

10!8

10!6

V
er

ti
ca

l
C
o
m

p
li
a
n
ce

[m
=N

]

OL - Meas.
IFF - Meas.
OL - Model
IFF - Model

Figure 1.29: Measured vertical compliance with and without IFF

1.5 Conclusion

Important

From the previous analysis, several conclusions can be drawn:

• Decentralized IFF is very effective in damping the “suspension” modes of the nano-hexapod
(Figure 1.19)

• Decentralized IFF does not damp the “spurious” modes of the struts nor the flexible modes
of the top plate (Figure 1.19)

• Even though the Simscape model and the experimentally measured FRF are in good agree-
ment (Figures 1.22 and 1.23), the obtain dynamics from the control inputs u and the

40

encoders dLm is very difficult to control

Therefore, in the following sections, the encoders will be fixed to the plates. The goal is to be
less sensitive to the flexible modes of the struts.

41

2 Encoders fixed to the plates - Dynamics

In this section, the encoders are fixed to the plates rather than to the struts as shown in Figure 2.1.

Figure 2.1: Nano-Hexapod with encoders fixed to the struts

It is structured as follow:

• Section 2.1: The dynamics of the nano-hexapod is identified.

• Section 2.2: The identified dynamics is compared with the Simscape model.

• Section 2.3: The Integral Force Feedback (IFF) control strategy is applied and the dynamics of
the damped nano-hexapod is identified and compare with the Simscape model.

42

2.1 Identification of the dynamics

In this section, the dynamics of the nano-hexapod with the encoders fixed to the plates is identified.

First, the measurement data are loaded in Section 2.1.1, then the transfer function matrix from the
actuators to the encoders are estimated in Section 2.1.2. Finally, the transfer function matrix from the
actuators to the force sensors is estimated in Section 2.1.3.

2.1.1 Data Loading and Spectral Analysis Setup

The actuators are excited one by one using a low pass filtered white noise. For each excitation, the 6
force sensors and 6 encoders are measured and saved.

Matlab
%% Load Identification Data
meas_data_lf = {};

for i = 1:6
meas_data_lf(i) = {load(sprintf('mat/frf_exc_strut_%i_enc_plates_noise.mat', i), 't', 'Va', 'Vs', 'de')};

end

2.1.2 Transfer function from Actuator to Encoder

Let’s compute the coherence from the excitation voltage u and the displacement dLm as measured by
the encoders.

Matlab
%% Coherence
coh_dvf = zeros(length(f), 6, 6);

for i = 1:6
coh_dvf(:, :, i) = mscohere(meas_data_lf{i}.Va, meas_data_lf{i}.de, win, [], [], 1/Ts);

end

The obtained coherence shown in Figure 2.2 is quite good up to 400Hz.

Then the 6x6 transfer function matrix is estimated.

Matlab
%% DVF Plant (transfer function from u to dLm)
G_dvf = zeros(length(f), 6, 6);

for i = 1:6
G_dvf(:,:,i) = tfestimate(meas_data_lf{i}.Va, meas_data_lf{i}.de, win, [], [], 1/Ts);

end

The diagonal and off-diagonal terms of this transfer function matrix are shown in Figure 2.3.

43

102 103

Frequency [Hz]

0

0.2

0.4

0.6

0.8

1

C
o
h
er

en
ce

[-
]

Gdvf (1; 1)
Gdvf (2; 2)
Gdvf (3; 3)

Gdvf (4; 4)
Gdvf (5; 5)
Gdvf (6; 6)

Gdvf (i; j)

Figure 2.2: Obtained coherence for the DVF plant

10!8

10!6

10!4

A
m

p
li
tu

d
e

d
e
=V

a
[m

/V
]

Gdvf (1; 1)
Gdvf (2; 2)
Gdvf (3; 3)

Gdvf (4; 4)
Gdvf (5; 5)
Gdvf (6; 6)

Gdvf (i; j)

102 103

Frequency [Hz]

-180

-90

0

90

180

P
h
as

e
[d

eg
]

Figure 2.3: Measured FRF for the DVF plant

44

Important

From Figure 2.3, we can draw few conclusions on the transfer functions from u to dLm when
the encoders are fixed to the plates:

• the decoupling is rather good at low frequency (below the first suspension mode). The low
frequency gain is constant for the off diagonal terms, whereas when the encoders where
fixed to the struts, the low frequency gain of the off-diagonal terms were going to zero
(Figure 1.2).

• the flexible modes of the struts at 226Hz and 337Hz are indeed shown in the transfer
functions, but their amplitudes are rather low.

• the diagonal terms have alternating poles and zeros up to at least 600Hz: the flexible
modes of the struts are not affecting the alternating pole/zero pattern. This what not the
case when the encoders were fixed to the struts (Figure 1.2).

2.1.3 Transfer function from Actuator to Force Sensor

Let’s now compute the coherence from the excitation voltage u and the voltage τm generated by the
Force senors.

Matlab
%% Coherence for the IFF plant
coh_iff = zeros(length(f), 6, 6);

for i = 1:6
coh_iff(:,:,i) = mscohere(meas_data_lf{i}.Va, meas_data_lf{i}.Vs, win, [], [], 1/Ts);

end

The coherence is shown in Figure 2.4, and is very good for from 10Hz up to 2kHz.

102 103

Frequency [Hz]

0

0.2

0.4

0.6

0.8

1

C
oh

er
en

ce
[-
]

Giff (1; 1)
Giff (2; 2)
Giff (3; 3)

Giff (4; 4)
Giff (5; 5)
Giff (6; 6)

Giff (i; j)

Figure 2.4: Obtained coherence for the IFF plant

Then the 6x6 transfer function matrix is estimated.

45

Matlab
%% IFF Plant
G_iff = zeros(length(f), 6, 6);

for i = 1:6
G_iff(:,:,i) = tfestimate(meas_data_lf{i}.Va, meas_data_lf{i}.Vs, win, [], [], 1/Ts);

end

The bode plot of the diagonal and off-diagonal terms are shown in Figure 2.5.

10!3

10!2

10!1

100

101

102

A
m
p
li
tu
d
e

V
s
=V

a
[V

/V
]

Giff (1; 1)
Giff (2; 2)
Giff (3; 3)

Giff (4; 4)
Giff (5; 5)
Giff (6; 6)

Giff (i; j)

102 103

Frequency [Hz]

-180

-90

0

90

180

P
h
as
e
[d
eg
]

Figure 2.5: Measured FRF for the IFF plant

Important

It is shown in Figure 2.6 that:

• The IFF plant has alternating poles and zeros

• The first flexible mode of the struts as 235Hz is appearing, and therefore is should be
possible to add some damping to this mode using IFF

• The decoupling is quite good at low frequency (below the first model) as well as high
frequency (above the last suspension mode, except near the flexible modes of the top
plate)

46

2.1.4 Save Identified Plants

The identified dynamics is saved for further use.

Matlab
save('mat/identified_plants_enc_plates.mat', 'f', 'Ts', 'G_iff', 'G_dvf')

2.2 Comparison with the Simscape Model

In this section, the measured dynamics done in Section 2.1 is compared with the dynamics estimated
from the Simscape model.

2.2.1 Identification Setup

The nano-hexapod is initialized with the APA taken as flexible models.

Matlab
%% Initialize Nano-Hexapod
n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ...

'flex_top_type', '4dof', ...
'motion_sensor_type', 'plates', ...
'actuator_type', 'flexible');

2.2.2 Dynamics from Actuator to Force Sensors

Then the transfer function from u to τm is identified using the Simscape model.

Matlab
%% Identify the IFF Plant (transfer function from u to taum)
clear io; io_i = 1;
io(io_i) = linio([mdl, '/du'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs
io(io_i) = linio([mdl, '/Fm'], 1, 'openoutput'); io_i = io_i + 1; % Force Sensors

Giff = exp(-s*Ts)*linearize(mdl, io, 0.0, options);

The identified dynamics is compared with the measured FRF:

• Figure 2.6: the individual transfer function from u1 (the DAC voltage for the first actuator) to
the force sensors of all 6 struts are compared

• Figure 2.7: all the diagonal elements are compared

• Figure 2.8: all the off-diagonal elements are compared

47

10!2

100

102

A
m
p
li
tu
d
e
[m

/
V
]

d=m1=u1 d=m2=u1 d=m3=u1

Meas.
Model

102

Frequency [Hz]

10!2

100

102

A
m
p
li
tu
d
e
[m

/
V
]

d=m4=u1

102

Frequency [Hz]

d=m5=u1

102

Frequency [Hz]

d=m6=u1

Figure 2.6: IFF Plant for the first actuator input and all the force senosrs

48

10!4

10!2

100

102

104

A
m
p
li
tu
d
e
[V

/V
]

=m;i=ui - FRF
=m;i=ui - Model

102 103

Frequency [Hz]

-180

-90

0

90

180

P
h
as
e
[d
eg
]

Figure 2.7: Diagonal elements of the IFF Plant

102 103

Frequency [Hz]

10!2

100

102

A
m

p
li
tu

d
e

[V
/V

]

=m;i=uj - FRF
=m;i=uj - Model

Figure 2.8: Off diagonal elements of the IFF Plant

49

2.2.3 Dynamics from Actuator to Encoder

Now, the dynamics from the DAC voltage u to the encoders dLm is estimated using the Simscape
model.

Matlab
%% Identify the DVF Plant (transfer function from u to dLm)
clear io; io_i = 1;
io(io_i) = linio([mdl, '/du'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs
io(io_i) = linio([mdl, '/dL'], 1, 'openoutput'); io_i = io_i + 1; % Encoders

Gdvf = exp(-s*Ts)*linearize(mdl, io, 0.0, options);

The identified dynamics is compared with the measured FRF:

• Figure 2.9: the individual transfer function from u3 (the DAC voltage for the actuator number 3)
to the six encoders

• Figure 2.10: all the diagonal elements are compared

• Figure 2.11: all the off-diagonal elements are compared

10!8

10!6

10!4

10!2

A
m
p
li
tu
d
e
[m
/
V
]

dLm1=u3 dLm2=u3 dLm3=u3

Meas.
Model

102

Frequency [Hz]

10!8

10!6

10!4

10!2

A
m
p
li
tu
d
e
[m
/
V
]

dLm4=u3

102

Frequency [Hz]

dLm5=u3

102

Frequency [Hz]

dLm6=u3

Figure 2.9: DVF Plant for the first actuator input and all the encoders

50

10!8

10!7

10!6

10!5

10!4

10!3

A
m
p
li
tu
d
e
[m

/V
]

dLm;i=ui - FRF
dLm;i=ui - Model

102 103

Frequency [Hz]

-180

-90

0

90

180

P
h
as
e
[d
eg
]

Figure 2.10: Diagonal elements of the DVF Plant

102 103

Frequency [Hz]

10!8

10!6

10!4

A
m
p
li
tu
d
e
[m

/
V
]

dLm;i=uj - FRF
dLm;i=uj - Model

Figure 2.11: Off diagonal elements of the DVF Plant

51

2.2.4 Flexible Top Plate

Matlab
%% Initialize Nano-Hexapod
n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '2dof', ...

'flex_top_type', '3dof', ...
'motion_sensor_type', 'struts', ...
'actuator_type', '2dof', ...
'top_plate_type', 'rigid');

Matlab
%% Identify the DVF Plant (transfer function from u to dLm)
clear io; io_i = 1;
io(io_i) = linio([mdl, '/du'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs
io(io_i) = linio([mdl, '/dL'], 1, 'openoutput'); io_i = io_i + 1; % Encoders

Gdvf = linearize(mdl, io, 0.0, options);

Matlab
size(Gdvf)
isstable(Gdvf)

Matlab
[sys,g] = balreal(Gdvf); % Compute balanced realization
elim = (g<1e-4); % Small entries of g are negligible states
rsys = modred(sys,elim); % Remove negligible states
size(rsys)

Matlab
%% Identify the IFF Plant (transfer function from u to taum)
clear io; io_i = 1;
io(io_i) = linio([mdl, '/du'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs
io(io_i) = linio([mdl, '/Fm'], 1, 'openoutput'); io_i = io_i + 1; % Force Sensors

Giff = exp(-s*Ts)*linearize(mdl, io, 0.0, options);

2.2.5 Conclusion

Important

The Simscape model is quite accurate for the transfer function matrices from u to τm and from
u to dLm except at frequencies of the flexible modes of the top-plate. The Simscape model can
therefore be used to develop the control strategies.

2.3 Integral Force Feedback

In this section, the Integral Force Feedback (IFF) control strategy is applied to the nano-hexapod in
order to add damping to the suspension modes.

52

The control architecture is shown in Figure 2.12:

• τm is the measured voltage of the 6 force sensors

• KIFF is the 6× 6 diagonal controller

• u is the plant input (voltage generated by the 6 DACs)

• u′ is the new plant inputs with added damping

Plant

KIFF

+ τm

dLm

uu′

Figure 2.12: Integral Force Feedback Strategy

• Section 2.3.1

2.3.1 Effect of IFF on the plant - Simscape Model

The nano-hexapod is initialized with flexible APA and the encoders fixed to the struts.

Matlab
%% Initialize the Simscape model in closed loop
n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ...

'flex_top_type', '4dof', ...
'motion_sensor_type', 'plates', ...
'actuator_type', 'flexible');

The same controller as the one developed when the encoder were fixed to the struts is used.

Matlab
%% Optimal IFF controller
load('Kiff.mat', 'Kiff')

The transfer function from u′ to dLm is identified.

Matlab
%% Identify the (damped) transfer function from u to dLm for different values of the IFF gain
clear io; io_i = 1;
io(io_i) = linio([mdl, '/du'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs
io(io_i) = linio([mdl, '/dL'], 1, 'openoutput'); io_i = io_i + 1; % Plate Displacement (encoder)

First in Open-Loop:

53

Matlab
%% Transfer function from u to dL (open-loop)
Gd_ol = exp(-s*Ts)*linearize(mdl, io, 0.0, options);

And then with the IFF controller:
Matlab

%% Initialize the Simscape model in closed loop
n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ...

'flex_top_type', '4dof', ...
'motion_sensor_type', 'plates', ...
'actuator_type', 'flexible', ...
'controller_type', 'iff');

%% Transfer function from u to dL (IFF)
Gd_iff = exp(-s*Ts)*linearize(mdl, io, 0.0, options);

It is first verified that the system is stable:
Matlab

isstable(Gd_iff)

Results
1

The diagonal and off-diagonal terms of the 6× 6 transfer function matrices identified are compared in
Figure 2.13. It is shown, as was the case when the encoders were fixed to the struts, that the IFF
control strategy is very effective in damping the suspension modes of the nano-hexapod.

2.3.2 Effect of IFF on the plant - FRF

The IFF control strategy is experimentally implemented. The (damped) transfer function from u′ to
dLm is experimentally identified.

The identification data are loaded:
Matlab

%% Load Identification Data
meas_iff_plates = {};

for i = 1:6
meas_iff_plates(i) = {load(sprintf('mat/frf_exc_iff_strut_%i_enc_plates_noise.mat', i), 't', 'Va', 'Vs', 'de', 'u')};

end

And the parameters used for the transfer function estimation are defined below.
Matlab

% Sampling Time [s]
Ts = (meas_iff_plates{1}.t(end) - (meas_iff_plates{1}.t(1)))/(length(meas_iff_plates{1}.t)-1);

% Hannning Windows
win = hanning(ceil(1/Ts));

54

10!10

10!8

10!6

10!4

10!2

A
m
p
li
tu

d
e
[m

/V
]

OL - Diag
IFF - Diag

OL - O,-diag
IFF - O,-diag

102 103

Frequency [Hz]

-180

-90

0

90

180

P
h
as

e
[d
eg

]

Figure 2.13: Effect of the IFF control strategy on the transfer function from τ to dLm

55

% And we get the frequency vector
[~, f] = tfestimate(meas_iff_plates{1}.Va, meas_iff_plates{1}.de, win, [], [], 1/Ts);

The estimation is performed using the tfestimate command.

Matlab
%% Estimation of the transfer function matrix from u to dL when IFF is applied
G_enc_iff_opt = zeros(length(f), 6, 6);

for i = 1:6
G_enc_iff_opt(:,:,i) = tfestimate(meas_iff_plates{i}.Va, meas_iff_plates{i}.de, win, [], [], 1/Ts);

end

The obtained diagonal and off-diagonal elements of the transfer function from u′ to dLm are shown in
Figure 2.14 both without and with IFF.

10!8

10!6

10!4

A
m
p
li
tu

d
e
[m

/V
]

OL - Diag
IFF - Diag

OL - O,-diag
IFF - O,-diag

102 103

Frequency [Hz]

-180

-90

0

90

180

P
h
as

e
[d
eg

]

Figure 2.14: Effect of the IFF control strategy on the transfer function from τ to dLm

Important

As was predicted with the Simscape model, the IFF control strategy is very effective in damping
the suspension modes of the nano-hexapod. Little damping is also applied on the first flexible
mode of the strut at 235Hz. However, no damping is applied on other modes, such as the flexible
modes of the top plate.

56

2.3.3 Comparison of the measured FRF and the Simscape model

Let’s now compare the obtained damped plants obtained experimentally with the one extracted from
Simscape:

• Figure 2.15: the individual transfer function from u′1 to the six encoders are comapred

• Figure 2.16: all the diagonal elements are compared

• Figure 2.17: all the off-diagonal elements are compared

10!8

10!6

10!4

A
m
p
li
tu
d
e
[m
/
V
]

d=m1=u1 d=m2=u1 d=m3=u1

Meas.
Model

102

Frequency [Hz]

10!8

10!6

10!4

A
m
p
li
tu
d
e
[m
/
V
]

d=m4=u1

102

Frequency [Hz]

d=m5=u1

102

Frequency [Hz]

d=m6=u1

Figure 2.15: FRF from one actuator to all the encoders when the plant is damped using IFF

Important

From Figures 2.16 and 2.17, it is clear that the Simscape model very well represents the dynamics
of the nano-hexapod. This is true to around 400Hz, then the dynamics depends on the flexible
modes of the top plate which are not modelled.

2.3.4 Save Damped Plant

The experimentally identified plant is saved for further use.

57

10!8

10!7

10!6

10!5

10!4

A
m
p
li
tu
d
e

d
e
=V

ex
c
[m

/V
]

dLm;i=ui - FRF dLm;i=ui - Model

102 103

Frequency [Hz]

-180

-90

0

90

180

P
h
as
e
[d
eg
]

Figure 2.16: Comparison of the diagonal elements of the transfer functions from u to dLm with active
damping (IFF) applied with an optimal gain g = 400

58

10!8

10!7

10!6

10!5

10!4

A
m
p
li
tu
d
e

d
e
=V

ex
c
[m

/V
]

dLm;i=uj - FRF dLm;i=uj - Model

102 103

Frequency [Hz]

-180

-90

0

90

180

P
h
as
e
[d
eg
]

Figure 2.17: Comparison of the off-diagonal elements of the transfer functions from u to dLm with
active damping (IFF) applied with an optimal gain g = 400

59

Matlab
save('matlab/mat/damped_plant_enc_plates.mat', 'f', 'Ts', 'G_enc_iff_opt')

Matlab
save('mat/damped_plant_enc_plates.mat', 'f', 'Ts', 'G_enc_iff_opt')

2.4 Effect of Payload mass - Robust IFF

In this section, the encoders are fixed to the plates, and we identify the dynamics for several payloads.
The added payload are half cylinders, and three layers can be added for a total of around 40kg (Figure
2.18).

Figure 2.18: Picture of the nano-hexapod with added mass

First the dynamics from u to dLm and τm is identified. Then, the Integral Force Feedback controller
is developed and applied as shown in Figure 2.19. Finally, the dynamics from u′ to dLm is identified
and the added damping can be estimated.

60

Nano-Hexapod

Mechanics
Actuator

stacks
PD200DAC

Sensor

stack
ADC

Encoder

+

KIFF(s)

u

[V]
/

ũ

[V]
ua

[V]
τ

[N]
ε

[m]
τ̃m

[V]
/
τm

[V]

dL
[m]

/
dLm

[m]

/

/

u′

[V]
/

Figure 2.19: Block Diagram of the experimental setup and model

2.4.1 Measured Frequency Response Functions

The identification is performed without added mass, and with one, two and three layers of added
cylinders.

Matlab
i_masses = 0:3;

The following data are loaded:

• Va : the excitation voltage (corresponding to ui)

• Vs : the generated voltage by the 6 force sensors (corresponding to τm)

• de : the measured motion by the 6 encoders (corresponding to dLm)

Matlab
%% Load Identification Data
meas_added_mass = {};

for i_mass = i_masses
for i_strut = 1:6

meas_added_mass(i_strut, i_mass+1) = {load(sprintf('frf_data_exc_strut_%i_realigned_vib_table_%im.mat', i_strut,
i_mass), 't', 'Va', 'Vs', 'de')};↪→
end

end

The window win and the frequency vector f are defined.

Matlab
% Sampling Time [s]
Ts = (meas_added_mass{1,1}.t(end) - (meas_added_mass{1,1}.t(1)))/(length(meas_added_mass{1,1}.t)-1);

% Hannning Windows
win = hanning(ceil(1/Ts));

% And we get the frequency vector
[~, f] = tfestimate(meas_added_mass{1,1}.Va, meas_added_mass{1,1}.de, win, [], [], 1/Ts);

61

Finally the 6× 6 transfer function matrices from u to dLm and from u to τm are identified:

Matlab
%% DVF Plant (transfer function from u to dLm)
G_dL = {};

for i_mass = i_masses
G_dL(i_mass+1) = {zeros(length(f), 6, 6)};
for i_strut = 1:6

G_dL{i_mass+1}(:,:,i_strut) = tfestimate(meas_added_mass{i_strut, i_mass+1}.Va, meas_added_mass{i_strut, i_mass+1}.de,
win, [], [], 1/Ts);↪→
end

end

%% IFF Plant (transfer function from u to taum)
G_tau = {};

for i_mass = i_masses
G_tau(i_mass+1) = {zeros(length(f), 6, 6)};
for i_strut = 1:6

G_tau{i_mass+1}(:,:,i_strut) = tfestimate(meas_added_mass{i_strut, i_mass+1}.Va, meas_added_mass{i_strut, i_mass+1}.Vs,
win, [], [], 1/Ts);↪→
end

end

The identified dynamics are then saved for further use.

Matlab
save('mat/frf_vib_table_m.mat', 'f', 'Ts', 'G_tau', 'G_dL')

2.4.2 Transfer function from Actuators to Encoders

The transfer functions from ui to dLm,i are shown in Figure 2.20.

Important

From Figure 2.20, we can observe few things:

• The obtained dynamics is changing a lot between the case without mass and when there
is at least one added mass.

• Between 1, 2 and 3 added masses, the dynamics is not much different, and it would be
easier to design a controller only for these cases.

• The flexible modes of the top plate is first decreased a lot when the first mass is added
(from 700Hz to 400Hz). This is due to the fact that the added mass is composed of two
half cylinders which are not fixed together. Therefore is adds a lot of mass to the top plate
without adding a lot of rigidity in one direction. When more than 1 mass layer is added,
the half cylinders are added with some angles such that rigidity are added in all directions
(see Figure 2.18). In that case, the frequency of these flexible modes are increased. In
practice, the payload should be one solid body, and we should not see a massive decrease
of the frequency of this flexible mode.

• Flexible modes of the top plate are becoming less problematic as masses are added.

• First flexible mode of the strut at 230Hz is not much decreased when mass is added.
However, its apparent amplitude is much decreased.

62

10!8

10!7

10!6

10!5

10!4

10!3

A
m
p
li
tu
d
e
[m

/V
]

dLm;i=ui - 0
dLm;i=ui - 1

dLm;i=ui - 2
dLm;i=ui - 3

102 103

Frequency [Hz]

-90

0

90

180

P
h
as
e
[d
eg
]

Figure 2.20: Measured Frequency Response Functions from ui to dLm,i for all 4 payload conditions

63

2.4.3 Transfer function from Actuators to Force Sensors

The transfer functions from ui to τm,i are shown in Figure 2.21.

10!2

10!1

100

101

102
A
m

p
li
tu

d
e
[V

/V
]

=m;i=ui - 0
=m;i=ui - 1

=m;i=ui - 2
=m;i=ui - 3

102 103

Frequency [Hz]

-180

-90

0

90

180

P
h
as

e
[d

eg
]

Figure 2.21: Measured Frequency Response Functions from ui to τm,i for all 4 payload conditions

Important

From Figure 2.21, we can see that for all added payloads, the transfer function from ui to τm,i

always has alternating poles and zeros.

2.5 Comparison with the Simscape model

2.5.1 System Identification

Let’s initialize the simscape model with the nano-hexapod fixed on top of the vibration table.

Matlab
support.type = 1; % On top of vibration table

The model of the nano-hexapod is defined as shown bellow:

64

Matlab
%% Initialize Nano-Hexapod
n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '2dof', ...

'flex_top_type', '3dof', ...
'motion_sensor_type', 'plates', ...
'actuator_type', '2dof');

And finally, we add the same payloads as during the experiments:

Matlab
payload.type = 1; % Payload / 1 "mass layer"

First perform the identification for the transfer functions from u to dLm:

Matlab
%% Identify the DVF Plant (transfer function from u to dLm)
clear io; io_i = 1;
io(io_i) = linio([mdl, '/du'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs
io(io_i) = linio([mdl, '/dL'], 1, 'openoutput'); io_i = io_i + 1; % Encoders

%% Identification for all the added payloads
G_dL = {};

for i = i_masses
fprintf('i = %i\n', i)
payload.type = i;
G_dL(i+1) = {exp(-s*frf_ol.Ts)*linearize(mdl, io, 0.0, options)};

end

Matlab
%% Identify the IFF Plant (transfer function from u to taum)
clear io; io_i = 1;
io(io_i) = linio([mdl, '/du'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs
io(io_i) = linio([mdl, '/Fm'], 1, 'openoutput'); io_i = io_i + 1; % Force Sensors

%% Identification for all the added payloads
G_tau = {};

for i = 0:3
fprintf('i = %i\n', i)
payload.type = i;
G_tau(i+1) = {exp(-s*frf_ol.Ts)*linearize(mdl, io, 0.0, options)};

end

The identified dynamics are then saved for further use.

Matlab
save('mat/sim_vib_table_m.mat', 'G_tau', 'G_dL')

2.5.2 Transfer function from Actuators to Encoders

The measured FRF and the identified dynamics from ui to dLm,i are compared in Figure 2.22. A zoom
near the “suspension” modes is shown in Figure 2.23.

65

10!8

10!7

10!6

10!5

10!4

10!3

A
m
p
li
tu
d
e
[m
/V
]

dLm;i=ui - FRF 0
dLm;i=ui - Sim 0
dLm;i=ui - FRF 1
dLm;i=ui - Sim 1

dLm;i=ui - FRF 2
dLm;i=ui - Sim 2
dLm;i=ui - FRF 3
dLm;i=ui - Sim 3

102 103

Frequency [Hz]

-45

0

45

90

135

180

P
h
as
e
[d
eg
]

Figure 2.22: Comparison of the transfer functions from ui to dLm,i - measured FRF and identification
from the Simscape model

66

10!6

10!5

10!4

A
m
p
li
tu

d
e
[m

/V
]

dLm;i=ui - FRF 0
dLm;i=ui - Sim 0
dLm;i=ui - FRF 1
dLm;i=ui - Sim 1

dLm;i=ui - FRF 2
dLm;i=ui - Sim 2
dLm;i=ui - FRF 3
dLm;i=ui - Sim 3

40 60 80 100 120 140 160 180 200

Frequency [Hz]

-45

0

45

90

135

180

P
h
as

e
[d
eg

]

Figure 2.23: Comparison of the transfer functions from ui to dLm,i - measured FRF and identification
from the Simscape model (Zoom)

67

Important

The Simscape model is very accurately representing the measured dynamics up. Only the flexible
modes of the struts and of the top plate are not represented here as these elements are modelled
as rigid bodies.

2.5.3 Transfer function from Actuators to Force Sensors

The measured FRF and the identified dynamics from ui to τm,i are compared in Figure 2.24. A zoom
near the “suspension” modes is shown in Figure 2.25.

10!2

10!1

100

101

102

A
m
p
li
tu
d
e
[V
/V

]

d=m;i=ui - FRF 0
=m;i=ui - Sim 0
d=m;i=ui - FRF 1
=m;i=ui - Sim 1

d=m;i=ui - FRF 2
=m;i=ui - Sim 2
d=m;i=ui - FRF 3
=m;i=ui - Sim 3

102 103

Frequency [Hz]

-180

-90

0

90

180

P
h
as
e
[d
eg
]

Figure 2.24: Comparison of the transfer functions from ui to τm,i - measured FRF and identification
from the Simscape model

2.6 Integral Force Feedback Controller

2.6.1 Robust IFF Controller

Based on the measured FRF from ui to τm,i, the following IFF controller is developed:

68

10!2

10!1

100

101

102

A
m
p
li
tu
d
e
[V

/V
]

d=m;i=ui - FRF 0
=m;i=ui - Sim 0
d=m;i=ui - FRF 1
=m;i=ui - Sim 1

d=m;i=ui - FRF 2
=m;i=ui - Sim 2
d=m;i=ui - FRF 3
=m;i=ui - Sim 3

40 60 80 100 120 140 160 180 200

Frequency [Hz]

-180

-90

0

90

180

P
h
as
e
[d
eg
]

Figure 2.25: Comparison of the transfer functions from ui to τm,i - measured FRF and identification
from the Simscape model (Zoom)

69

Matlab
%% IFF Controller
Kiff_g1 = (1/(s + 2*pi*20))*... % LPF: provides integral action above 20[Hz]

(s/(s + 2*pi*20))*... % HPF: limit low frequency gain
(1/(1 + s/2/pi/400)); % LPF: more robust to high frequency resonances

Then, the Root Locus plot of Figure 2.26 is used to estimate the optimal gain. This Root Locus plot
is computed from the Simscape model.

-600 -500 -400 -300 -200 -100 0

Real Part

0

200

400

600

800

1000

1200

1400

Im
a
g
in

a
ry

P
a
rt

OL Poles - 0
OL Poles - 1

OL Poles - 2
OL Poles - 3

g = !200

Figure 2.26: Root Locus for the IFF control strategy (for all payload conditions).

The found optimal IFF controller is:

Matlab
%% Optimal controller
g_opt = -2e2;
Kiff = g_opt*Kiff_g1*eye(6);

It is saved for further use.

Matlab
save('mat/Kiff_opt.mat', 'Kiff')

The corresponding experimental loop gains are shown in Figure 2.27.

70

10!2

10!1

100

101

102

L
o
op

G
ai

n
[-
]

101 102 103

Frequency [Hz]

-180

-90

0

90

180

P
h
as

e
[d

eg
]

Figure 2.27: Loop gain for the Integral Force Feedback controller

71

Important

Based on the above analysis:

• The same IFF controller can be used to damp the suspension modes for all payload con-
ditions

• The IFF controller should be robust

2.6.2 Estimated Damped Plant from the Simscape model

Let’s initialize the simscape model with the nano-hexapod fixed on top of the vibration table.

Matlab
support.type = 1; % On top of vibration table

The model of the nano-hexapod is defined as shown bellow:

Matlab
%% Initialize the Simscape model in closed loop
n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '2dof', ...

'flex_top_type', '3dof', ...
'motion_sensor_type', 'plates', ...
'actuator_type', '2dof', ...
'controller_type', 'iff');

And finally, we add the same payloads as during the experiments:

Matlab
payload.type = 1; % Payload / 1 "mass layer"

Matlab
%% Identify the (damped) transfer function from u to dLm
clear io; io_i = 1;
io(io_i) = linio([mdl, '/du'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs
io(io_i) = linio([mdl, '/dL'], 1, 'openoutput'); io_i = io_i + 1; % Plate Displacement (encoder)

%% Identify for all add masses
G_dL = {};

for i = i_masses
payload.type = i;
G_dL(i+1) = {exp(-s*frf_ol.Ts)*linearize(mdl, io, 0.0, options)};

end

The identified dynamics are then saved for further use.

Matlab
save('mat/sim_iff_vib_table_m.mat', 'G_dL');

72

Matlab
sim_iff = load('sim_iff_vib_table_m.mat', 'G_dL');

10!7

10!6

10!5

10!4

10!3
A
m
p
li
tu
d
e
[m

/V
]

dLi=ui - 0
dLi=u

0
i - 0

dLi=ui - 1
dLi=u

0
i - 1

dLi=ui - 2
dLi=u

0
i - 2

dLi=ui - 3
dLi=u

0
i - 3

101 102 103

Frequency [Hz]

-180

-90

0

90

180

P
h
as
e
[d
eg
]

Figure 2.28: Transfer function from ui to dLm,i (without active damping) and from u′i to dLm,i (with
IFF)

2.6.3 Compute the identified FRF with IFF

The identification is performed without added mass, and with one, two and three layers of added
cylinders.

Matlab
i_masses = 0:3;

The following data are loaded:

• Va : the excitation voltage for the damped plant (corresponding to u′i)

• de : the measured motion by the 6 encoders (corresponding to dLm)
Matlab

%% Load Identification Data
meas_added_mass = {};

73

for i_mass = i_masses
for i_strut = 1:6

meas_iff_mass(i_strut, i_mass+1) = {load(sprintf('frf_data_exc_strut_%i_iff_vib_table_%im.mat', i_strut, i_mass), 't',
'Va', 'de')};↪→
end

end

The window win and the frequency vector f are defined.
Matlab

% Sampling Time [s]
Ts = (meas_iff_mass{1,1}.t(end) - (meas_iff_mass{1,1}.t(1)))/(length(meas_iff_mass{1,1}.t)-1);

% Hannning Windows
win = hanning(ceil(1/Ts));

% And we get the frequency vector
[~, f] = tfestimate(meas_iff_mass{1,1}.Va, meas_iff_mass{1,1}.de, win, [], [], 1/Ts);

Finally the 6× 6 transfer function matrix from u′ to dLm is estimated:
Matlab

%% DVF Plant (transfer function from u to dLm)
G_dL = {};

for i_mass = i_masses
G_dL(i_mass+1) = {zeros(length(f), 6, 6)};
for i_strut = 1:6

G_dL{i_mass+1}(:,:,i_strut) = tfestimate(meas_iff_mass{i_strut, i_mass+1}.Va, meas_iff_mass{i_strut, i_mass+1}.de, win,
[], [], 1/Ts);↪→
end

end

The identified dynamics are then saved for further use.
Matlab

save('mat/frf_iff_vib_table_m.mat', 'f', 'Ts', 'G_dL');

2.6.4 Comparison of the measured FRF and the Simscape model

The following figures are computed:

• Figure 2.29: the measured damped FRF are displayed

• Figure 2.30: the open-loop and damped FRF are compared (diagonal elements)

• Figure 2.31: the obtained damped FRF is compared with the identified damped from using the
Simscape model

Important

The IFF control strategy effectively damps all the suspensions modes of the nano-hexapod
whatever the payload is. The obtained plant is easier to control (provided the flexible modes of

74

10!9

10!8

10!7

10!6

10!5

10!4

A
m
p
li
tu

d
e

d
L
=V

a
[m

/V
]

dLm;i=u
0
i - 0

dLm;i=u
0
j - 0

dLm;i=u
0
i - 1

dLm;i=u
0
j - 1

dLm;i=u
0
i - 2

dLm;i=u
0
j - 2

dLm;i=u
0
i - 3

dLm;i=u
0
j - 3

101 102 103

Frequency [Hz]

-180

-90

0

90

180

P
h
as

e
[d
eg

]

Figure 2.29: Diagonal and off-diagonal of the measured FRF matrix for the damped plant

75

10!7

10!6

10!5

10!4

10!3

A
m
p
li
tu
d
e

d
L
=V

a
[m

/V
]

dLi=ui - 0
dLi=u

0
i - 0

dLi=ui - 1
dLi=u

0
i - 1

dLi=ui - 2
dLi=u

0
i - 2

dLi=ui - 3
dLi=u

0
i - 3

101 102 103

Frequency [Hz]

-180

-90

0

90

180

P
h
as
e
[d
eg
]

Figure 2.30: Damped and Undamped measured FRF (diagonal elements)

76

10!8

10!7

10!6

10!5

10!4

A
m
p
li
tu
d
e
[m
/V
]

dLm;i=u
0
i - FRF 0

dLm;i=u
0
i - Sim 0

dLm;i=u
0
i - FRF 1

dLm;i=u
0
i - Sim 1

dLm;i=u
0
i - FRF 2

dLm;i=u
0
i - Sim 2

dLm;i=u
0
i - FRF 3

dLm;i=u
0
i - Sim 3

101 102 103

Frequency [Hz]

-180

-90

0

90

180

P
h
as
e
[d
eg
]

Figure 2.31: Comparison of the measured FRF and the identified dynamics from the Simscape model

77

the top platform are well damped).

2.6.5 Change of coupling with IFF

The added damping using IFF reduces the coupling in the system near the suspensions modes that are
damped. It can be estimated by taking the ratio of the diagonal-term and the off-diagonal term.

This is shown in Figure 2.32.

0

0.2

0.4

0.6

0.8

1

A
m

p
li
tu

d
e

[-
]

OL - 0
IFF - 0

OL - 0
IFF - 0

101 102

Frequency [Hz]

0

0.2

0.4

0.6

0.8

1

A
m

p
li
tu

d
e

[-
]

OL - 0
IFF - 0

101 102

Frequency [Hz]

OL - 0
IFF - 0

Figure 2.32: Comparison of the coupling with and without IFF

2.7 Un-Balanced mass

2.7.1 Introduction

2.7.2 Compute the identified FRF with IFF

The following data are loaded:

• Va : the excitation voltage for the damped plant (corresponding to u′i)

78

Figure 2.33: Nano-Hexapod with unbalanced payload

79

• de : the measured motion by the 6 encoders (corresponding to dLm)
Matlab

%% Load Identification Data
meas_added_mass = {zeros(6,1)};

for i_strut = 1:6
meas_iff_mass(i_strut) = {load(sprintf('frf_data_exc_strut_%i_iff_vib_table_1m_unbalanced.mat', i_strut), 't', 'Va',
'de')};↪→

end

The window win and the frequency vector f are defined.
Matlab

% Sampling Time [s]
Ts = (meas_iff_mass{1}.t(end) - (meas_iff_mass{1}.t(1)))/(length(meas_iff_mass{1}.t)-1);

% Hannning Windows
win = hanning(ceil(1/Ts));

% And we get the frequency vector
[~, f] = tfestimate(meas_iff_mass{1}.Va, meas_iff_mass{1}.de, win, [], [], 1/Ts);

Finally the 6× 6 transfer function matrix from u′ to dLm is estimated:
Matlab

%% DVF Plant (transfer function from u to dLm)
G_dL = zeros(length(f), 6, 6);
for i_strut = 1:6

G_dL(:,:,i_strut) = tfestimate(meas_iff_mass{i_strut}.Va, meas_iff_mass{i_strut}.de, win, [], [], 1/Ts);
end

The identified dynamics are then saved for further use.
Matlab

save('mat/frf_iff_unbalanced_vib_table_m.mat', 'f', 'Ts', 'G_dL');

2.7.3 Effect of an unbalanced payload

The transfer functions from ui to dLi are shown in Figure 2.34. Due to the unbalanced payload, the
system is not symmetrical anymore, and therefore each of the diagonal elements are not equal. This is
due to the fact that each strut is not affected by the same inertia.

2.8 Conclusion

Important

In this section, the dynamics of the nano-hexapod with the encoders fixed to the plates is studied.
It has been found that:

• The measured dynamics is in agreement with the dynamics of the simscape model, up to

80

10!7

10!6

10!5

A
m
p
li
tu
d
e

d
L
=V

a
[m

/V
]

dLm;1=u
0
1

dLm;2=u
0
2

dLm;3=u
0
3

dLm;4=u
0
4

dLm;5=u
0
5

dLm;6=u
0
6

101 102 103

Frequency [Hz]

-180

-90

0

90

180

P
h
as
e
[d
eg
]

Figure 2.34: Transfer function from ui to dLi for the nano-hexapod with an unbalanced payload

81

the flexible modes of the top plate. See figures 2.7 and 2.8 for the transfer function to the
force sensors and Figures 2.10 and 2.11for the transfer functions to the encoders

• The Integral Force Feedback strategy is very effective in damping the suspension modes of
the nano-hexapod (Figure 2.14).

• The transfer function from u′ to dLm show nice dynamical properties and is a much better
candidate for the high-authority-control than when the encoders were fixed to the struts.
At least up to the flexible modes of the top plate, the diagonal elements of the transfer
function matrix have alternating poles and zeros, and the phase is moving smoothly. Only
the flexible modes of the top plates seems to be problematic for control.

82

3 Decentralized High Authority Control
with Integral Force Feedback

In this section is studied the HAC-IFF architecture for the Nano-Hexapod. More precisely:

• The LAC control is a decentralized integral force feedback as studied in Section 2.3

• The HAC control is a decentralized controller working in the frame of the struts

The corresponding control architecture is shown in Figure 3.1 with:

• rXn
: the 6× 1 reference signal in the cartesian frame

• rdL: the 6 × 1 reference signal transformed in the frame of the struts thanks to the inverse
kinematic

• εdL: the 6× 1 length error of the 6 struts

• u′: input of the damped plant

• u: generated DAC voltages

• τm: measured force sensors

• dLm: measured displacement of the struts by the encoders

Plant

KIFF

PD200+KL+
−

Inverse

Kinematics τm

u ua dLmεdL u′rdLrXn

Figure 3.1: HAC-LAC: IFF + Control in the frame of the legs

This part is structured as follow:

• Section 3.1: some reference tracking tests are performed

• Section 3.2: the decentralized high authority controller is tuned using the Simscape model and is
implemented and tested experimentally

83

• Section 3.3: an interaction analysis is performed, from which the best decoupling strategy can be
determined

• Section 3.4: Robust High Authority Controller are designed

3.1 Reference Tracking - Trajectories

In this section, several trajectories representing the wanted pose (position and orientation) of the top
platform with respect to the bottom platform are defined.

These trajectories will be used to test the HAC-LAC architecture.

In order to transform the wanted pose to the wanted displacement of the 6 struts, the inverse kinematic
is required. As a first approximation, the Jacobian matrix J can be used instead of using the full inverse
kinematic equations.

Therefore, the control architecture with the input trajectory rXn
is shown in Figure 3.2.

Plant

KIFF

PD200+KL+
−

J
τm

u ua dLmεdL u′rdLrXn

Figure 3.2: HAC-LAC: IFF + Control in the frame of the legs

In the following sections, several reference trajectories are defined:

• Section 3.1.1: simple scans in the Y-Z plane

• Section 3.1.2: scans in tilt are performed

• Section 3.1.3: scans with X-Y-Z translations in order to draw the word “NASS”

3.1.1 Y-Z Scans

A function generateYZScanTrajectory has been developed (accessible here) in order to easily generate
scans in the Y-Z plane.

For instance, the following generated trajectory is represented in Figure 3.3.

Matlab
%% Generate the Y-Z trajectory scan
Rx_yz = generateYZScanTrajectory(...

'y_tot', 4e-6, ... % Length of Y scans [m]

84

'z_tot', 4e-6, ... % Total Z distance [m]
'n', 5, ... % Number of Y scans
'Ts', 1e-3, ... % Sampling Time [s]
'ti', 1, ... % Time to go to initial position [s]
'tw', 0, ... % Waiting time between each points [s]
'ty', 0.6, ... % Time for a scan in Y [s]
'tz', 0.2); % Time for a scan in Z [s]

-2 -1 0 1 2

y [m] #10!6

-2

-1

0

1

2
z

[m
]

#10!6

Figure 3.3: Generated scan in the Y-Z plane

The Y and Z positions as a function of time are shown in Figure 3.4.

0 1 2 3 4 5 6

Time [s]

-2

-1

0

1

2

D
is
p
la

ce
m

en
t
[m

]

#10!6

Y motion
Z motion

Figure 3.4: Y and Z trajectories as a function of time

Using the Jacobian matrix, it is possible to compute the wanted struts lengths as a function of time:

rdL = JrXn (3.1)

85

Matlab
%% Compute the reference in the frame of the legs
dL_ref = [J*Rx_yz(:, 2:7)']';

The reference signal for the strut length is shown in Figure 3.5.

0 1 2 3 4 5 6

Time [s]

-3

-2

-1

0

1

2

3
S
tr

u
t
M

o
ti
o
n

[m
]

#10!6

rdL1

rdL2

rdL3

rdL4

rdL5

rdL6

Figure 3.5: Trajectories for the 6 individual struts

3.1.2 Tilt Scans

A function generalSpiralAngleTrajectory has been developed in order to easily generate Rx, Ry tilt
scans.

For instance, the following generated trajectory is represented in Figure 3.6.
Matlab

%% Generate the "tilt-spiral" trajectory scan
R_tilt = generateSpiralAngleTrajectory(...

'R_tot', 20e-6, ... % Total Tilt [ad]
'n_turn', 5, ... % Number of scans
'Ts', 1e-3, ... % Sampling Time [s]
't_turn', 1, ... % Turn time [s]
't_end', 1); % End time to go back to zero [s]

The reference signal for the strut length is shown in Figure 3.7.

3.1.3 “NASS” reference path

In this section, a reference path that “draws” the work “NASS” is developed.

First, a series of points representing each letter are defined. Between each letter, a negative Z motion
is performed.

86

-20 -10 0 10 20

Rx [7rad]

-20

-10

0

10

20

R
y

[7
ra

d
]

Figure 3.6: Generated “spiral” scan

0 1 2 3 4 5 6

Time [s]

-4

-3

-2

-1

0

1

2

3

4

S
tr

u
t
M

ot
io

n
[m

]

#10!6

rdL1

rdL2

rdL3

rdL4

rdL5

rdL6

Figure 3.7: Trajectories for the 6 individual struts - Tilt scan

87

Matlab
%% List of points that draws "NASS"
ref_path = [...

0, 0,0; % Initial Position
0,0,1; 0,4,1; 3,0,1; 3,4,1; % N
3,4,0; 4,0,0; % Transition
4,0,1; 4,3,1; 5,4,1; 6,4,1; 7,3,1; 7,2,1; 4,2,1; 4,3,1; 5,4,1; 6,4,1; 7,3,1; 7,0,1; % A
7,0,0; 8,0,0; % Transition
8,0,1; 11,0,1; 11,2,1; 8,2,1; 8,4,1; 11,4,1; % S
11,4,0; 12,0,0; % Transition
12,0,1; 15,0,1; 15,2,1; 12,2,1; 12,4,1; 15,4,1; % S
15,4,0;

];

%% Center the trajectory arround zero
ref_path = ref_path - (max(ref_path) - min(ref_path))/2;

%% Define the X-Y-Z cuboid dimensions containing the trajectory
X_max = 10e-6;
Y_max = 4e-6;
Z_max = 2e-6;

ref_path = ([X_max, Y_max, Z_max]./max(ref_path)).*ref_path; % [m]

Then, using the generateXYZTrajectory function, the 6× 1 trajectory signal is computed.

Matlab
%% Generating the trajectory
Rx_nass = generateXYZTrajectory('points', ref_path);

The trajectory in the X-Y plane is shown in Figure 3.8 (the transitions between the letters are removed).

-10 -5 0 5 10

X [7m]

-4

-2

0

2

4

Y
[7

m
]

Figure 3.8: Reference path corresponding to the “NASS” acronym

It can also be better viewed in a 3D representation as in Figure 3.9.

3.2 First Basic High Authority Controller

In this section, a simple decentralized high authority controller KL is developed to work without any
payload.

88

-2

5

0

z
[7

m
]

y [7m]

0

2

x [7m]

1050-5 -5-10

Figure 3.9: Reference path that draws “NASS” - 3D view

The diagonal controller is tuned using classical Loop Shaping in Section 3.2.1. The stability is verified
in Section 3.2.2 using the Simscape model.

3.2.1 HAC Controller

Let’s first try to design a first decentralized controller with:

• a bandwidth of 100Hz

• sufficient phase margin

• simple and understandable components

After some very basic and manual loop shaping, A diagonal controller is developed. Each diagonal
terms are identical and are composed of:

• A lead around 100Hz

• A first order low pass filter starting at 200Hz to add some robustness to high frequency modes

• A notch at 700Hz to cancel the flexible modes of the top plate

• A pure integrator
Matlab

%% Lead to increase phase margin
a = 2; % Amount of phase lead / width of the phase lead / high frequency gain
wc = 2*pi*100; % Frequency with the maximum phase lead [rad/s]

H_lead = (1 + s/(wc/sqrt(a)))/(1 + s/(wc*sqrt(a)));

%% Low Pass filter to increase robustness
H_lpf = 1/(1 + s/2/pi/200);

%% Notch at the top-plate resonance
gm = 0.02;
xi = 0.3;
wn = 2*pi*700;

89

H_notch = (s^2 + 2*gm*xi*wn*s + wn^2)/(s^2 + 2*xi*wn*s + wn^2);

%% Decentralized HAC
Khac_iff_struts = -(1/(2.87e-5)) * ... % Gain

H_lead * ... % Lead
H_notch * ... % Notch
(2*pi*100/s) * ... % Integrator
eye(6); % 6x6 Diagonal

This controller is saved for further use.

Matlab
save('mat/Khac_iff_struts.mat', 'Khac_iff_struts')

The experimental loop gain is computed and shown in Figure 3.10.

Matlab
L_hac_iff_struts = pagemtimes(permute(frf_iff.G_dL{1}, [2 3 1]), squeeze(freqresp(Khac_iff_struts, frf_iff.f, 'Hz')));

10!3

10!2

10!1

100

101

102

L
o
op

G
ai
n

[-
]

Diagonal
O,-Diag

101 102 103

Frequency [Hz]

-180

-90

0

90

180

P
h
a
se

[d
eg

]

Figure 3.10: Diagonal and off-diagonal elements of the Loop gain for “HAC-IFF-Struts”

90

3.2.2 Verification of the Stability using the Simscape model

The HAC-IFF control strategy is implemented using Simscape.

Matlab
%% Initialize the Simscape model in closed loop
n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ...

'flex_top_type', '4dof', ...
'motion_sensor_type', 'plates', ...
'actuator_type', 'flexible', ...
'controller_type', 'hac-iff-struts');

Matlab
%% Identify the (damped) transfer function from u to dLm
clear io; io_i = 1;
io(io_i) = linio([mdl, '/du'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs
io(io_i) = linio([mdl, '/dL'], 1, 'openoutput'); io_i = io_i + 1; % Plate Displacement (encoder)

We identify the closed-loop system.

Matlab
%% Identification
Gd_iff_hac_opt = linearize(mdl, io, 0.0, options);

And verify that it is indeed stable.

Matlab
%% Verify the stability
isstable(Gd_iff_hac_opt)

Results
1

3.2.3 Experimental Validation

Both the Integral Force Feedback controller (developed in Section 2.3) and the high authority controller
working in the frame of the struts (developed in Section 3.2) are implemented experimentally.

Two reference tracking experiments are performed to evaluate the stability and performances of the
implemented control.

Matlab
%% Load the experimental data
load('hac_iff_struts_yz_scans.mat', 't', 'de')

The position of the top-platform is estimated using the Jacobian matrix:

91

Matlab
%% Pose of the top platform from the encoder values
load('jacobian.mat', 'J');
Xe = [inv(J)*de']';

Matlab
%% Generate the Y-Z trajectory scan
Rx_yz = generateYZScanTrajectory(...

'y_tot', 4e-6, ... % Length of Y scans [m]
'z_tot', 8e-6, ... % Total Z distance [m]
'n', 5, ... % Number of Y scans
'Ts', 1e-3, ... % Sampling Time [s]
'ti', 1, ... % Time to go to initial position [s]
'tw', 0, ... % Waiting time between each points [s]
'ty', 0.6, ... % Time for a scan in Y [s]
'tz', 0.2); % Time for a scan in Z [s]

The reference path as well as the measured position are partially shown in the Y-Z plane in Figure 3.11.

-2 0 2

Y [7m]

-4

-2

0

2

4

Z
[7

m
]

1.6 1.7 1.8 1.9 2 2.1

Y [7m]

-4.1

-4

-3.9

-3.8

-3.7

-3.6

Z
[7

m
]

Xn

rXn

Figure 3.11: Measured position Xn and reference signal rXn in the Y-Z plane - Zoom on a change of
direction

Important

It is clear from Figure 3.11 that the position of the nano-hexapod effectively tracks to reference
signal. However, oscillations with amplitudes as large as 50nm can be observe.
It turns out that the frequency of these oscillations is 100Hz which is corresponding to the
crossover frequency of the High Authority Control loop. This clearly indicates poor stability
margins. In the next section, the controller is re-designed to improve the stability margins.

92

3.2.4 Controller with increased stability margins

The High Authority Controller is re-designed in order to improve the stability margins.

Matlab
%% Lead
a = 5; % Amount of phase lead / width of the phase lead / high frequency gain
wc = 2*pi*110; % Frequency with the maximum phase lead [rad/s]

H_lead = (1 + s/(wc/sqrt(a)))/(1 + s/(wc*sqrt(a)));

%% Low Pass Filter
H_lpf = 1/(1 + s/2/pi/300);

%% Notch
gm = 0.02;
xi = 0.5;
wn = 2*pi*700;

H_notch = (s^2 + 2*gm*xi*wn*s + wn^2)/(s^2 + 2*xi*wn*s + wn^2);

%% HAC Controller
Khac_iff_struts = -2.2e4 * ... % Gain

H_lead * ... % Lead
H_lpf * ... % Lead
H_notch * ... % Notch
(2*pi*100/s) * ... % Integrator
eye(6); % 6x6 Diagonal

The bode plot of the new loop gain is shown in Figure 3.12.

10!3

10!2

10!1

100

101

102

L
o
op

G
ai
n

[-
]

Diagonal
O,-Diag

100 101 102 103

Frequency [Hz]

-180

-90

0

90

180

P
h
as

e
[d

eg
]

Figure 3.12: Loop Gain for the updated decentralized HAC controller

93

This new controller is implemented experimentally and several tracking tests are performed.

Matlab
%% Load Measurements
load('hac_iff_more_lead_nass_scan.mat', 't', 'de')

The pose of the top platform is estimated from the encoder position using the Jacobian matrix.

Matlab
%% Compute the pose of the top platform
load('jacobian.mat', 'J');
Xe = [inv(J)*de']';

The measured motion as well as the trajectory are shown in Figure 3.13.

-2

5

-1

0

z
[7

m
]

#10!6

#10!6

y [7m]

0

1

2

1

x [7m]
#10!5

0.5
0-5 -0.5

-1

Figure 3.13: Measured position Xn and reference signal rXn
for the “NASS” trajectory

The trajectory and measured motion are also shown in the X-Y plane in Figure 3.14.

The orientation errors during all the scans are shown in Figure 3.15.

Important

Using the updated High Authority Controller, the nano-hexapod can follow trajectories with
high accuracy (the position errors are in the order of 50nm peak to peak, and the orientation
errors 300nrad peak to peak).

94

-10 -5 0 5 10

X [7m]

-4

-2

0

2

4

Y
[7

m
]

4.5 4.6 4.7

X [7m]

-0.15

-0.1

-0.05

0

Y
[7

m
]

Figure 3.14: Reference path and measured motion in the X-Y plane

-100 0 100

Rx [nrad]

-100

-50

0

50

100

R
y

[n
ra

d
]

Figure 3.15: Orientation errors during the scan

95

3.3 Interaction Analysis and Decoupling

In this section, the interaction in the identified plant is estimated using the Relative Gain Array (RGA)
[2, Chap. 3.4].

Then, several decoupling strategies are compared for the nano-hexapod.

The RGA Matrix is defined as follow:

RGA(G(f)) = G(f)× (G(f)−1)T (3.2)

Then, the RGA number is defined:

RGA-num(f) = ‖I - RGA(G(f))‖sum (3.3)

In this section, the plant with 2 added mass is studied.

3.3.1 Parameters

Matlab
wc = 100; % Wanted crossover frequency [Hz]
[~, i_wc] = min(abs(frf_iff.f - wc)); % Indice corresponding to wc

Matlab
%% Plant to be decoupled
frf_coupled = frf_iff.G_dL{2};
G_coupled = sim_iff.G_dL{2};

3.3.2 No Decoupling (Decentralized)

G
τ dL

Figure 3.16: Block diagram representing the plant.

3.3.3 Static Decoupling

The DC gain is evaluated from the model as be have bad low frequency identification.

-62011.5 3910.6 4299.3 660.7 -4016.5 -4373.6
3914.4 -61991.2 -4356.8 -4019.2 640.2 4281.6
-4020.0 -4370.5 -62004.5 3914.6 4295.8 653.8
660.9 4292.4 3903.3 -62012.2 -4366.5 -4008.9
4302.8 655.6 -4025.8 -4377.8 -62006.0 3919.7
-4377.9 -4013.2 668.6 4303.7 3906.8 -62019.3

96

10!9

10!8

10!7

10!6

10!5

10!4

A
m

p
li

tu
d

e

y1=u1

y2=u2

y3=u3

y4=u4

y5=u5

y6=u6

Coupling

101 102 103

Frequency [Hz]

-180

-90

0

90

180

P
h

as
e

[d
eg

]

Figure 3.17: Bode Plot of the decentralized plant (diagonal and off-diagonal terms)

101 102 103

Frequency [Hz]

10!2

10!1

100

101

102

R
G

A
N

u
m

b
er

Figure 3.18: RGA number for the decentralized plant

Gstatic

GĜ(j0)−1u τ dL

Figure 3.19: Decoupling using the inverse of the DC gain of the plant

97

10!3

10!2

10!1

100

101

A
m
p
li
tu
d
e

y1=u1

y2=u2

y3=u3

y4=u4

y5=u5

y6=u6

Coupling

101 102 103

Frequency [Hz]

-180

-90

0

90

180

P
h
as
e
[d
eg
]

Figure 3.20: Bode Plot of the static decoupled plant

101 102 103

Frequency [Hz]

10!2

10!1

100

101

102

R
G

A
N

u
m

b
er

Figure 3.21: RGA number for the statically decoupled plant

98

3.3.4 Decoupling at the Crossover

Gωc

GĜ(jωc)−1u τ dL

Figure 3.22: Decoupling using the inverse of a dynamical model Ĝ of the plant dynamics G

67229.8 3769.3 -13704.6 -23084.8 -6318.2 23378.7
3486.2 67708.9 23220.0 -6314.5 -22699.8 -14060.6
-5731.7 22471.7 66701.4 3070.2 -13205.6 -21944.6
-23305.5 -14542.6 2743.2 70097.6 24846.8 -5295.0
-14882.9 -22957.8 -5344.4 25786.2 70484.6 2979.9
24353.3 -5195.2 -22449.0 -14459.2 2203.6 69484.2

10!3

10!2

10!1

100

101

A
m

p
li
tu

d
e

d
L
=V

a
[m

/V
]

y1=u1

y2=u2

y3=u3

y4=u4

y5=u5

y6=u6

Coupling

101 102 103

Frequency [Hz]

-180

-90

0

90

180

P
h
as

e
[d

eg
]

Figure 3.23: Bode Plot of the plant decoupled at the crossover
Matlab

%% Compute RGA Matrix
RGA_wc = zeros(size(frf_coupled));
for i = 1:length(frf_iff.f)

RGA_wc(i,:,:) = squeeze(G_dL_wc(i,:,:)).*inv(squeeze(G_dL_wc(i,:,:))).';
end

%% Compute RGA-number
RGA_wc_sum = zeros(size(RGA_wc, 1), 1);

99

for i = 1:size(RGA_wc, 1)
RGA_wc_sum(i) = sum(sum(abs(eye(6) - squeeze(RGA_wc(i,:,:)))));

end

101 102 103

Frequency [Hz]

10!2

10!1

100

101

102

R
G

A
N

u
m

b
er

Figure 3.24: RGA number for the plant decoupled at the crossover

3.3.5 SVD Decoupling

GSV D

GV −T U−1u τ dL y

Figure 3.25: Decoupling using the Singular Value Decomposition

Matlab
%% Compute the RGA matrix for the SVD decoupled plant
RGA_svd = zeros(size(frf_coupled));
for i = 1:length(frf_iff.f)

RGA_svd(i,:,:) = squeeze(G_dL_svd(i,:,:)).*inv(squeeze(G_dL_svd(i,:,:))).';
end

%% Compute the RGA-number
RGA_svd_sum = zeros(size(RGA_svd, 1), 1);
for i = 1:length(frf_iff.f)

RGA_svd_sum(i) = sum(sum(abs(eye(6) - squeeze(RGA_svd(i,:,:)))));
end

Matlab
%% RGA Number for the SVD decoupled plant
figure;
plot(frf_iff.f, RGA_svd_sum, 'k-');
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
xlabel('Frequency [Hz]'); ylabel('RGA Number');
xlim([10, 1e3]); ylim([1e-2, 1e2]);

100

10!9

10!8

10!7

10!6

10!5

10!4

A
m

p
li

tu
d

e

y1=u1

y2=u2

y3=u3

y4=u4

y5=u5

y6=u6

Coupling

101 102 103

Frequency [Hz]

-180

-90

0

90

180

P
h

as
e

[d
eg

]

Figure 3.26: Bode Plot of the plant decoupled using the Singular Value Decomposition

101 102 103

Frequency [Hz]

10!2

10!1

100

101

102

R
G

A
N

u
m

b
er

Figure 3.27: RGA number for the plant decoupled using the SVD

101

3.3.6 Dynamic decoupling

Ginv

GĜ−1u τ dL

Figure 3.28: Decoupling using the inverse of a dynamical model Ĝ of the plant dynamics G

10!4

10!3

10!2

10!1

100

101

A
m
p
li
tu
d
e

y1=u1

y2=u2

y3=u3

y4=u4

y5=u5

y6=u6

Coupling

101 102 103

Frequency [Hz]

-180

-90

0

90

180

P
h
as
e
[d
eg
]

Figure 3.29: Bode Plot of the dynamically decoupled plant

3.3.7 Jacobian Decoupling - Center of Stiffness

3.3.8 Jacobian Decoupling - Center of Mass

3.3.9 Decoupling Comparison

Let’s now compare all of the decoupling methods (Figure 3.37).

102

101 102 103

Frequency [Hz]

10!2

10!1

100

101

102

R
G

A
N

u
m

b
er

Figure 3.30: RGA number for the dynamically decoupled plant

G{K}

GJ−T
s,{K} J−1

a,{K}
F{K} τ dL X {K}

Figure 3.31: Decoupling using Jacobian matrices evaluated at the Center of Stiffness

10!3

10!2

10!1

100

101

A
m
p
li
tu
d
e

Dx= ~Fx

Dy= ~Fy

Dz= ~Fz

Rx= ~Mx

Ry= ~My

Rz= ~Mz

Coupling

101 102 103

Frequency [Hz]

-180

-90

0

90

180

P
h
as
e
[d
eg
]

Figure 3.32: Bode Plot of the plant decoupled using the Jacobian evaluated at the “center of stiffness”

103

101 102 103

Frequency [Hz]

10!2

10!1

100

101

102

R
G

A
N

u
m

b
er

Figure 3.33: RGA number for the plant decoupled using the Jacobian evaluted at the Center of Stiff-
ness

G{M}

GJ−T
s,{M} J−1

a,{M}
F{M} τ dL X {M}

Figure 3.34: Decoupling using Jacobian matrices evaluated at the Center of Mass

Important

From Figure 3.37, the following remarks are made:

• Decentralized plant: well decoupled below suspension modes

• Static inversion: similar to the decentralized plant as the decentralized plant has already
a good decoupling at low frequency

• Crossover inversion: the decoupling is improved around the crossover frequency as com-
pared to the decentralized plant. However, the decoupling is increased at lower frequency.

• SVD decoupling: Very good decoupling up to 235Hz. Especially between 100Hz and
200Hz.

• Dynamic Inversion: the plant is very well decoupled at frequencies where the model is
accurate (below 235Hz where flexible modes are not modelled).

• Jacobian - Stiffness: good decoupling at low frequency. The decoupling increases at
the frequency of the suspension modes, but is acceptable up to the strut flexible modes
(235Hz).

• Jacobian - Mass: bad decoupling at low frequency. Better decoupling above the fre-
quency of the suspension modes, and acceptable decoupling up to the strut flexible modes
(235Hz).

104

10!3

10!2

10!1

100

101

A
m
p
li
tu
d
e

Dx= ~Fx

Dy= ~Fy

Dz= ~Fz

Rx= ~Mx

Ry= ~My

Rz= ~Mz

Coupling

101 102 103

Frequency [Hz]

-180

-90

0

90

180

P
h
as
e
[d
eg
]

Figure 3.35: Bode Plot of the plant decoupled using the Jacobian evaluated at the Center of Mass

101 102 103

Frequency [Hz]

10!2

10!1

100

101

102

R
G

A
N

u
m

b
er

Figure 3.36: RGA number for the plant decoupled using the Jacobian evaluted at the Center of Mass

105

101 102 103

Frequency [Hz]

10!2

10!1

100

101

102

R
G
A
N
u
m
b
er

Decentralized
Static inv.
Crossover inv.
SVD

Dynamic inv.
Jacobian - CoK
Jacobian - CoM

Figure 3.37: Comparison of the obtained RGA-numbers for all the decoupling methods

3.3.10 Decoupling Robustness

Let’s now see how the decoupling is changing when changing the payload’s mass.

Matlab
frf_new = frf_iff.G_dL{3};

The obtained RGA-numbers are shown in Figure 3.38.

Important

From Figure 3.38:

• The decoupling using the Jacobian evaluated at the “center of stiffness” seems to give the
most robust results.

106

101 102 103

Frequency [Hz]

10!2

10!1

100

101

102

R
G
A
N
u
m
b
er

Decentralized
Static inv.
Crossover inv.
SVD

Dynamic inv.
Jacobian - CoK
Jacobian - CoM

Figure 3.38: Change of the RGA-number with a change of the payload. Indication of the robustness
of the inversion method.

3.3.11 Conclusion

Important

Several decoupling methods can be used:

• SVD

• Inverse

• Jacobian (CoK)

Table 3.1: Summary of the interaction analysis and different decoupling strategies

Method RGA Diag Plant Robustness

Decentralized – Equal ++
Static dec. – Equal ++
Crossover dec. - Equal 0
SVD ++ Diff +
Dynamic dec. ++ Unity, equal -
Jacobian - CoK + Diff ++
Jacobian - CoM 0 Diff +

107

3.4 Robust High Authority Controller

In this section we wish to develop a robust High Authority Controller (HAC) that is working for all
payloads.

[1]

3.4.1 Using Jacobian evaluated at the center of stiffness

Decoupled Plant

Matlab
G_nom = frf_iff.G_dL{2}; % Nominal Plant

10!3

10!2

10!1

100

101

A
m
p
li
tu
d
e

Dx= ~Fx

Dy= ~Fy

Dz= ~Fz

Rx= ~Mx

Ry= ~My

Rz= ~Mz

Coupling

101 102 103

Frequency [Hz]

-180

-90

0

90

180

P
h
a
se

[d
eg
]

Figure 3.39: Bode plot of the decoupled plant using the Jacobian evaluated at the Center of Stiffness

SISO Controller Design

As the diagonal elements of the plant are not equal, several SISO controllers are designed and then
combined to form a diagonal controller. All the diagonal terms of the controller consists of:

108

• A double integrator to have high gain at low frequency

• A lead around the crossover frequency to increase stability margins

• Two second order low pass filters above the crossover frequency to increase the robustness to high
frequency modes

Obtained Loop Gain

10!2

100

102

L
o
op

G
ai
n

100 101 102 103

Frequency [Hz]

-180
-135
-90
-45
0

45
90

135
180

P
h
as
e
[d
eg
]

Figure 3.40: Bode plot of the Loop Gain when using the Jacobian evaluated at the Center of Stiffness
to decouple the system

Matlab
%% Controller to be implemented
Kd = inv(J_cok')*input_normalize*ss(Kd_diag)*inv(Js_cok);

Verification of the Stability

Now the stability of the feedback loop is verified using the generalized Nyquist criteria.

109

-3 -2 -1 0 1

Real

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Im
a
g

2 masses
3 masses

Figure 3.41: Loci of L(jω) in the complex plane.

Save for further analysis

Matlab
save('mat/Khac_iff_struts_jacobian_cok.mat', 'Kd')

Sensitivity transfer function from the model

The results are shown in Figure 3.42.

3.4.2 Using Singular Value Decomposition

Decoupled Plant

Matlab
G_nom = frf_iff.G_dL{2}; % Nominal Plant

110

100 101 102 103

Frequency [Hz]

10!4

10!2

100

S
en

si
ti
v
it
y

[-
]

SDx - Model
SDy - Model

SDz - Model
SRx - Model

SRy - Model
SRz - Model

Figure 3.42: Estimated sensitivity transfer functions for the HAC controller using the Jacobian esti-
mated at the Center of Stiffness

10!9

10!8

10!7

10!6

10!5

10!4

A
m

p
li

tu
d

e

y1=u1

y2=u2

y3=u3

y4=u4

y5=u5

y6=u6

Coupling

101 102 103

Frequency [Hz]

-180

-90

0

90

180

P
h

as
e

[d
eg

]

Figure 3.43: Bode plot of the decoupled plant using the SVD

111

Controller Design

Loop Gain

10!2

100

102

L
o
op

G
ai
n

100 101 102 103

Frequency [Hz]

-180

-150

-120

-90

-60

-30

0

P
h
as
e
[d
eg
]

Figure 3.44: Bode plot of Loop Gain when using the SVD

Stability Verification

Matlab
%% Compute the Eigenvalues of the loop gain
Ldet = zeros(3, 6, length(frf_iff.f));

for i = 1:3
Lmimo = pagemtimes(permute(frf_iff.G_dL{i}, [2,3,1]),squeeze(freqresp(Kd, frf_iff.f, 'Hz')));
for i_f = 2:length(frf_iff.f)

Ldet(i,:, i_f) = eig(squeeze(Lmimo(:,:,i_f)));
end

end

Save for further analysis

Matlab
save('mat/Khac_iff_struts_svd.mat', 'Kd')

112

-3 -2 -1 0 1

Real

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Im
a
g

2 masses
3 masses

Figure 3.45: Locis of L(jω) in the complex plane.

Measured Sensitivity Transfer Function

The sensitivity transfer function is estimated by adding a reference signal Rx consisting of a low pass
filtered white noise, and measuring the position error Ex at the same time.

The transfer function from Rx to Ex is the sensitivity transfer function.

In order to identify the sensitivity transfer function for all directions, six reference signals are used, one
for each direction.

An example is shown in Figure 3.46 where both the reference signal and the measured position are
shown for translations in the x direction.

The sensitivity transfer functions estimated for all directions are shown in Figure 3.47.

Important

From Figure 3.47:

• The sensitivity transfer functions are similar for all directions

• The disturbance attenuation at 1Hz is almost a factor 1000 as wanted

• The sensitivity transfer functions for Rx and Ry have high peak values which indicate poor
stability margins.

113

20 20.5 21 21.5 22

Time [s]

-1

-0.5

0

0.5

1

1.5

D
x

m
o
ti
o
n

[m
]

#10!6

Pos.
Ref.

Figure 3.46: Reference position and measured position

100 101 102 103

Frequency [Hz]

10!4

10!2

100

S
en

si
ti
v
it
y

[-
]

SDx

SDy

SDz

SRx

SRy

SRz

Figure 3.47: Measured diagonal elements of the sensitivity transfer function matrix.

114

Sensitivity transfer function from the model

The sensitivity transfer function is now estimated using the model and compared with the one mea-
sured.

The results are shown in Figure 3.48. The model is quite effective in estimating the sensitivity transfer
functions except around 60Hz were there is a peak for the measurement.

100 101 102 103

Frequency [Hz]

10!4

10!2

100

S
en

si
ti
v
it
y

[-
]

SDx

SDx - Model
SDy

SDy - Model

SDz

SDz - Model
SRx

SRx - Model

SRy

SRy - Model
SRz

SRz - Model

Figure 3.48: Comparison of the measured sensitivity transfer functions with the model

115

4 Nano-Hexapod fixed on the Spindle

4.1 Change of dynamics when fixed on the Spindle

4.1.1 Measured Frequency Response Functions

The identification only performed without any payload.

The following data are loaded:

• Va : the excitation voltage (corresponding to ui)

• Vs : the generated voltage by the 6 force sensors (corresponding to τm)

• de : the measured motion by the 6 encoders (corresponding to dLm)
Matlab

%% Load Identification Data
meas_added_mass = {};

for i_strut = 1:6
meas_added_mass(i_strut) = {load(sprintf('frf_data_exc_strut_%i_spindle_0m.mat', i_strut), 't', 'Va', 'Vs', 'de')};

end

The window win and the frequency vector f are defined.
Matlab

% Sampling Time [s]
Ts = (meas_added_mass{1}.t(end) - (meas_added_mass{1}.t(1)))/(length(meas_added_mass{1}.t)-1);

% Hannning Windows
win = hanning(ceil(1/Ts));

% And we get the frequency vector
[~, f] = tfestimate(meas_added_mass{1}.Va, meas_added_mass{1}.de, win, [], [], 1/Ts);

Finally the 6× 6 transfer function matrices from u to dLm and from u to τm are identified:
Matlab

%% DVF Plant (transfer function from u to dLm)
G_dL = zeros(length(f), 6, 6);

for i_strut = 1:6
G_dL(:,:,i_strut) = tfestimate(meas_added_mass{i_strut}.Va, meas_added_mass{i_strut}.de, win, [], [], 1/Ts);

end

%% IFF Plant (transfer function from u to taum)
G_tau = zeros(length(f), 6, 6);

for i_strut = 1:6

116

G_tau(:,:,i_strut) = tfestimate(meas_added_mass{i_strut}.Va, meas_added_mass{i_strut}.Vs, win, [], [], 1/Ts);
end

The identified dynamics are then saved for further use.

Matlab
save('mat/frf_spindle_m.mat', 'f', 'Ts', 'G_tau', 'G_dL')

4.1.2 Transfer function from Actuator to Encoder

The transfer functions from ui to dLm,i are shown in Figure 4.1.

10!8

10!7

10!6

10!5

10!4

10!3

A
m
p
li
tu
d
e
[m

/V
]

dLm;1=u1

dLm;2=u2

dLm;3=u3

dLm;4=u4

dLm;5=u5

dLm;6=u6

dLm;i=uj

101 102 103

Frequency [Hz]

-180

-90

0

90

180

P
h
as
e
[d
eg
]

Figure 4.1: Measured Frequency Response Functions from ui to dLm,i when the nano-hexapod is fixed
to the Spindle

The dynamics of the nano-hexapod when fixed on the Spindle is compared with the dynamics when the
nano-hexapod is fixed on the “vibration table” in Figure 4.2.

4.1.3 Transfer function from Actuator to Force Sensor

The transfer functions from ui to τm are shown in Figure 4.3.

117

10!8

10!7

10!6

10!5

10!4

10!3

A
m
p
li
tu
d
e
[m

/V
]

Spindle
Vib. Table

Spindle - Coupling
Vib. Table - Coupling

101 102 103

Frequency [Hz]

-90

0

90

180

P
h
as
e
[d
eg
]

Figure 4.2: Comparison of the dynamics from u to dL when the nano-hexapod is fixed on top of the
Spindle and when it is fixed on top of the “Vibration Table”.

118

10!2

10!1

100

101

102

A
m
p
li
tu
d
e
[V
/V
]

=m;1=u1
=m;2=u2
=m;3=u3

=m;4=u4
=m;5=u5
=m;6=u6

taum;i=uj

102 103

Frequency [Hz]

-180

-90

0

90

180

P
h
as
e
[d
eg
]

Figure 4.3: Measured Frequency Response Functions from ui to τm,i when the nano-hexapod is fixed
to the Spindle

119

The dynamics of the nano-hexapod when fixed on the Spindle is compared with the dynamics when the
nano-hexapod is fixed on the “vibration table” in Figure 4.4.

10!3

10!2

10!1

100

101

102

A
m
p
li
tu
d
e
[-
]

Spindle
Vib. Table

Spindle - Coupling
Vib. Table - Coupling

101 102 103

Frequency [Hz]

-180

-90

0

90

180

P
h
as
e
[d
eg
]

Figure 4.4: Comparison of the dynamics from u to dL when the nano-hexapod is fixed on top of the
Spindle and when it is fixed on top of the “Vibration Table”.

4.1.4 Conclusion

Important

The dynamics of the nano-hexapod does not change a lot when it is fixed to the Spindle. The
“suspension” modes are just increased a little bit due to the added stiffness of the spindle as
compared to the vibration table.

4.2 Dynamics of the Damped plant

As the dynamics is not much changed when the nano-hexapod is fixed on top of the Spindle, the same
IFF controller is used to damp the plant.

120

4.2.1 Measured Frequency Response Functions

The identification is performed without added mass, and with one, two and three layers of added
cylinders.

Matlab
i_masses = 0:3;

The following data are loaded:

• Va : the excitation voltage (corresponding to ui)

• Vs : the generated voltage by the 6 force sensors (corresponding to τm)

• de : the measured motion by the 6 encoders (corresponding to dLm)

Matlab
%% Load Identification Data
meas_added_mass = {};

for i_mass = i_masses
for i_strut = 1:6

meas_added_mass(i_strut, i_mass+1) = {load(sprintf('frf_data_exc_strut_%i_spindle_%im_iff.mat', i_strut, i_mass), 't',
'Va', 'Vs', 'de')};↪→
end

end

The window win and the frequency vector f are defined.

Matlab
% Sampling Time [s]
Ts = (meas_added_mass{1,1}.t(end) - (meas_added_mass{1,1}.t(1)))/(length(meas_added_mass{1,1}.t)-1);

% Hannning Windows
win = hanning(ceil(1/Ts));

% And we get the frequency vector
[~, f] = tfestimate(meas_added_mass{1,1}.Va, meas_added_mass{1,1}.de, win, [], [], 1/Ts);

Finally the 6× 6 transfer function matrices from u to dLm and from u to τm are identified:

Matlab
%% DVF Plant (transfer function from u to dLm)
G_dL = {};

for i_mass = i_masses
G_dL(i_mass+1) = {zeros(length(f), 6, 6)};
for i_strut = 1:6

G_dL{i_mass+1}(:,:,i_strut) = tfestimate(meas_added_mass{i_strut, i_mass+1}.Va, meas_added_mass{i_strut, i_mass+1}.de,
win, [], [], 1/Ts);↪→
end

end

The identified dynamics are then saved for further use.

121

Matlab
save('mat/frf_spindle_iff_m.mat', 'f', 'Ts', 'G_dL')

4.2.2 Effect of Integral Force Feedback

10!8

10!7

10!6

10!5

10!4

10!3

A
m
p
li
tu
d
e
[m

/V
]

dLm;i=uj

dLm;i=u
0
j

dLm;i=uj

dLm;i=u
0
j

101 102 103

Frequency [Hz]

-90

0

90

180

P
h
as
e
[d
eg
]

Figure 4.5: Effect of Integral Force Feedback on the transfer function from ui to dLi

4.2.3 Effect of the payload

Important

From Figure 4.6 we can see that the coupling is quite large when payloads are added to the
nano-hexapod. This was not the case when the nano-hexapod was fixed to the vibration table.

Question

What is causing the resonances at 20Hz, 25Hz and 30Hz when there is some added payload?
Why the coupling is much larger than when the nano-hexapod was on top of the isolation table?

122

10!8

10!7

10!6

10!5

10!4

10!3

A
m
p
li
tu
d
e
[m

/V
]

dLm;i=ui - 0
dLm;i=ui - 1

dLm;i=ui - 2
dLm;i=ui - 3

101 102 103

Frequency [Hz]

-90

0

90

180

P
h
as
e
[d
eg
]

Figure 4.6: Effect of the payload on the transfer functions from u′i to dLi

123

4.2.4 Effect of rotation

Important

The identified plants with and without spindle’s rotation are compared in Figure 4.7. It is shown
that the rotational speed as little effect on the plant dynamics.

10!8

10!7

10!6

10!5

10!4

A
m
p
li
tu
d
e
[m

/V
]

dLm;i=uj - 0rpm
dLm;i=u

0
j - 60rpm

dLm;i=uj - 0rpm
dLm;i=u

0
j - 60rpm

101 102 103

Frequency [Hz]

-90

0

90

180

P
h
as
e
[d
eg
]

Figure 4.7: Comparison of the damped plant when the spindle is not rotating and when it is rotating
at 60RPM

124

5 Functions

5.1 generateXYZTrajectory

Function description

Matlab
function [ref] = generateXYZTrajectory(args)
% generateXYZTrajectory -
%
% Syntax: [ref] = generateXYZTrajectory(args)
%
% Inputs:
% - args
%
% Outputs:
% - ref - Reference Signal

Optional Parameters

Matlab
arguments

args.points double {mustBeNumeric} = zeros(2, 3) % [m]

args.ti (1,1) double {mustBeNumeric, mustBeNonnegative} = 1 % Time to go to first point and after last point [s]
args.tw (1,1) double {mustBeNumeric, mustBeNonnegative} = 0.5 % Time wait between each point [s]
args.tm (1,1) double {mustBeNumeric, mustBeNonnegative} = 1 % Motion time between points [s]

args.Ts (1,1) double {mustBeNumeric, mustBePositive} = 1e-3 % Sampling Time [s]
end

Initialize Time Vectors

Matlab
time_i = 0:args.Ts:args.ti;
time_w = 0:args.Ts:args.tw;
time_m = 0:args.Ts:args.tm;

XYZ Trajectory

125

Matlab
% Go to initial position
xyz = (args.points(1,:))'*(time_i/args.ti);

% Wait
xyz = [xyz, xyz(:,end).*ones(size(time_w))];

% Scans
for i = 2:size(args.points, 1)

% Go to next point
xyz = [xyz, xyz(:,end) + (args.points(i,:)' - xyz(:,end))*(time_m/args.tm)];
% Wait a litle bit
xyz = [xyz, xyz(:,end).*ones(size(time_w))];

end

% End motion
xyz = [xyz, xyz(:,end) - xyz(:,end)*(time_i/args.ti)];

Reference Signal

Matlab
t = 0:args.Ts:args.Ts*(length(xyz) - 1);

Matlab
ref = zeros(length(xyz), 7);

ref(:, 1) = t;
ref(:, 2:4) = xyz';

5.2 generateYZScanTrajectory

Function description

Matlab
function [ref] = generateYZScanTrajectory(args)
% generateYZScanTrajectory -
%
% Syntax: [ref] = generateYZScanTrajectory(args)
%
% Inputs:
% - args
%
% Outputs:
% - ref - Reference Signal

Optional Parameters

Matlab
arguments

args.y_tot (1,1) double {mustBeNumeric, mustBePositive} = 10e-6 % [m]

126

args.z_tot (1,1) double {mustBeNumeric, mustBePositive} = 10e-6 % [m]

args.n (1,1) double {mustBeInteger, mustBePositive} = 10 % [-]

args.Ts (1,1) double {mustBeNumeric, mustBePositive} = 1e-4 % [s]

args.ti (1,1) double {mustBeNumeric, mustBeNonnegative} = 1 % [s]
args.tw (1,1) double {mustBeNumeric, mustBeNonnegative} = 1 % [s]
args.ty (1,1) double {mustBeNumeric, mustBeNonnegative} = 1 % [s]
args.tz (1,1) double {mustBeNumeric, mustBeNonnegative} = 1 % [s]

end

Initialize Time Vectors

Matlab
time_i = 0:args.Ts:args.ti;
time_w = 0:args.Ts:args.tw;
time_y = 0:args.Ts:args.ty;
time_z = 0:args.Ts:args.tz;

Y and Z vectors

Matlab
% Go to initial position
y = (time_i/args.ti)*(args.y_tot/2);

% Wait
y = [y, y(end)*ones(size(time_w))];

% Scans
for i = 1:args.n

if mod(i,2) == 0
y = [y, -(args.y_tot/2) + (time_y/args.ty)*args.y_tot];

else
y = [y, (args.y_tot/2) - (time_y/args.ty)*args.y_tot];

end

if i < args.n
y = [y, y(end)*ones(size(time_z))];

end
end

% Wait a litle bit
y = [y, y(end)*ones(size(time_w))];

% End motion
y = [y, y(end) - y(end)*time_i/args.ti];

Matlab
% Go to initial position
z = (time_i/args.ti)*(args.z_tot/2);

% Wait
z = [z, z(end)*ones(size(time_w))];

% Scans
for i = 1:args.n

z = [z, z(end)*ones(size(time_y))];

if i < args.n
z = [z, z(end) - (time_z/args.tz)*args.z_tot/(args.n-1)];

127

end
end

% Wait a litle bit
z = [z, z(end)*ones(size(time_w))];

% End motion
z = [z, z(end) - z(end)*time_i/args.ti];

Reference Signal

Matlab
t = 0:args.Ts:args.Ts*(length(y) - 1);

Matlab
ref = zeros(length(y), 7);

ref(:, 1) = t;
ref(:, 3) = y;
ref(:, 4) = z;

5.3 generateSpiralAngleTrajectory

Function description

Matlab
function [ref] = generateSpiralAngleTrajectory(args)
% generateSpiralAngleTrajectory -
%
% Syntax: [ref] = generateSpiralAngleTrajectory(args)
%
% Inputs:
% - args
%
% Outputs:
% - ref - Reference Signal

Optional Parameters

Matlab
arguments

args.R_tot (1,1) double {mustBeNumeric, mustBePositive} = 10e-6 % [rad]
args.n_turn (1,1) double {mustBeInteger, mustBePositive} = 5 % [-]
args.Ts (1,1) double {mustBeNumeric, mustBePositive} = 1e-3 % [s]
args.t_turn (1,1) double {mustBeNumeric, mustBePositive} = 1 % [s]
args.t_end (1,1) double {mustBeNumeric, mustBePositive} = 1 % [s]

end

128

Initialize Time Vectors

Matlab
time_s = 0:args.Ts:args.n_turn*args.t_turn;
time_e = 0:args.Ts:args.t_end;

Rx and Ry vectors

Matlab
Rx = sin(2*pi*time_s/args.t_turn).*(args.R_tot*time_s/(args.n_turn*args.t_turn));
Ry = cos(2*pi*time_s/args.t_turn).*(args.R_tot*time_s/(args.n_turn*args.t_turn));

Matlab
Rx = [Rx, 0*time_e];
Ry = [Ry, Ry(end) - Ry(end)*time_e/args.t_end];

Reference Signal

Matlab
t = 0:args.Ts:args.Ts*(length(Rx) - 1);

Matlab
ref = zeros(length(Rx), 7);

ref(:, 1) = t;
ref(:, 5) = Rx;
ref(:, 6) = Ry;

5.4 getTransformationMatrixAcc

Function description

Matlab
function [M] = getTransformationMatrixAcc(Opm, Osm)
% getTransformationMatrixAcc -
%
% Syntax: [M] = getTransformationMatrixAcc(Opm, Osm)
%
% Inputs:
% - Opm - Nx3 (N = number of accelerometer measurements) X,Y,Z position of accelerometers
% - Opm - Nx3 (N = number of accelerometer measurements) Unit vectors representing the accelerometer orientation
%
% Outputs:
% - M - Transformation Matrix

129

Transformation matrix from motion of the solid body to accelerometer
measurements

Let’s try to estimate the x-y-z acceleration of any point of the solid body from the acceleration/angular
acceleration of the solid body expressed in {O}. For any point pi of the solid body (corresponding to
an accelerometer), we can write: ai,xai,y

ai,z

 =

v̇xv̇y
v̇z

+ pi ×

ω̇x

ω̇y

ω̇z

 (5.1)

We can write the cross product as a matrix product using the skew-symmetric transformation:ai,xai,y
ai,z

 =

v̇xv̇y
v̇z

+

 0 pi,z −pi,y
−pi,z 0 pi,x
pi,y −pi,x 0


︸ ︷︷ ︸

Pi,[×]

·

ω̇x

ω̇y

ω̇z

 (5.2)

If we now want to know the (scalar) acceleration ai of the point pi in the direction of the accelerometer
direction ŝi, we can just project the 3d acceleration on ŝi:

ai = ŝTi ·

ai,xai,y
ai,z

 = ŝTi ·

v̇xv̇y
v̇z

+
(
ŝTi · Pi,[×]

)
·

ω̇x

ω̇y

ω̇z

 (5.3)

Which is equivalent as a simple vector multiplication:

ai =
[
ŝTi ŝTi · Pi,[×]

]

v̇x
v̇y
v̇z
ω̇x

ω̇y

ω̇z

 =
[
ŝTi ŝTi · Pi,[×]

]
O~x (5.4)

And finally we can combine the 6 (line) vectors for the 6 accelerometers to write that in a matrix form.
We obtain Eq. (5.5).

Important

The transformation from solid body acceleration O~x from sensor measured acceleration ~a is:

~a =

ŝ
T
1 ŝT1 · P1,[×]
...

...
ŝT6 ŝT6 · P6,[×]


︸ ︷︷ ︸

M

O~x (5.5)

with ŝi the unit vector representing the measured direction of the i’th accelerometer expressed in
frame {O} and Pi,[×] the skew-symmetric matrix representing the cross product of the position
of the i’th accelerometer expressed in frame {O}.

Let’s define such matrix using matlab:

130

Matlab
M = zeros(length(Opm), 6);

for i = 1:length(Opm)
Ri = [0, Opm(3,i), -Opm(2,i);

-Opm(3,i), 0, Opm(1,i);
Opm(2,i), -Opm(1,i), 0];

M(i, 1:3) = Osm(:,i)';
M(i, 4:6) = Osm(:,i)'*Ri;

end

Matlab
end

5.5 getJacobianNanoHexapod

Function description

Matlab
function [J] = getJacobianNanoHexapod(Hbm)
% getJacobianNanoHexapod -
%
% Syntax: [J] = getJacobianNanoHexapod(Hbm)
%
% Inputs:
% - Hbm - Height of {B} w.r.t. {M} [m]
%
% Outputs:
% - J - Jacobian Matrix

Transformation matrix from motion of the solid body to accelerometer
measurements

Matlab
Fa = [[-86.05, -74.78, 22.49],

[86.05, -74.78, 22.49],
[107.79, -37.13, 22.49],
[21.74, 111.91, 22.49],
[-21.74, 111.91, 22.49],
[-107.79, -37.13, 22.49]]'*1e-3; % Ai w.r.t. {F} [m]

Mb = [[-28.47, -106.25, -22.50],
[28.47, -106.25, -22.50],
[106.25, 28.47, -22.50],
[77.78, 77.78, -22.50],
[-77.78, 77.78, -22.50],
[-106.25, 28.47, -22.50]]'*1e-3; % Bi w.r.t. {M} [m]

H = 95e-3; % Stewart platform height [m]
Fb = Mb + [0; 0; H]; % Bi w.r.t. {F} [m]

si = Fb - Fa;
si = si./vecnorm(si); % Normalize

Bb = Mb - [0; 0; Hbm];

J = [si', cross(Bb, si)'];

131

Bibliography

[1] Marina Indri and Roberto Oboe. Mechatronics and Robotics: New Trends and Challenges. CRC
Press, 2020.

[2] Sigurd Skogestad and Ian Postlethwaite. Multivariable Feedback Control: Analysis and Design -
Second Edition. John Wiley, 2007. isbn: 978-0470011683.

132

	Encoders fixed to the Struts - Dynamics
	Identification of the dynamics
	Load Measurement Data
	Spectral Analysis - Setup
	Transfer function from Actuator to Encoder
	Transfer function from Actuator to Force Sensor
	Save Identified Plants

	Comparison with the Simscape Model
	Load measured FRF
	Dynamics from Actuator to Force Sensors
	Dynamics from Actuator to Encoder
	Effect of a change in bending damping of the joints
	Effect of a change in damping factor of the APA
	Effect of a change in stiffness damping coef of the APA
	Effect of a change in mass damping coef of the APA
	Using Flexible model
	Flexible model + encoders fixed to the plates

	Integral Force Feedback
	IFF Control Law and Optimal Gain
	Effect of IFF on the plant - Simulations
	Effect of IFF on the plant - Experimental Results
	Experimental Results - Damped Plant with Optimal gain
	Comparison with the Flexible model
	Conclusion

	Modal Analysis
	Obtained Mode Shapes
	Nano-Hexapod Compliance - Effect of IFF
	Comparison with the Simscape Model

	Conclusion

	Encoders fixed to the plates - Dynamics
	Identification of the dynamics
	Data Loading and Spectral Analysis Setup
	Transfer function from Actuator to Encoder
	Transfer function from Actuator to Force Sensor
	Save Identified Plants

	Comparison with the Simscape Model
	Identification Setup
	Dynamics from Actuator to Force Sensors
	Dynamics from Actuator to Encoder
	Flexible Top Plate
	Conclusion

	Integral Force Feedback
	Effect of IFF on the plant - Simscape Model
	Effect of IFF on the plant - FRF
	Comparison of the measured FRF and the Simscape model
	Save Damped Plant

	Effect of Payload mass - Robust IFF
	Measured Frequency Response Functions
	Transfer function from Actuators to Encoders
	Transfer function from Actuators to Force Sensors

	Comparison with the Simscape model
	System Identification
	Transfer function from Actuators to Encoders
	Transfer function from Actuators to Force Sensors

	Integral Force Feedback Controller
	Robust IFF Controller
	Estimated Damped Plant from the Simscape model
	Compute the identified FRF with IFF
	Comparison of the measured FRF and the Simscape model
	Change of coupling with IFF

	Un-Balanced mass
	Introduction
	Compute the identified FRF with IFF
	Effect of an unbalanced payload

	Conclusion

	Decentralized High Authority Control with Integral Force Feedback
	Reference Tracking - Trajectories
	Y-Z Scans
	Tilt Scans
	``NASS'' reference path

	First Basic High Authority Controller
	HAC Controller
	Verification of the Stability using the Simscape model
	Experimental Validation
	Controller with increased stability margins

	Interaction Analysis and Decoupling
	Parameters
	No Decoupling (Decentralized)
	Static Decoupling
	Decoupling at the Crossover
	SVD Decoupling
	Dynamic decoupling
	Jacobian Decoupling - Center of Stiffness
	Jacobian Decoupling - Center of Mass
	Decoupling Comparison
	Decoupling Robustness
	Conclusion

	Robust High Authority Controller
	Using Jacobian evaluated at the center of stiffness
	Using Singular Value Decomposition

	Nano-Hexapod fixed on the Spindle
	Change of dynamics when fixed on the Spindle
	Measured Frequency Response Functions
	Transfer function from Actuator to Encoder
	Transfer function from Actuator to Force Sensor
	Conclusion

	Dynamics of the Damped plant
	Measured Frequency Response Functions
	Effect of Integral Force Feedback
	Effect of the payload
	Effect of rotation

	Functions
	generateXYZTrajectory
	generateYZScanTrajectory
	generateSpiralAngleTrajectory
	getTransformationMatrixAcc
	getJacobianNanoHexapod

