diff --git a/matlab/identif_analyze.m b/matlab/identif_analyze.m index c757ff2..88b4527 100644 --- a/matlab/identif_analyze.m +++ b/matlab/identif_analyze.m @@ -9,7 +9,9 @@ addpath('./src/'); % Test with one APA %% Load measurement data for APA number 1 -load(sprintf('mat/frf_data_%i_sweep_lf.mat', 2), 't', 'Va', 'Vs', 'de', 'da'); +strut_number = 1; +% load(sprintf('mat/frf_data_exc_strut_%i_noise_lf.mat', strut_number), 't', 'Va', 'Vs', 'de'); +load(sprintf('mat/frf_data_exc_strut_%i_noise_hf.mat', strut_number), 't', 'Va', 'Vs', 'de'); % Compute transfer functions: @@ -18,31 +20,17 @@ Fs = 1/Ts; win = hanning(ceil(1*Fs)); % Hannning Windows +%% DVF [G_dvf, f] = tfestimate(Va, de, win, [], [], 1/Ts); -[G_d, ~] = tfestimate(Va, da, win, [], [], 1/Ts); -[G_iff, ~] = tfestimate(Va, Vs, win, [], [], 1/Ts); -[coh_dvf, ~] = mscohere(Va, de, win, [], [], 1/Ts); -[coh_d, ~] = mscohere(Va, da, win, [], [], 1/Ts); -[coh_iff, ~] = mscohere(Va, Vs, win, [], [], 1/Ts); - -%% figure; -hold on; -plot(f, coh_dvf); -plot(f, coh_d); -plot(f, coh_iff); -hold off; -set(gca, 'XScale', 'log'); +tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None'); -%% -figure; -tiledlayout(2, 1, 'TileSpacing', 'None', 'Padding', 'None'); - -ax1 = nexttile; +ax1 = nexttile([2,1]); hold on; -plot(f, abs(G_dvf)); -plot(f, abs(G_d)); +for i =1:6 + plot(f, abs(G_dvf(:,i))); +end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude $V_{out}/V_{in}$ [V/V]'); set(gca, 'XTickLabel',[]); @@ -50,8 +38,9 @@ hold off; ax2 = nexttile; hold on; -plot(f, 180/pi*angle(G_dvf)); -plot(f, 180/pi*angle(G_d)); +for i =1:6 + plot(f, 180/pi*angle(G_dvf(:,i))); +end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); @@ -61,29 +50,58 @@ yticks(-360:90:360); linkaxes([ax1,ax2],'x'); xlim([5, 5e3]); -figure; -tiledlayout(2, 1, 'TileSpacing', 'None', 'Padding', 'None'); +%% IFF +[G_iff, f] = tfestimate(Va, Vs, win, [], [], 1/Ts); -ax1 = nexttile; -plot(f, abs(G_iff)); +figure; +tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None'); + +ax1 = nexttile([2,1]); +hold on; +for i =1:6 + plot(f, abs(G_iff(:,i))); +end +hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude $V_{out}/V_{in}$ [V/V]'); set(gca, 'XTickLabel',[]); hold off; ax2 = nexttile; -plot(f, 180/pi*angle(G_iff)); +hold on; +for i =1:6 + plot(f, 180/pi*angle(G_iff(:,i))); +end +hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; yticks(-360:90:360); linkaxes([ax1,ax2],'x'); -xlim([0.1, 10]); +xlim([5, 5e3]); -% Comparison of all APA +%% +[coh_dvf, ~] = mscohere(Va, de, win, [], [], 1/Ts); +[coh_iff, ~] = mscohere(Va, Vs, win, [], [], 1/Ts); -%% Load all the measurements -meas_data = {}; -for i = 1:7 - meas_data(i) = {load(sprintf('mat/frf_data_%i.mat', i), 't', 'Va', 'Vs', 'de', 'da')}; +%% +figure; +hold on; +for i =1:6 + plot(f, coh_dvf(:,i)); end +hold off; +set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); +xlabel('Frequency [Hz]'); ylabel('Coherence'); +ylim([0,1]); + +%% +figure; +hold on; +for i =1:6 + plot(f, coh_iff(:,i)); +end +hold off; +set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); +xlabel('Frequency [Hz]'); ylabel('Coherence'); +ylim([0,1]); diff --git a/matlab/identif_measure.slx b/matlab/identif_measure.slx index 0ccd370..525c71e 100644 Binary files a/matlab/identif_measure.slx and b/matlab/identif_measure.slx differ diff --git a/matlab/identif_model.slx b/matlab/identif_model.slx deleted file mode 100644 index 2d41f4c..0000000 Binary files a/matlab/identif_model.slx and /dev/null differ diff --git a/matlab/identif_save.m b/matlab/identif_save.m index 08c4083..a228022 100644 --- a/matlab/identif_save.m +++ b/matlab/identif_save.m @@ -17,19 +17,17 @@ close(f); data = SimulinkRealTime.utils.getFileScopeData('data/data.dat').data; -da = data(:, 1); % Excitation Voltage (input of PD200) [V] -de = data(:, 2); % Measured voltage (force sensor) [V] -Vs = data(:, 3); % Measurment displacement (encoder) [m] -Va = data(:, 4); % Measurement displacement (attocube) [m] +de = data(:, 1:6); % Measurment displacement (encoder) [m] +Vs = data(:, 7:12); % Measured voltage (force sensor) [V] +Va = data(:, 13); % Excitation Voltage [V] t = data(:, end); % Time [s] - % And we save this to a =mat= file: -apa_number = 1; -% leg_number = 4; +strut_number = 1; -save(sprintf('mat/frf_data_leg_coder_%i_noise.mat', apa_number), 't', 'Va', 'Vs', 'de', 'da'); -% save(sprintf('mat/frf_data_leg_coder_%i_sweep.mat', apa_number), 't', 'Va', 'Vs', 'de', 'da'); -% save(sprintf('mat/frf_data_leg_coder_%i_noise_hf.mat', apa_number), 't', 'Va', 'Vs', 'de', 'da'); -% save(sprintf('mat/frf_data_leg_coder_%i_add_mass_closed_circuit.mat', apa_number), 't', 'Va', 'Vs', 'de', 'da'); +% save(sprintf('mat/frf_data_exc_strut_%i_noise.mat', strut_number), 't', 'Va', 'Vs', 'de'); +% save(sprintf('mat/frf_data_exc_strut_%i_noise_lf.mat', strut_number), 't', 'Va', 'Vs', 'de'); +% save(sprintf('mat/frf_data_exc_strut_%i_sweep.mat', strut_number), 't', 'Va', 'Vs', 'de'); +save(sprintf('mat/frf_data_exc_strut_%i_noise_hf.mat', strut_number), 't', 'Va', 'Vs', 'de'); +% save(sprintf('mat/frf_data_exc_strut_%i_add_mass_closed_circuit.mat', strut_number), 't', 'Va', 'Vs', 'de'); diff --git a/matlab/identif_setup.m b/matlab/identif_setup.m index 3ab2da0..e248111 100644 --- a/matlab/identif_setup.m +++ b/matlab/identif_setup.m @@ -7,8 +7,8 @@ s = zpk('s'); addpath('./src/'); %% Simulation configuration -Fs = 10e3; % Sampling Frequency [Hz] -Ts = 1/Fs; % Sampling Time [s] +Fs = 10e3; % Sampling Frequency [Hz] +Ts = 1/Fs; % Sampling Time [s] %% Data record configuration Trec_start = 5; % Start time for Recording [s] @@ -27,7 +27,7 @@ V_noise = generateShapedNoise('Ts', 1/Fs, ... %% Sweep Sine gc = 0.1; xi = 0.5; -wn = 2*pi*94.3; +wn = 2*pi*92.7; % Notch filter at the resonance of the APA G_sweep = 0.2*(s^2 + 2*gc*xi*wn*s + wn^2)/(s^2 + 2*xi*wn*s + wn^2); @@ -41,8 +41,17 @@ V_sweep = generateSweepExc('Ts', Ts, ... 'sweep_type', 'log', ... 'V_exc', G_sweep*1/(1 + s/2/pi/500)); +V_sweep_lf = generateSweepExc('Ts', Ts, ... + 'f_start', 0.1, ... + 'f_end', 10, ... + 'V_mean', 3.25, ... + 't_start', Trec_start, ... + 'exc_duration', Trec_dur, ... + 'sweep_type', 'log', ... + 'V_exc', 0.2); + %% High Frequency Shaped Noise -[b,a] = cheby1(10, 2, 2*pi*[300 2e3], 'bandpass', 's'); +[b,a] = cheby1(10, 2, 2*pi*[240 2e3], 'bandpass', 's'); wL = 0.005*tf(b, a); V_noise_hf = generateShapedNoise('Ts', 1/Fs, ... @@ -52,6 +61,17 @@ V_noise_hf = generateShapedNoise('Ts', 1/Fs, ... 'smooth_ends', true, ... 'V_exc', wL); +%% Low Frequency Shaped Noise +[b,a] = cheby1(10, 2, 2*pi*[10 260], 'bandpass', 's'); +wL = 0.005*tf(b, a); + +V_noise_lf = generateShapedNoise('Ts', 1/Fs, ... + 'V_mean', 3.25, ... + 't_start', Trec_start, ... + 'exc_duration', Trec_dur, ... + 'smooth_ends', true, ... + 'V_exc', wL); + %% Sinus excitation with increasing amplitude V_sin = generateSinIncreasingAmpl('Ts', 1/Fs, ... 'V_mean', 3.25, ... @@ -61,20 +81,33 @@ V_sin = generateSinIncreasingAmpl('Ts', 1/Fs, ... 't_start', Trec_start, ... 'smooth_ends', true); +%% Zero Excitation +% Trec_start = 10; % Start time for Recording [s] +% Trec_dur = 10; % Recording Duration [s] +% +% Tsim = 2*Trec_start + Trec_dur; % Simulation Time [s] + +V_zero = generateShapedNoise('Ts', 1/Fs, ... + 'V_mean', 3.25, ... + 't_start', Trec_start, ... + 'exc_duration', Trec_dur, ... + 'smooth_ends', true, ... + 'V_exc', tf(0)); + %% Select the excitation signal -V_exc = timeseries(V_noise(2,:), V_noise(1,:)); +V_exc = timeseries(V_noise_hf(2,:), V_noise_hf(1,:)); %% Plot figure; tiledlayout(1, 2, 'TileSpacing', 'Normal', 'Padding', 'None'); ax1 = nexttile; -plot(V_exc(1,:), V_exc(2,:)); +plot(V_exc.Time, squeeze(V_exc.Data)); xlabel('Time [s]'); ylabel('Amplitude [V]'); ax2 = nexttile; -win = hanning(floor(length(V_exc)/8)); -[pxx, f] = pwelch(V_exc(2,:), win, 0, [], Fs); +win = hanning(floor(length(squeeze(V_exc.Data))/8)); +[pxx, f] = pwelch(squeeze(V_exc.Data), win, 0, [], Fs); plot(f, pxx) xlabel('Frequency [Hz]'); ylabel('Power Spectral Density [$V^2/Hz$]'); set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log'); diff --git a/matlab/mat/frf_data_exc_strut_1_noise_lf.mat b/matlab/mat/frf_data_exc_strut_1_noise_lf.mat new file mode 100644 index 0000000..6693c49 Binary files /dev/null and b/matlab/mat/frf_data_exc_strut_1_noise_lf.mat differ diff --git a/matlab/mat/frf_data_exc_strut_2_noise_lf.mat b/matlab/mat/frf_data_exc_strut_2_noise_lf.mat new file mode 100644 index 0000000..6782fce Binary files /dev/null and b/matlab/mat/frf_data_exc_strut_2_noise_lf.mat differ diff --git a/matlab/mat/frf_data_exc_strut_3_noise_lf.mat b/matlab/mat/frf_data_exc_strut_3_noise_lf.mat new file mode 100644 index 0000000..395f7ec Binary files /dev/null and b/matlab/mat/frf_data_exc_strut_3_noise_lf.mat differ diff --git a/matlab/mat/frf_data_exc_strut_4_noise_lf.mat b/matlab/mat/frf_data_exc_strut_4_noise_lf.mat new file mode 100644 index 0000000..79a9b84 Binary files /dev/null and b/matlab/mat/frf_data_exc_strut_4_noise_lf.mat differ diff --git a/matlab/mat/frf_data_exc_strut_5_noise_lf.mat b/matlab/mat/frf_data_exc_strut_5_noise_lf.mat new file mode 100644 index 0000000..8bf578d Binary files /dev/null and b/matlab/mat/frf_data_exc_strut_5_noise_lf.mat differ diff --git a/matlab/mat/frf_data_exc_strut_6_noise_lf.mat b/matlab/mat/frf_data_exc_strut_6_noise_lf.mat new file mode 100644 index 0000000..dc3f905 Binary files /dev/null and b/matlab/mat/frf_data_exc_strut_6_noise_lf.mat differ