diff --git a/figs/IMG_20210608_152917.jpg b/figs/IMG_20210608_152917.jpg new file mode 100644 index 0000000..687fc68 Binary files /dev/null and b/figs/IMG_20210608_152917.jpg differ diff --git a/figs/IMG_20210608_154722.jpg b/figs/IMG_20210608_154722.jpg new file mode 100644 index 0000000..d4e5f38 Binary files /dev/null and b/figs/IMG_20210608_154722.jpg differ diff --git a/figs/enc_struts_dvf_coh.pdf b/figs/enc_struts_dvf_coh.pdf new file mode 100644 index 0000000..64f5ead Binary files /dev/null and b/figs/enc_struts_dvf_coh.pdf differ diff --git a/figs/enc_struts_dvf_coh.png b/figs/enc_struts_dvf_coh.png new file mode 100644 index 0000000..712ba3d Binary files /dev/null and b/figs/enc_struts_dvf_coh.png differ diff --git a/figs/enc_struts_dvf_frf.pdf b/figs/enc_struts_dvf_frf.pdf new file mode 100644 index 0000000..51f8771 Binary files /dev/null and b/figs/enc_struts_dvf_frf.pdf differ diff --git a/figs/enc_struts_dvf_frf.png b/figs/enc_struts_dvf_frf.png new file mode 100644 index 0000000..16bb149 Binary files /dev/null and b/figs/enc_struts_dvf_frf.png differ diff --git a/figs/enc_struts_iff_coh.pdf b/figs/enc_struts_iff_coh.pdf new file mode 100644 index 0000000..5ad7a75 Binary files /dev/null and b/figs/enc_struts_iff_coh.pdf differ diff --git a/figs/enc_struts_iff_coh.png b/figs/enc_struts_iff_coh.png new file mode 100644 index 0000000..5db3c8a Binary files /dev/null and b/figs/enc_struts_iff_coh.png differ diff --git a/figs/enc_struts_iff_frf.pdf b/figs/enc_struts_iff_frf.pdf new file mode 100644 index 0000000..6a009ff Binary files /dev/null and b/figs/enc_struts_iff_frf.pdf differ diff --git a/figs/enc_struts_iff_frf.png b/figs/enc_struts_iff_frf.png new file mode 100644 index 0000000..41faf02 Binary files /dev/null and b/figs/enc_struts_iff_frf.png differ diff --git a/matlab/mat/jacobian.mat b/matlab/mat/jacobian.mat new file mode 100644 index 0000000..3398648 Binary files /dev/null and b/matlab/mat/jacobian.mat differ diff --git a/ref.bib b/ref.bib new file mode 100644 index 0000000..0bd32bc --- /dev/null +++ b/ref.bib @@ -0,0 +1,24 @@ +@article{souleille18_concep_activ_mount_space_applic, + author = {Souleille, Adrien and Lampert, Thibault and Lafarga, V and + Hellegouarch, Sylvain and Rondineau, Alan and Rodrigues, + Gon{\c{c}}alo and Collette, Christophe}, + title = {A Concept of Active Mount for Space Applications}, + journal = {CEAS Space Journal}, + volume = 10, + number = 2, + pages = {157--165}, + year = 2018, + publisher = {Springer}, +} + +@phdthesis{poel10_explor_activ_hard_mount_vibrat, + author = {van der Poel, Gerrit Wijnand}, + doi = {10.3990/1.9789036530163}, + isbn = {978-90-365-3016-3}, + keywords = {parallel robot}, + school = {University of Twente}, + title = {An Exploration of Active Hard Mount Vibration Isolation for + Precision Equipment}, + url = {https://doi.org/10.3990/1.9789036530163}, + year = 2010, +} diff --git a/test-bench-nano-hexapod.html b/test-bench-nano-hexapod.html index 479ade8..d2baaa1 100644 --- a/test-bench-nano-hexapod.html +++ b/test-bench-nano-hexapod.html @@ -3,7 +3,7 @@ "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
- +This report is also available as a pdf.
Here are the documentation of the equipment used for this test bench:
@@ -46,12 +56,202 @@ Here are the documentation of the equipment used for this test bench:+
+Figure 1: Nano-Hexapod
++
+Figure 2: Nano-Hexapod and the control electronics
+meas_data_lf = {}; + +for i = 1:6 + meas_data_lf(i) = {load(sprintf('mat/frf_data_exc_strut_%i_noise_lf.mat', i), 't', 'Va', 'Vs', 'de')}; + meas_data_hf(i) = {load(sprintf('mat/frf_data_exc_strut_%i_noise_hf.mat', i), 't', 'Va', 'Vs', 'de')}; +end ++
% Sampling Time [s] +Ts = (meas_data_lf{1}.t(end) - (meas_data_lf{1}.t(1)))/(length(meas_data_lf{1}.t)-1); + +% Sampling Frequency [Hz] +Fs = 1/Ts; + +% Hannning Windows +win = hanning(ceil(1*Fs)); ++
+And we get the frequency vector. +
+[~, f] = tfestimate(meas_data_lf{1}.Va, meas_data_lf{1}.de, win, [], [], 1/Ts); ++
i_lf = f < 250; % Points for low frequency excitation +i_hf = f > 250; % Points for high frequency excitation ++
+First, let’s compute the coherence from the excitation voltage and the displacement as measured by the encoders (Figure 3). +
+ +%% Coherence +coh_dvf_lf = zeros(length(f), 6, 6); +coh_dvf_hf = zeros(length(f), 6, 6); + +for i = 1:6 + coh_dvf_lf(:, :, i) = mscohere(meas_data_lf{i}.Va, meas_data_lf{i}.de, win, [], [], 1/Ts); + coh_dvf_hf(:, :, i) = mscohere(meas_data_hf{i}.Va, meas_data_hf{i}.de, win, [], [], 1/Ts); +end + ++
+
+Figure 3: Obtained coherence for the DVF plant
++Then the 6x6 transfer function matrix is estimated (Figure 4). +
+%% DVF Plant +G_dvf_lf = zeros(length(f), 6, 6); +G_dvf_hf = zeros(length(f), 6, 6); + +for i = 1:6 + G_dvf_lf(:, :, i) = tfestimate(meas_data_lf{i}.Va, meas_data_lf{i}.de, win, [], [], 1/Ts); + G_dvf_hf(:, :, i) = tfestimate(meas_data_hf{i}.Va, meas_data_hf{i}.de, win, [], [], 1/Ts); +end ++
+
+Figure 4: Measured FRF for the DVF plant
++First, let’s compute the coherence from the excitation voltage and the displacement as measured by the encoders (Figure 5). +
+ +%% Coherence +coh_iff_lf = zeros(length(f), 6, 6); +coh_iff_hf = zeros(length(f), 6, 6); + +for i = 1:6 + coh_iff_lf(:, :, i) = mscohere(meas_data_lf{i}.Va, meas_data_lf{i}.Vs, win, [], [], 1/Ts); + coh_iff_hf(:, :, i) = mscohere(meas_data_hf{i}.Va, meas_data_hf{i}.Vs, win, [], [], 1/Ts); +end + ++
+
+Figure 5: Obtained coherence for the IFF plant
++Then the 6x6 transfer function matrix is estimated (Figure 6). +
+%% IFF Plant +G_iff_lf = zeros(length(f), 6, 6); +G_iff_hf = zeros(length(f), 6, 6); + +for i = 1:6 + G_iff_lf(:, :, i) = tfestimate(meas_data_lf{i}.Va, meas_data_lf{i}.Vs, win, [], [], 1/Ts); + G_iff_hf(:, :, i) = tfestimate(meas_data_hf{i}.Va, meas_data_hf{i}.Vs, win, [], [], 1/Ts); +end ++
+
+Figure 6: Measured FRF for the IFF plant
+load('jacobian.mat', 'J'); ++
G_dvf_J_lf = G_dvf_lf(i_lf, i, j) ++
+#+end_src
+Created: 2021-06-07 lun. 19:00
+Created: 2021-06-08 mar. 21:51