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The goal of this test bench is to extract all the important parameters of the Amplified Piezoelectric
Actuator APA300ML.

This include:
e Stroke

e Stiffness

Hysteresis

Gain from the applied voltage V, to the generated Force F,

Gain from the sensor stack strain L to the generated voltage Vi



e Dynamical behavior

Figure 0.1: Picture of the APA300ML



1 Model of an Amplified Piezoelectric
Actuator and Sensor

Consider a schematic of the Amplified Piezoelectric Actuator in Figure 1.1.

Figure 1.1: Amplified Piezoelectric Actuator Schematic

A voltage V, applied to the actuator stacks will induce an actuator force F,:

Fa:ga'Va

A change of length dl of the sensor stack will induce a voltage Vj:

‘/s:gs'dl

We wish here to experimental measure g, and g;.

The block-diagram model of the piezoelectric actuator is then as shown in Figure 1.2.
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Figure 1.2: Model of the APA with Simscape/Simulink
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2 First Basic Measurements

Section 2.1:

e Section 2.2:
e Section 2.3

e Section 2.4:

2.1 Geometrical Measurements

The received APA are shown in Figure 2.1.

2.1.1 Measurement Setup

The flatness corresponding to the two interface planes are measured as shown in Figure 2.2.

2.1.2 Measurement Results

The height (Z) measurements at the 8 locations (4 points by plane) are defined below.

Matlab
apal = le-6%[0, -0.5 , 3.5 , 3.5 , 42 , 45.5, 52.5 , 46];
apa2 = le-6x[0, -2.5 , -3 , 0 ,-1.5 , 1 , -2 , -41;
apa3 = le-6x[0, -1.5 , 15 , 17.5 , 6.5 , 6.5, 21 , 231;
apa4 = le-6x[0, 6.5 , 14.5 , 9 , 16 , 22, 29.5, 211;
apa5 = le-6%[0, -12.5, 16.5 , 28.5 , -43 , -52 , -22.5, -13.5];
apa6 = le-6x[0, -8 , -2 , 5 , -57.5, -62 , -55.5, -52.51;
apa7 = le-6x[0, 19.5 , -8 , -29.5, 75 , 97.5, 70 , 48];
apa7b = le-6x[0, 9 , —18.5, =30 , 31 46.5, 16.5 , 7.51;

apa = {apal, apa2, apa3, apa4,

apab, apab, apa’b};

The X/Y Positions of the 8 measurement points are defined below.

Matlab

—ar =

pos

20e-3;
61e-3;
le-3;
15.5e-3;

= [[-L/2 + d; W/2 - d], [-L/2 +1 - d; W2 -d], [-L/2 + 1 - d; -W/2 +d], [-L/2 +d; -W/2 +d], [L/2 - 1 +d; W/2 - d],
— [L/2 - d; W2 -d], [L/2 - d; -W/2 +d], [L/2 - 1 +d; -W/2 + d]];




Figure 2.1: Received APA



Figure 2.2: Measurement Setup



Finally, the flatness is estimated by fitting a plane through the 8 points using the fminsearch command.

Matlab
apa_d = zeros(1, 7);
for i = 1:7
fun = @(x)max(abs(([pos; apa{i}1-[0;0;x(1)1)'*([x(2:3);11/norm([x(2:3);11))));
x0 = [0;0;01;

[x, min_d] = fminsearch(fun,x@);
apa_d(i) = min_d;
end

The obtained flatness are shown in Table 2.1.

Table 2.1: Estimated flatness

Flatness [um)]

APA 1 8.9
APA 2 3.1
APA 3 9.1
APA 4 3.0
APA 5 1.9
APA 6 7.1
APA 7 18.7

2.2 Electrical Measurements

The capacitance of the stacks is measure with the LCR-800 Meter (doc)

The excitation frequency is set to be 1kHz.

Table 2.2: Capacitance measured with the LCR meter. The excitation signal is a sinus at 1kHz

Sensor Stack Actuator Stacks

APA 1 5.10 10.03
APA 2 4.99 9.85
APA 3 1.72 5.18
APA 4 4.94 9.82
APA 5 4.90 9.66
APA 6 4.99 9.91
APA 7 4.85 9.85

There is clearly a problem with APA300ML number 3

The APA number 3 has ben sent back to Cedrat, and a new APA300ML has been shipped back.


https://www.gwinstek.com/en-global/products/detail/LCR-800

Figure 2.3: LCR Meter used for the measurements
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2.3 Stroke measurement

We here wish to estimate the stroke of the APA.

To do so, one side of the APA is fixed, and a displacement probe is located on the other side as shown
in Figure 2.4.

Then, a voltage is applied on either one or two stacks using a DAC and a voltage amplifier.

Note

Here are the documentation of the equipment used for this test bench:
e Voltage Amplifier: PD200 with a gain of 20
e 16bits DAC: 10313 Speedgoat card

e Displacement Probe: Millimar C1216 electronics and Millimar 1318 probe

Figure 2.4: Bench to measured the APA stroke

2.3.1 Voltage applied on one stack

Let’s first look at the relation between the voltage applied to one stack to the displacement of the APA
as measured by the displacement probe.

11



The applied voltage is shown in Figure 2.5.
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Figure 2.5: Applied voltage as a function of time

The obtained displacement is shown in Figure 2.6. The displacement is set to zero at initial time when
the voltage applied is -20V.
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Figure 2.6: Displacement as a function of time for all the APA300ML

Finally, the displacement is shown as a function of the applied voltage in Figure 2.7. We can clearly
see that there is a problem with the APA 3. Also, there is a large hysteresis.

We can clearly see from Figure 2.7 that there is a problem with the APA number 3.

2.3.2 Voltage applied on two stacks

Now look at the relation between the voltage applied to the two other stacks to the displacement of
the APA as measured by the displacement probe.

12
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Figure 2.7: Displacement as a function of the applied voltage

The obtained displacement is shown in Figure 2.8. The displacement is set to zero at initial time when
the voltage applied is -20V.

Finally, the displacement is shown as a function of the applied voltage in Figure 2.9. We can clearly
see that there is a problem with the APA 3. Also, there is a large hysteresis.

2.3.3 Voltage applied on all three stacks

Finally, we can combine the two measurements to estimate the relation between the displacement and
the voltage applied to the three stacks (Figure 2.10).

The obtained maximum stroke for all the APA are summarized in Table 2.3.

Table 2.3: Measured maximum stroke

Stroke [um]
APA 1 373.2
APA 2 365.5
APA 3 181.7
APA 4 359.7
APA 5 361.5
APA 6 363.9
APA 7 358.4

13
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Figure 2.10: Displacement as a function of the applied voltage

2.4 Spurious resonances

2.4.1 Introduction

Three main resonances are foreseen to be problematic for the control of the APA300ML:
e Mode in X-bending at 189Hz (Figure 2.11)
e Mode in Y-bending at 285Hz (Figure 2.12)
e Mode in Z-torsion at 400Hz (Figure 2.13)

These modes are present when flexible joints are fixed to the ends of the APA300ML.

In this section, we try to find the resonance frequency of these modes when one end of the APA is fixed
and the other is free.

2.4.2 Setup

The measurement setup is shown in Figure 2.14. A Laser vibrometer is measuring the difference of
motion of two points. The APA is excited with an instrumented hammer and the transfer function
from the hammer to the measured rotation is computed.

15



Figure 2.11: X-bending mode (189Hz)
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Figure 2.12: Y-bending mode (285Hz)
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Figure 2.13: Z-torsion mode (400Hz)
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e Laser Doppler Vibrometer Polytec OF V512

e Instrumented hammer

Figure 2.14: Measurement setup with a Laser Doppler Vibrometer and one instrumental hammer

2.4.3 Bending - X

The setup to measure the X-bending motion is shown in Figure 2.15. The APA is excited with an
instrumented hammer having a solid metallic tip. The impact point is on the back-side of the APA
aligned with the top measurement point.

Figure 2.15: X-Bending measurement setup

The data is loaded.

Matlab

bending_X = load('apa30@ml_bending_X_top.mat');

17



The config for tfestimate is performed:
Matlab

Ts = bending_X.Track1_X_Resolution;
win = hann(ceil(1/Ts));

The transfer function from the input force to the output “rotation” (difference between the two measured

distances).

Matlab
[G_bending_X, f] = tfestimate(bending_X.Trackl, bending_X.Track2, win, [], [1, 1/Ts);

The result is shown in Figure 2.16.

The can clearly observe a nice peak at 280Hz, and then peaks at the odd “harmonics” (third “harmonic”
at 840Hz, and fifth “harmonic” at 1400Hz).
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Figure 2.16: Obtained FRF for the X-bending

2.4.4 Bending - Y

The setup to measure the Y-bending is shown in Figure 2.17.

The impact point of the instrumented hammer is located on the back surface of the top interface (on
the back of the 2 measurements points).

The data is loaded, and the transfer function from the force to the measured rotation is computed.

Matlab

bending_Y = load('apa30@ml_bending_Y_top.mat');
[G_bending_Y, ~] = tfestimate(bending_Y.Trackl, bending_Y.Track2, win, [1, [1, 1/Ts);

18



Figure 2.17: Y-Bending measurement setup

The results are shown in Figure 2.18. The main resonance is at 412Hz, and we also see the third

“harmonic” at 1220Hz.
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Figure 2.18: Obtained FRF for the Y-bending

2.4.5 Torsion - Z

Finally, we measure the Z-torsion resonance as shown in Figure 2.19.

The excitation is shown on the other side of the APA, on the side to excite the torsion motion.

The data is loaded, and the transfer function computed.
Matlab

torsion = load('apa30@ml_torsion_left.mat');
[G_torsion, ~] = tfestimate(torsion.Trackl, torsion.Track2, win, [1, [], 1/Ts);

19



Figure 2.19: Z-Torsion measurement setup

The results are shown in Figure 2.20. We observe a first peak at 267Hz, which corresponds to the
X-bending mode that was measured at 280Hz. And then a second peak at 415Hz, which corresponds
to the X-bending mode that was measured at 412Hz. The mode in pure torsion is probably at higher

frequency (peak around 1kHz?).
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Figure 2.20: Obtained FRF for the Z-torsion

In order to verify that, the APA is excited on the top part such that the torsion mode should not be

excited.
Matlab
torsion = load('apa30@ml_torsion_top.mat');
[G_torsion_top, ~] = tfestimate(torsion.Trackl, torsion.Track2, win, []1, [1, 1/Ts);

The two FRF are compared in Figure 2.21. It is clear that the first two modes does not correspond to
the torsional mode. Maybe the resonance at 800Hz, or even higher resonances. It is difficult to conclude

here.

20
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Figure 2.21: Obtained FRF for the Z-torsion

2.4.6 Compare

The three measurements are shown in Figure 2.22.

2.4.7 Conclusion

When two flexible joints are fixed at each ends of the APA, the APA is mostly in a free/free condition
in terms of bending/torsion (the bending/torsional stiffness of the joints being very small).

In the current tests, the APA are in a fixed/free condition. Therefore, it is quite obvious that we

measured higher resonance frequencies than what is foreseen for the struts. It is however quite interesting
that there is a factor ~ /2 between the two (increased of the stiffness by a factor 2?).

Table 2.4: Measured frequency of the modes

Mode Strut Mode Measured Frequency

X-Bending 189Hz 280Hz
Y-Bending 285Hz 410Hz
Z-Torsion 400Hz ?

21
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3 Dynamical measurements - APA

In this section, a measurement test bench is used to identify the dynamics of the APA.

The bench is shown in Figure 3.1, and a zoom picture on the APA and encoder is shown in Figure
3.2.

Figure 3.1: Picture of the test bench

Here are the documentation of the equipment used for this test bench:

e Voltage Amplifier: PD200

Amplified Piezoelectric Actuator: APA300ML

DAC/ADC: Speedgoat 10313

Encoder: Renishaw Vionic and used Ruler

Interferometer: Attocube IDS3010

23


https://www.attocube.com/en/products/laser-displacement-sensor/displacement-measuring-interferometer

Figure 3.2: Zoom on the APA with the encoder

The bench is schematically shown in Figure 3.3 and the signal used are summarized in Table 3.1.

Table 3.1: Variables used during the measurements

Variable Description Unit Hardware
Va Output DAC voltage [V] DAC - Ch. 1 =>
PD200 => APA

Vs Measured stack volt-  [V] APA => ADC - Ch.
age (ADC) 1

de Encoder  Measure- [m] PEPU Ch. 1 -
ment I0318(1) - Ch. 1

da Attocube Measure- [m] PEPU Ch. 2 -
ment 10318(1) - Ch. 2

t Time [s]

This section is structured as follows:
e Section 3.1: the Speedgoat setup is described (excitation signals, saved signals, etc.)
e Section 3.2: the measurements are first performed on one APA.

e Section 3.3: the same measurements are performed on all the APA and are compared.

3.1 Speedgoat Setup

3.1.1 frf_setup.m - Measurement Setup

First is defined the sampling frequency:

24
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Figure 3.3: Schematic of the Test Bench

Matlab
%% Simulation configuration
Fs = 10e3; % Sampling Frequency [Hz]
Ts = 1/Fs; % Sampling Time [s]

Matlab
%% Data record configuration
Trec_start = 5; % Start time for Recording [s]
Trec_dur = 100; % Recording Duration [s]

Matlab

Tsim = 2xTrec_start + Trec_dur; % Simulation Time [s]

A white noise excitation signal can be very useful in order to obtain a first idea of the plant FRF. The
gain can be gradually increased until satisfactory output is obtained.

Matlab

%% Shaped Noise

V_noise = generateShapedNoise('Ts', 1/Fs, ...
'V_mean', 3.25, ...
't_start', Trec_start, ...
‘exc_duration', Trec_dur, ...
'smooth_ends', true, ...
'V_exc', 0.05/(1 + s/2/pi/10));

The maximum excitation voltage at resonance is 9Vrms, therefore corresponding to 0.6V of output DAC
voltage.

25
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Figure 3.4: Example of Shaped noise excitation signal
Matlab
gc = 0.1;
xi = 0.5;
wn = 2*pix94.3;
G_sweep = 0.2%(s"2 + 2xgckxixwn*xs + wn"2)/(s*2 + 2xxi*wn*s + wn*2);
V_sweep = generateSweepExc('Ts', Ts, ...
'f_start', 10, ...
'f_end', 400, ...
'V_mean', 3.25, ...
't_start', Trec_start, ...
'exc_duration', Trec_dur, ...
'sweep_type', 'log', ...
'V_exc', G_sweep*1/(1 + s/2/pi/500));
4 ~ 10°
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=3 IS
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® 2
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g B
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In order to better estimate the high frequency dynamics, a band-limited noise can be used (Figure 3.6).

Figure 3.5: Example of Sweep Sin excitation signal
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The frequency content of the noise can be precisely controlled.

Matlab

[b,al = cheby1(10, 2, 2*pix[300 2e3], 'bandpass', 's');
wL = 0.005*xtf(b, a);

V_noise_hf = generateShapedNoise('Ts', 1/Fs, ...
'V_mean', 3.25, ...
‘t_start', Trec_start,
‘exc_duration', Trec_dur, ...
'smooth_ends', true,
'V_exc', wL);
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Figure 3.6: Example of band-limited noise excitation signal

Then a sinus excitation can be used to estimate the hysteresis.

Matlab

V_sin = generateSinIncreasingAmpl('Ts', 1/Fs,
'V_mean', 3.25, ...
'sin_ampls', [0.1, 0.2, 0.4, 1, 2, 41, ...
'sin_period', 1,
'sin_num', 5, ...
't_start', Trec_start, ...
'smooth_ends', true);

Then, we select the wanted excitation signal.

Matlab
V_exc = timeseries(V_noise(2,:), V_noise(1,:));

Matlab
save('./frf_data.mat', 'Fs', 'Ts', 'Tsim', 'Trec_start', 'Trec_dur', 'V_exc');
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Figure 3.7: Example of Shaped noise excitation signal

3.1.2 frf_save.m - Save Data

First, we get data from the Speedgoat:

Matlab
tg = slrt;
f = SimulinkRealTime.openFTP(tg);
mget(f, 'data/data.dat');
close(f);
And we load the data on the Workspace:
Matlab

data = SimulinkRealTime.utils.getFileScopeData('data/data.dat"').data;

da = data(:, 1);
de = data(:, 2);
Vs = data(:, 3);

Va = data(:, 4);
t = data(:, end);

And we save this to a mat file:

Matlab

apa_number = 1;

save(sprintf('mat/frf_data_%i_huddle.mat', apa_number), 't', 'va', 'Vs', 'de', 'da');

3.2 Measurements on APA 1

Measurements are first performed on only one APA. Once the measurement procedure is validated, it
is performed on all the other APA.
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3.2.1 Excitation Signal

For this first measurement, a basic logarithmic sweep is used between 10Hz and 2kHz.

The data are loaded.

Matlab
apa_sweep = load(sprintf('mat/frf_data_%i_sweep.mat', 1), 't', 'va', 'Vs', 'da', 'de');

The initial time is set to zero.

Matlab

t = apa_sweep.t - apa_sweep.t(1) ;

The excitation signal is shown in Figure 3.8. It is a sweep sine from 10Hz up to 2kHz filtered with a
notch centered with the main resonance of the system and a low pass filter.
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Figure 3.8: Excitation voltage

3.2.2 FRF Identification - Setup

Let’s define the sampling time/frequency.

Matlab

Ts = (t(end) - t(1))/(length(t)-1);
Fs = 1/Ts;

Then we defined a “Hanning” windows that will be used for the spectral analysis:
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Matlab

win = hanning(ceil (1xFs));

We get the frequency vector that will be the same for all the frequency domain analysis.

Matlab

[~, f]1 = tfestimate(apa_sweep.Va, apa_sweep.de, win, [1, [1, 1/Ts);

3.2.3 FRF Identification - Displacement

In this section, the transfer function from the excitation voltage V, to the encoder measured displace-
ment d, and interferometer measurement d,,.

The coherence from V, to d. is computed and shown in Figure 3.9. It is quite good from 10Hz up to
500Hz.

Matlab

[coh_sweep, ~] = mscohere(apa_sweep.Va, apa_sweep.de, win, [1, [1, 1/Ts);
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Figure 3.9: Coherence for the identification from V, to d,

The transfer functions are then estimated and shown in Figure 3.10.

Matlab

[dvf_sweep, ~] = tfestimate(apa_sweep.Va, apa_sweep.de, win, [1, [1, 1/Ts);

[int_sweep, ~] = tfestimate(apa_sweep.Va, apa_sweep.da, win, [1, [1, 1/Ts);
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Figure 3.10: Obtained transfer functions from V, to both d. and d,

3.2.4 FRF Identification - Force Sensor

Now the dynamics from excitation voltage V, to the force sensor stack voltage V; is identified.

The coherence is computed and shown in Figure 3.11 and found very good from 10Hz up to 2kHz.

Matlab

[coh_sweep, ~] = mscohere(apa_sweep.Va, apa_sweep.Vs, win, []1, [], 1/Ts);

The transfer function is estimated and shown in Figure 3.12.

Matlab

[iff_sweep, ~] = tfestimate(apa_sweep.Va, apa_sweep.Vs, win, [], [1, 1/Ts);
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Figure 3.12: Obtained transfer functions from V, to V;
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3.2.5 Extract Parameters (Actuator/Sensor constants)
Piezoelectric Actuator Constant

Using the measurement test-bench, it is rather easy the determine the static gain between the ap-
plied voltage V, to the induced displacement d. Use a quasi static (1Hz) excitation signal V, on the
piezoelectric stack and measure the vertical displacement d. Perform a linear regression to obtain:

d= gd/Va . Va (31)

Using the Simscape model of the APA it is possible to determine the static gain between the actuator
force F, to the induced displacement d:

d=gar,  Fau (3.2)

From the two gains, it is then easy to determine g,:

Fa a d . gd/Va

g = —_—= —— s = 3.3
¢ Va d Va gd/Fa ( )
Piezoelectric Sensor Constant
From a quasi static excitation of the piezoelectric stack, measure the gain from V, to Vj:

VS = qu/Va Va (3.4)

Note here that there is an high pass filter formed by the piezo capacitor and parallel resistor. The
excitation frequency should then be in between the cut-off frequency of this high pass filter and the first
resonance.

Alternatively, the gain can be computed from the dynamical identification and taking the gain at the
wanted frequency.

Using the simscape model, compute the static gain from the actuator force F, to the strain of the sensor
stack dl:
dl = ga/r, Fa (3.5)

Then, the static gain from the sensor stack strain dl to the general voltage V; is:

o ‘/s - ‘/s Va Fa o gVS/Va
9= dl B Vo Fa dl B Y9a " 9di/F, (36)

Alternatively, we could impose an external force to add strain in the APA that should be equally present
in all the 3 stacks and equal to 1/5 of the vertical strain. This external force can be some weight added,
or a piezo in parallel.
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Results

Quasi static gain between d and V:

Matlab
g_d_Va = mean(abs(dvf_sweep(f > 10 & f < 15)));

Results
g_d_Va = 1.7e-05 [m/V]
Quasi static gain between V; and V:

Matlab
g_Vs_Va = mean(abs(iff_sweep(f > 10 & f < 15)));

Results

g_Vs_Va = 5.7e-01 [V/V]

3.2.6 Hysteresis

We here wish to visually see the amount of hysteresis present in the APA.

To do so, a quasi static sinusoidal excitation V, at different voltages is used.

The offset is 65V, and the sin amplitude is ranging from 1V up to 80V.

For each excitation amplitude, the vertical displacement d of the mass is measured.
Then, d is plotted as a function of V, for all the amplitudes.

We expect to obtained something like the hysteresis shown in Figure 3.13.

The data is loaded.

Matlab

apa_hyst = load('frf_data_1_hysteresis.mat', 't', 'Va', 'de');

apa_hyst.t = apa_hyst.t - apa_hyst.t(1);

The excitation voltage amplitudes are:

Matlab

ampls = [0.1, 0.2, 0.4, 1, 2, 4];

The excitation voltage and the measured displacement are shown in Figure 3.14.
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Figure 3.14: Excitation voltage and measured displacement
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For each amplitude, we only take the last sinus in order to reduce possible transients. Also, it is centered
on zero.

The measured displacement at a function of the output voltage are shown in Figure 3.15.
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o
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Figure 3.15: Obtained hysteresis for multiple excitation amplitudes

It is quite clear that hysteresis is increasing with the excitation amplitude.
Also, no hysteresis is found on the sensor stack voltage.

3.2.7 Estimation of the APA axial stiffness

In order to estimate the stiffness of the APA, a weight with known mass m, is added on top of the
suspended granite and the deflection d. is measured using the encoder. The APA stiffness is then:

maeg
Fopn = 28 (3.7)

Here, a mass of 6.4 kg is used:

Matlab

added_mass = 6.4; % Added mass [kg]
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The data is loaded, and the measured displacement is shown in Figure 3.16.

Matlab
apa_mass = load(sprintf('frf_data_%i_add_mass_closed_circuit.mat', 1), 't', 'de');
apa_mass.de = apa_mass.de - mean(apa_mass.de(apa_mass.t<11));
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Figure 3.16: Measured displacement when adding the mass and removing the mass

There is some imprecision in the measurement as there are some drifts that are probably due to some
creep.

The stiffness is then computed as follows:

Matlab
9.8 x added_mass / (mean(apa_mass.de(apa_mass.t > 12 & apa_mass.t < 12.5)) - mean(apa_mass.de(apa_mass.t > 20 & apa_mass.t
<

20.5)));

k =
s

And the stiffness obtained is very close to the one specified in the documentation (k = 1.794 [N/um)).

Results

k = 1.68 [N/um]

3.2.8 Stiffness change due to electrical connections

We wish here to see if the stiffness changes when the actuator stacks are not connected to the amplifier
and the sensor stacks are not connected to the ADC.

Note here that the resistor in parallel to the sensor stack is present in both cases.

First, the data are loaded.

37



Matlab
load(sprintf('frf_data_%i_add_mass_open_circuit.mat', 1), 't', 'de');
load(sprintf('frf_data_%i_add_mass_closed_circuit.mat', 1), 't', 'de');

add_mass_oc
add_mass_cc

And the initial displacement is set to zero.

Matlab
add_mass_oc.de - mean(add_mass_oc.de(add_mass_oc.t<11));
add_mass_cc.de - mean(add_mass_cc.de(add_mass_cc.t<11));

add_mass_oc.de
add_mass_cc.de

The measured displacements are shown in Figure 3.17.
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Figure 3.17: Measured displacement

And the stiffness is estimated in both case. The results are shown in Table 3.2.

Matlab
apa_k_oc = 9.8 * added_mass / (mean(add_mass_oc.de(add_mass_oc.t > 12 & add_mass_oc.t < 12.5)) -
— mean(add_mass_oc.de(add_mass_oc.t > 20 & add_mass_oc.t < 20.5)));
apa_k_cc = 9.8 * added_mass / (mean(add_mass_cc.de(add_mass_cc.t > 12 & add_mass_cc.t < 12.5)) -
— mean(add_mass_cc.de(add_mass_cc.t > 20 & add_mass_cc.t < 20.5)));

Table 3.2: Measured stiffnesses on “open” and “closed” circuits

k[N/pm]
Not connected 2.3
Connected 1.7

Clearly, connecting the actuator stacks to the amplified (basically equivalent as to short circuiting
them) lowers the stiffness.
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3.2.9 Effect of the resistor on the IFF Plant

A resistor R =~ 80.6 k() is added in parallel with the sensor stack. This has the effect to form a high
pass filter with the capacitance of the stack.

We here measured the low frequency transfer function from V, to V; with and without this resistor.

Matlab

wi_k = load('frf_data_1_sweep_lf_with_R.mat', 't', 'Vs', 'Va');

wo_k = load('frf_data_1_sweep_lf.mat', 't', 'Vs', 'Va');

We use a very long “Hanning” window for the spectral analysis in order to estimate the low frequency
behavior.

Matlab

win = hanning(ceil(50*Fs));

And we estimate the transfer function from V, to V; in both cases:

Matlab
[frf_wo_k, f] = tfestimate(wo_k.Va, wo_k.Vs, win, [], [1, 1/Ts);
[frf_wi_k, ~] = tfestimate(wi_k.Va, wi_k.Vs, win, [1, [J1, 1/Ts);

With the following values of the resistor and capacitance, we obtain a first order high pass filter with a
crossover frequency equal to:

Matlab
C = 5.1e-6;
R = 80.6e3;
o = 1/(2*pi*RxC);

Results

fo = 0.39 [Hz]

The transfer function of the corresponding high pass filter is:

Matlab

G_hpf = 0.6x(s/2xpixf@)/(1 + s/2xpixf0);

Let’s compare the transfer function from actuator stack to sensor stack with and without the added
resistor in Figure 3.18.

39



10° .

Amplitude V1 /Vin [V/V]

Without &
With k&
= = =HPF f, =0.39[HZ]
107! - e
90 .
& 45 5 ~ -
©. T ==
: T
< 0 =1
A~

10°
Frequency [Hz]

Figure 3.18: Transfer function from V, to V; with and without the resistor &
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The added resistor has indeed the expected effect.

3.3 Comparison of all the APA

The same measurements that was performed in Section 3.2 are now performed on all the APA and then
compared.

3.3.1 Axial Stiffnesses - Comparison

Let’s first compare the APA axial stiffnesses.

The added mass is:

Matlab

added_mass = 6.4; % Added mass [kg]

Here are the number of the APA that have been measured:

Matlab

apa_nums = [1 2 4 56 7 8];

The data are loaded.

Matlab

apa_mass = {};

for i = 1:length(apa_nums)
apa_mass(i) = {load(sprintf('frf_data_%i_add_mass_closed_circuit.mat', apa_nums(i)), 't', 'de')};
% The initial displacement is set to zero
apa_mass{i}.de = apa_mass{i}.de - mean(apa_mass{i}.de(apa_mass{i}.t<11));

end

The raw measurements are shown in Figure 3.19. All the APA seems to have similar stiffness except
the APA 7 which should have an higher stiffness.

It is however strange that the displacement d. when the mass is removed is higher for the APA
7 than for the other APA. What could cause that?

The stiffnesses are computed for all the APA and are summarized in Table 3.3.

The APA300ML manual specifies the nominal stiffness to be 1.8 [N/pum] which is very close to
what have been measured. Only the APA number 7 is a little bit off.
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Figure 3.19: Raw measurements for all the APA. A mass of 6.4kg is added at arround 15s and removed
at arround 22s

Table 3.3: Measured stiffnesses
APA Num  k[N/um]

1.68
1.69
1.7
1.7
1.7
1.93
1.73

0 J O UL N
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3.3.2 FRF Identification - Setup

The identification is performed in three steps:

1. White noise excitation with small amplitude. This is used to determine the main resonance of the
system.

2. Sweep sine excitation with the amplitude lowered around the resonance. The sweep sine is from
10Hz to 400Hz.

3. High frequency noise. The noise is band-passed between 300Hz and 2kHz.

Then, the result of the second identification is used between 10Hz and 350Hz and the result of the third
identification if used between 350Hz and 2kHz.

Here are the APA numbers that have been measured.

Matlab

apa_nums = [1 2 4 56 7 8];

The data are loaded for both the second and third identification:

Matlab

apa_sweep = {};
for i = 1:length(apa_nums)

apa_sweep(i) = {load(sprintf('frf_data_%i_sweep.mat', apa_nums(i)), 't', 'va', 'Vs', 'de', 'da')};
end

apa_noise_hf = {};
for i = 1:length(apa_nums)

apa_noise_hf(i) = {load(sprintf('frf_data_%i_noise_hf.mat', apa_nums(i)), 't', 'va', 'Vs', 'de', 'da')};
end

The time is the same for all measurements.

Matlab

t = apa_sweep{1}.t - apa_sweep{1}.t(1) ;

Ts
Fs

(t(end) - t(1))/(length(t)-1);
1/Ts;

Then we defined a “Hanning” windows that will be used for the spectral analysis:

Matlab

win = hanning(ceil(0.5%xFs));

We get the frequency vector that will be the same for all the frequency domain analysis.
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Matlab

[~, f1 = tfestimate(apa_sweep{1}.Va, apa_sweep{1}.de, win, [1, []1, 1/Ts);

3.3.3 FRF Identification - DVF

In this section, the dynamics from excitation voltage V, to encoder measured displacement d. is iden-
tified.

We compute the coherence for 2nd and 3rd identification:

Matlab

coh_sweep = zeros(length(f), length(apa_nums));

for i = 1:length(apa_nums)
[coh, ~] = mscohere(apa_sweep{i}.Va, apa_sweep{i}.de, win, [1, [], 1/Ts);
coh_sweep(:, 1) = coh;

end

coh_noise_hf = zeros(length(f), length(apa_nums));

for i = 1:length(apa_nums)
[coh, ~1 = mscohere(apa_noise_hf{i}.Va, apa_noise_hf{i}.de, win, [], [1, 1/Ts);
coh_noise_hf(:, i) = coh;

end

The coherence is shown in Figure 3.20. It is clear that the Sweep sine gives good coherence up to 400Hz
and that the high frequency noise excitation signal helps increasing a little bit the coherence at high

frequency.
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Figure 3.20: Obtained coherence for the plant from V, to d.

Then, the transfer function from the DAC output voltage V, to the measured displacement by the
encoders is computed:

Matlab

dvf_sweep = zeros(length(f), length(apa_nums));

for i = 1:length(apa_nums)
[frf, ~] = tfestimate(apa_sweep{i}.Va, apa_sweep{i}.de, win, [1, [1, 1/Ts);
dvf_sweep(:, i) = frf;
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end

dvf_noise_hf = zeros(length(f), length(apa_nums));

for i = 1:length(apa_nums)
[frf, ~1 = tfestimate(apa_noise_hf{i}.Va, apa_noise_hf{i}.de, win, [1, [1, 1/Ts);
dvf_noise_hf(:, i) = frf;

end

The obtained transfer functions are shown in Figure 3.21. They are all superimposed except for the
APAT.

Why is the APA7 off? We could think that the APATY is stiffer, but also the mass line is off.
It seems that there is a “gain” problem. The encoder seems fine (it measured the same as the
Interferometer). Maybe it could be due to the amplifier?
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Figure 3.21: Estimated FRF for the DVF plant (transfer function from V, to the encoder d.)

A zoom on the main resonance is shown in Figure 3.22. It is clear that expect for the APA 7, the
response around the resonances are well matching for all the APA.

It is also clear that there is not a single resonance but two resonances, a first one at 95Hz and a second
one at 105Hz.
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Why is there a double resonance at around 94Hz?
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Figure 3.22: Estimated FRF for the DVF plant (transfer function from V, to the encoder d.) - Zoom

on the main resonance

3.3.4 FRF Identification - IFF

In this section, the dynamics from V, to V; is identified.

First the coherence is computed and shown in Figure 3.23. The coherence is very nice from 10Hz
to 2kHz. It is only dropping near a zeros at 40Hz, and near the resonance at 95Hz (the excitation

amplitude being lowered).

Matlab

coh_sweep = zeros(length(f), length(apa_nums));

for i = 1:length(apa_nums)
[coh, ~] = mscohere(apa_sweep{i}.Va, apa_sweep{i}.Vs, win, [1, []1, 1/Ts);
coh_sweep(:, i) = coh;

end

coh_noise_hf = zeros(length(f), length(apa_nums));

for i = 1:length(apa_nums)
[coh, ~1 = mscohere(apa_noise_hf{i}.Va, apa_noise_hf{i}.Vs, win, [], [1, 1/Ts);
coh_noise_hf(:, i) = coh;

end
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Figure 3.23: Obtained coherence for the IFF plant

Then the FRF are estimated and shown in Figure 3.24

Matlab

%% FRF estimation of the transfer function from Va to Vs

iff_sweep = zeros(length(f), length(apa_nums));

for i = 1:length(apa_nums)
[frf, ~] = tfestimate(apa_sweep{i}.Va, apa_sweep{i}.Vs, win, [1, [1, 1/Ts);
iff_sweep(:, i) = frf;

end

iff_noise_hf = zeros(length(f), length(apa_nums));

for i = 1:length(apa_nums)
[frf, ~] = tfestimate(apa_noise_hf{i}.Va, apa_noise_hf{i}.Vs, win, [1, [1, 1/Ts);
iff_noise_hf(:, i) = frf;

end
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Figure 3.24: Identified IFF Plant
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4 Dynamical measurements - Struts

The same bench used in Section 3 is here used with the strut instead of only the APA.

The bench is shown in Figure 4.3. Measurements are performed either when no encoder is fixed to the
strut (Figure 4.2) or when one encoder is fixed to the strut (Figure 4.3).

Figure 4.1: Test Bench with Strut - Overview

4.1 Measurement on Strut 1

Measurements are first performed on the strut 1 that contains:
e APA 1

o flex 1 and flex 2
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Figure 4.3: Test Bench with Strut - Zoom on the strut with the encoder
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4.1.1 Without Encoder
FRF Identification - Setup

The identification is performed in three steps:

1. White noise excitation with small amplitude. This is used to determine the main resonance of the
system.

2. Sweep sine excitation with the amplitude lowered around the resonance. The sweep sine is from
10Hz to 400Hz.

3. High frequency noise. The noise is band-passed between 300Hz and 2kHz.

Then, the result of the second identification is used between 10Hz and 350Hz and the result of the third
identification if used between 350Hz and 2kHz.

Matlab
load(sprintf('frf_data_leg_%i_sweep.mat', 1), 't', 'va', 'Vs', 'de', 'da');
load(sprintf('frf_data_leg_%i_noise_hf.mat', 1), 't', 'va', 'Vs', 'de', 'da');

~

leg_sweep
leg_noise_hf

The time is the same for all measurements.

Matlab

t = leg_sweep.t - leg_sweep.t(1) ;

Ts
Fs

(t(end) - t(1))/(length(t)-1);
1/Ts;

Then we defined a “Hanning” windows that will be used for the spectral analysis:

Matlab

win = hanning(ceil(0.5%Fs));

We get the frequency vector that will be the same for all the frequency domain analysis.

Matlab

[~, f] = tfestimate(leg_sweep.Va, leg_sweep.de, win, [J], [J, 1/Ts);

FRF Identification - Displacement

In this section, the dynamics from the excitation voltage V, to the interferometer d, is identified.

We compute the coherence for 2nd and 3rd identification:
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Matlab
mscohere(leg_sweep.Va, leg_sweep.da, win, [], [J, 1/Ts);
mscohere(leg_noise_hf.Va, leg_noise_hf.da, win, [J1, [], 1/Ts);

[coh_sweep, ~]
[coh_noise_hf, ~]
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Figure 4.4: Obtained coherence for the plant from V, to d,

The transfer function from V, to the interferometer measured displacement d, is estimated and shown
in Figure 4.5.
Matlab

tfestimate(leg_sweep.Va, leg_sweep.da, win, [1, [1, 1/Ts);
tfestimate(leg_noise_hf.Va, leg_noise_hf.da, win, [], [1, 1/Ts);

[dvf_sweep, ~]
[dvf_noise_hf, ~]

FRF ldentification - IFF

In this section, the dynamics from V, to V; is identified.

First the coherence is computed and shown in Figure 4.15. The coherence is very nice from 10Hz
to 2kHz. It is only dropping near a zeros at 40Hz, and near the resonance at 95Hz (the excitation
amplitude being lowered).

Matlab
[coh_sweep, ~] = mscohere(leg_sweep.Va, leg_sweep.Vs, win, [], [], 1/Ts);
[coh_noise_hf, ~] = mscohere(leg_noise_hf.Va, leg_noise_hf.Vs, win, [1, [1, 1/Ts);

Then the FRF are estimated and shown in Figure 4.7

Matlab
[iff_sweep, ~] = tfestimate(leg_sweep.Va, leg_sweep.Vs, win, [1, [1, 1/Ts);
[iff_noise_hf, ~] = tfestimate(leg_noise_hf.Va, leg_noise_hf.Vs, win, [], [1, 1/Ts);
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Figure 4.5: Estimated FRF for the DVF plant (transfer function from V, to the interferometer d,)
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Figure 4.6: Obtained coherence for the IFF plant
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Figure 4.7: Identified IFF Plant for the Strut 1
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4.1.2 With Encoder

Measurement Data

Matlab
leg_enc_sweep = load(sprintf('frf_data_leg_coder_badly_align_%i_noise.mat', 1), 't', 'va', 'Vs', 'de', 'da');
leg_enc_noise_hf = load(sprintf('frf_data_leg_coder_badly_align_%i_noise_hf.mat', 1), 't', 'Va', 'Vs', 'de', 'da');
FRF Identification - DVF
In this section, the dynamics from V, to d. is identified.
We compute the coherence for 2nd and 3rd identification:
Matlab
[coh_enc_sweep, ~] = mscohere(leg_enc_sweep.Va, leg_enc_sweep.de, win, [1, [1, 1/Ts);
[coh_enc_noise_hf, ~] = mscohere(leg_enc_noise_hf.Va, leg_enc_noise_hf.de, win, [1, [1, 1/Ts);
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Figure 4.8: Obtained coherence for the plant from V, to d.
Matlab
[dvf_enc_sweep, ~] = tfestimate(leg_enc_sweep.Va, leg_enc_sweep.de, win, [1, [1, 1/Ts);
[dvf_enc_noise_hf, ~] = tfestimate(leg_enc_noise_hf.Va, leg_enc_noise_hf.de, win, [1, [, 1/Ts);
Matlab
[dvf_int_sweep, ~] = tfestimate(leg_enc_sweep.Va, leg_enc_sweep.da, win, [1, []1, 1/Ts);
[dvf_int_noise_hf, ~] = tfestimate(leg_enc_noise_hf.Va, leg_enc_noise_hf.da, win, [1, []1, 1/Ts);

The obtained transfer functions are shown in Figure 4.9.

They are all superimposed except for the APAT.
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Why is the APA7 off? We could think that the APATY is stiffer, but also the mass line is off.
It seems that there is a “gain” problem. The encoder seems fine (it measured the same as the
Interferometer). Maybe it could be due to the amplifier?

Why is there a double resonance at around 94Hz?
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Figure 4.9: Estimated FRF for the DVF plant (transfer function from V; to the encoder d.)

Comparison of the Encoder and Interferometer

The interferometer could here represent the case where the encoders are fixed to the plates and not the
APA.

The dynamics from V, to d. and from V, to d, are compared in Figure 4.10.

It will clearly be difficult to do something (except some low frequency positioning) with the
encoders fixed to the APA.
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Figure 4.10: Comparison of the transfer functions from excitation voltage V, to either the encoder d,
or the interferometer d,
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APA Resonances Frequency

As shown in Figure 4.11, we can clearly see three spurious resonances at 197Hz, 290Hz and 376Hz.
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Figure 4.11: Magnitude of the transfer function from excitation voltage V, to encoder measurement
d.. The frequency of the resonances are noted.

These resonances correspond to parasitic resonances of the APA itself. They are very close to what was

estimated using the FEM:
e X-bending mode at around 190Hz (Figure 4.12)
e Y-bending mode at around 290Hz (Figure 4.13)

e Z-torsion mode at around 400Hz (Figure 4.141)

The resonances are indeed due to limited stiffness of the APA.

Estimated Flexible Joint axial stiffness

FRF Identification - IFF

In this section, the dynamics from V, to V; is identified.
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Figure 4.12: X-bending mode (189Hz)
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Figure 4.13: Y-bending mode (285Hz)
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Figure 4.14: Z-torsion mode (400Hz)
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First the coherence is computed and shown in Figure 4.15. The coherence is very nice from 10Hz
to 2kHz. It is only dropping near a zeros at 40Hz, and near the resonance at 95Hz (the excitation
amplitude being lowered).

Matlab

[coh_enc_sweep, ~] = mscohere(leg_enc_sweep.Va, leg_enc_sweep.Vs, win, [1, [1, 1/Ts);
[coh_enc_noise_hf, ~] = mscohere(leg_enc_noise_hf.Va, leg_enc_noise_hf.Vs, win, [], [1, 1/Ts);
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Figure 4.15: Obtained coherence for the IFF plant

Then the FRF are estimated and shown in Figure 4.16

Matlab
[iff_enc_sweep, ~] = tfestimate(leg_enc_sweep.Va, leg_enc_sweep.Vs, win, [1, [1, 1/Ts);
[iff_enc_noise_hf, ~] = tfestimate(leg_enc_noise_hf.Va, leg_enc_noise_hf.Vs, win, [1, [1, 1/Ts);

Let’s now compare the IFF plants whether the encoders are fixed to the APA or not (Figure 4.17).

We can see that the IFF does not change whether of not the encoder are fixed to the struts.

4.2 Comparison of all the Struts

Now all struts are measured using the same procedure and test bench.

4.2.1 FRF Identification - Setup

The identification is performed in two steps:

1. White noise excitation with small amplitude. This is used to estimate the low frequency dynamics.
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Figure 4.16: Identified IFF Plant
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Figure 4.17: Effect of the encoder on the IFF plant
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2. High frequency noise. The noise is band-passed between 300Hz and 2kHz.

Then, the result of the first identification is used between 10Hz and 350Hz and the result of the second
identification if used between 350Hz and 2kHz.

Here are the LEG numbers that have been measured.

Matlab

leg_nums = [1 2 3 4 5];

The data are loaded for both the first and second identification:

Matlab

leg_noise = {};
for i = 1:length(leg_nums)

leg_noise(i) = {load(sprintf('frf_data_leg_coder_%i_noise.mat', leg_nums(i)), 't', 'va', 'Vs', 'de', 'da')};
end

leg_noise_hf = {};
for i = 1:length(leg_nums)

leg_noise_hf(i) = {load(sprintf('frf_data_leg_coder_%i_noise_hf.mat', leg_nums(i)), 't', 'va', 'Vs', 'de', 'da')};
end

The time is the same for all measurements.

Matlab

t = leg_noise{1}.t - leg_noise{1}.t(1) ;

Ts
Fs

(t(end) - t(1))/(length(t)-1);
1/Ts;

Then we defined a “Hanning” windows that will be used for the spectral analysis:

Matlab

win = hanning(ceil(0.5%Fs));

We get the frequency vector that will be the same for all the frequency domain analysis.

Matlab

[~, f] = tfestimate(leg_noise{1}.Va, leg_noise{1}.de, win, [1, []1, 1/Ts);

4.2.2 FRF ldentification - DVF

In this section, the dynamics from V, to d. is identified.

We compute the coherence for 2nd and 3rd identification:

63



Matlab

%% Coherence computation

coh_noise = zeros(length(f), length(leg_nums));

for i = 1:length(leg_nums)
[coh, ~] = mscohere(leg_noise{i}.Va, leg_noise{i}.de, win, [1, [1, 1/Ts);
coh_noise(:, i) = coh;

end

coh_noise_hf = zeros(length(f), length(leg_nums));

for i = 1:length(leg_nums)
[coh, ~] = mscohere(leg_noise_hf{i}.Va, leg_noise_hf{i}.de, win, [1, [1, 1/Ts);
coh_noise_hf(:, i) = coh;

end

The coherence is shown in Figure 4.18. It is clear that the Noise sine gives good coherence up to 400Hz
and that the high frequency noise excitation signal helps increasing a little bit the coherence at high
frequency.
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Figure 4.18: Obtained coherence for the plant from V, to d.

Then, the transfer function from the DAC output voltage V, to the measured displacement by the
encoders is computed:

Matlab

%% Transfer function estimation

dvf_noise = zeros(length(f), length(leg_nums));

for i = 1:length(leg_nums)
[frf, ~] = tfestimate(leg_noise{i}.Va, leg_noise{i}.de, win, [1, [1, 1/Ts);
dvf_noise(:, i) = frf;

end

dvf_noise_hf = zeros(length(f), length(leg_nums));

for i = 1:length(leg_nums)
[frf, ~] = tfestimate(leg_noise_hf{i}.Va, leg_noise_hf{i}.de, win, [1, []1, 1/Ts);
dvf_noise_hf(:, i) = frf;

end

The obtained transfer functions are shown in Figure 4.19.

They are all superimposed except for the LEGT7.
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Figure 4.19: Estimated FRF for the DVF plant (transfer function from V, to the encoder d.)

Depending on how the APA are mounted with the flexible joints, the dynamics can change a lot
as shown in Figure 4.19. In the future, a “pin” will be used to better align the APA with the
flexible joints. We can expect the amplitude of the spurious resonances to decrease.

4.2.3 FRF ldentification - DVF with interferometer

In this section, the dynamics from V, to d, is identified.

We compute the coherence.

Matlab

%% Coherence computation

coh_noise = zeros(length(f), length(leg_nums));

for i = 1:length(leg_nums)
[coh, ~]1 = mscohere(leg_noise{i}.Va, leg_noise{i}.da, win, [1, [1, 1/Ts);
coh_noise(:, i) = coh;

end

coh_noise_hf = zeros(length(f), length(leg_nums));

for i = 1:length(leg_nums)
[coh, ~] = mscohere(leg_noise_hf{i}.Va, leg_noise_hf{i}.da, win, [1, [1, 1/Ts);
coh_noise_hf(:, i) = coh;

end
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The coherence is shown in Figure 4.20. It is clear that the Noise sine gives good coherence up to 400Hz
and that the high frequency noise excitation signal helps increasing a little bit the coherence at high
frequency.
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Figure 4.20: Obtained coherence for the plant from V, to d.

Then, the transfer function from the DAC output voltage V, to the measured displacement by the
Attocube is computed:

Matlab

dvf_a_noise = zeros(length(f), length(leg_nums));

for i = 1:length(leg_nums)
[frf, ~] = tfestimate(leg_noise{i}.Va, leg_noise{i}.da, win, [1, [1, 1/Ts);
dvf_a_noise(:, i) = frf;

end

dvf_a_noise_hf = zeros(length(f), length(leg_nums));

for i = 1:length(leg_nums)
[frf, ~1 = tfestimate(leg_noise_hf{i}.Va, leg_noise_hf{i}.da, win, [1, [1, 1/Ts);
dvf_a_noise_hf(:, i) = frf;

end

The obtained transfer functions are shown in Figure 4.21.

They are all superimposed except for the LEGT.

4.2.4 FRF ldentification - IFF

In this section, the dynamics from V, to V is identified.
First the coherence is computed and shown in Figure 4.22. The coherence is very nice from 10Hz

to 2kHz. It is only dropping near a zeros at 40Hz, and near the resonance at 95Hz (the excitation
amplitude being lowered).
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Figure 4.21: Estimated FRF for the DVF plant (transfer function from V, to the encoder d.)

Matlab

coh_noise = zeros(length(f), length(leg_nums));

for i = 1:length(leg_nums)
[coh, ~] = mscohere(leg_noise{i}.Va, leg_noise{i}.Vs, win, [1, []1, 1/Ts);
coh_noise(:, i) = coh;

end

coh_noise_hf = zeros(length(f), length(leg_nums));

for i = 1:length(leg_nums)
[coh, ~] = mscohere(leg_noise_hf{i}.Va, leg_noise_hf{i}.Vs, win, [], [], 1/Ts);
coh_noise_hf(:, i) = coh;

end

Then the FRF are estimated and shown in Figure 4.23

Matlab

iff_noise = zeros(length(f), length(leg_nums));

for i = 1:length(leg_nums)
[frf, ~] = tfestimate(leg_noise{i}.Va, leg_noise{i}.Vs, win, [1, [1, 1/Ts);
iff_noise(:, i) = frf;

end

iff_noise_hf = zeros(length(f), length(leg_nums));

for i = 1:length(leg_nums)
[frf, ~1 = tfestimate(leg_noise_hf{i}.Va, leg_noise_hf{i}.Vs, win, [], [1, 1/Ts);
iff_noise_hf(:, i) = frf;

end
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Figure 4.23: Identified IFF Plant
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5 Test Bench APA300ML - Simscape
Model

5.1 Introduction

5.2 Nano Hexapod object

Matlab
n_hexapod = struct();
5.2.1 APA - 2 DoF
Matlab
n_hexapod.actuator = struct();
n_hexapod.actuator.type = 1;
n_hexapod.actuator.k = ones(6,1)*0.35¢e6;
n_hexapod.actuator.ke = ones(6,1)*1.5e6;
n_hexapod.actuator.ka = ones(6,1)*43e6;
n_hexapod.actuator.c = ones(6,1)*3el;
n_hexapod.actuator.ce = ones(6,1)*lel;
n_hexapod.actuator.ca = ones(6,1)*lel;
n_hexapod.actuator.Leq = ones(6,1)*0.056;
n_hexapod. actuator.Ga = ones(6,1)*1;
n_hexapod.actuator.Gs = ones(6,1)*1;
5.2.2 APA - Flexible Frame
Matlab

n_hexapod.actuator.type = 2;

n_hexapod.actuator.K = readmatrix('APA30OML_b_mat_K.CSV');
n_hexapod.actuator.M = readmatrix('APA30@OML_b_mat_M.CSV');
n_hexapod.actuator.xi = 0.01;

n_hexapod.actuator.P = extractNodes('APA30OML_b_out_nodes_3D.txt");

n_hexapod.actuator.ks = 235e6;
n_hexapod.actuator.cs = Tel;

n_hexapod.actuator.Ga = ones(6,1)*1;
n_hexapod.actuator.Gs = ones(6,1)*1;
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5.2.3 APA - Fully Flexible

Matlab

n_hexapod.actuator.type = 3;

n_hexapod.actuator.K = readmatrix('APA30OML_full_mat_K.CSV');
n_hexapod.actuator.M = readmatrix('APA30OML_full_mat_M.CSV');
n_hexapod.actuator.xi = 0.01;

n_hexapod.actuator.P = extractNodes('APA300ML_full out_nodes_3D.txt');

n_hexapod.actuator.Ga = ones(6,1)*1;
n_hexapod.actuator.Gs = ones(6,1)*1;

5.3 Identification

Matlab

options = linearizeOptions;
options.SampleTime = 0;

mdl = 'test_bench_apa3eoml’;

clear io; io_i = 1;

io(io_i) = linio([mdl, '/Va'l, 1, 'openinput'); io_i = io_i +
io(io_i) = linio([mdl, '/Vs'l, 1, 'openoutput'); io_i = io_i +
io(io_i) = linio([mdl, '/dL'], 1, 'openoutput'); io_i = io_i +
io(io_i) = linio([mdl, '/z'], 1, 'openoutput'); io_i = io_i +

Ga = linearize(mdl, io, 0.0, options);
Ga.InputName = {'Va'};
Ga.OutputName = {'Vs', 'dL', 'z'};

5.4 Compare 2-DoF with flexible

5.4.1 APA - 2 DoF

Matlab

n_hexapod = struct();

n_hexapod.actuator = struct();
n_hexapod.actuator.type = 1;
n_hexapod.actuator.k = ones(6,1)*0.35¢e6;

n_hexapod.actuator.ke = ones(6,1)*1.5¢e6;
n_hexapod.actuator.ka = ones(6,1)*43e6;

n_hexapod.actuator.c = ones(6,1)*3el;
n_hexapod.actuator.ce = ones(6,1)*lel;
n_hexapod.actuator.ca = ones(6,1)*lel;

n_hexapod.actuator.Leq = ones(6,1)*0.056;

n_hexapod.actuator.Ga = ones(6,1)*-2.15;
n_hexapod.actuator.Gs = ones(6,1)*2.305e-08;
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Matlab

G_2dof = linearize(mdl, io, 0.0, options);
G_2dof.InputName = {'Va'};
G_2dof.OutputName = {'Vs', 'dL', 'z'};

5.4.2 APA - Fully Flexible

Matlab

n_hexapod = struct();
n_hexapod.actuator.type = 3;

n_hexapod.actuator.K = readmatrix('APA30@OML_full_mat_K.CSV');
n_hexapod.actuator.M = readmatrix('APA30OML_full_mat_M.CSV');
n_hexapod.actuator.xi = 0.01;

n_hexapod.actuator.P = extractNodes('APA300ML_full_out_nodes_3D.txt');

n_hexapod.actuator.Ga = ones(6,1)*1;
n_hexapod.actuator.Gs = ones(6,1)*1;

Matlab
G_flex = linearize(mdl, io, 0.0, options);
G_flex.InputName = {'Va'};
G_flex.OutputName = {'Vs', 'dL', 'z'};

5.4.3 Comparison
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6 Test Bench Struts - Simscape

6.1 Introduction

6.2 Nano Hexapod object

Model

Matlab
n_hexapod = struct();
6.2.1 Flexible Joint - Bot
Matlab
n_hexapod. flex_bot = struct();
n_hexapod. flex_bot.type = 1;
n_hexapod. flex_bot.kRx = ones(6,1)*5;
n_hexapod. flex_bot.kRy = ones(6,1)*5
n_hexapod. flex_bot.kRz = ones(6,1)*260;
n_hexapod. flex_bot.kz = ones(6,1)*1e8;
n_hexapod. flex_bot.cRx = ones(6,1)*0.1;
n_hexapod. flex_bot.cRy = ones(6,1)*0.1;
n_hexapod. flex_bot.cRz = ones(6,1)*0.1;
n_hexapod. flex_bot.cz = ones(6,1)*1e2;
6.2.2 Flexible Joint - Top
Matlab

n_hexapod. flex_top = struct();
n_hexapod. flex_top.type = 2;

n_hexapod. flex_top.kRx
n_hexapod. flex_top.kRy
n_hexapod. flex_top.kRz
n_hexapod. flex_top.kz

ones(6,1)*5;
ones(6,1)*5;
ones(6,1)*260;
ones(6,1)*1e8;

n_hexapod. flex_top.cRx
n_hexapod. flex_top.cRy
n_hexapod. flex_top.cRz
n_hexapod. flex_top.cz

ones(6,1)*0.1;
ones(6,1)*0.1;
ones(6,1)*0.1;
ones(6,1)*1e2;
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6.2.3 APA - 2 DoF

Matlab
n_hexapod.actuator = struct();
n_hexapod.actuator.type = 1;
n_hexapod.actuator.k = ones(6,1)*0.35¢e6;
n_hexapod.actuator.ke = ones(6,1)*1.5¢e6;
n_hexapod.actuator.ka = ones(6,1)*43e6;
n_hexapod.actuator.c = ones(6,1)*3el;
n_hexapod.actuator.ce = ones(6,1)*lel;
n_hexapod.actuator.ca = ones(6,1)*lel;
n_hexapod.actuator.Leq = ones(6,1)*0.056;
n_hexapod.actuator.Ga = ones(6,1)*1;
n_hexapod.actuator.Gs = ones(6,1)*1;
6.2.4 APA - Flexible Frame
Matlab

n_hexapod.actuator.type = 2;

n_hexapod.actuator.K = readmatrix('APA30OML_b_mat_K.CSV');
n_hexapod.actuator.M = readmatrix('APA30OML_b_mat_M.CSV');
n_hexapod.actuator.xi = 0.01;

n_hexapod.actuator.P = extractNodes('APA300ML_b_out_nodes_3D.txt');

n_hexapod.actuator.ks = 235e6;
n_hexapod.actuator.cs = Tel;

n_hexapod.actuator.Ga = ones(6,1)*1;
n_hexapod. actuator.Gs = ones(6,1)*1;

6.2.5 APA - Fully Flexible

Matlab

n_hexapod.actuator.type = 3;

n_hexapod.actuator.K = readmatrix('APA30@OML_full_mat_K.CSV');
n_hexapod.actuator.M = readmatrix('APA30OML_full_mat_M.CSV');
n_hexapod.actuator.xi = 0.01;

n_hexapod.actuator.P = extractNodes('APA300ML_full out_nodes_3D.txt');

n_hexapod.actuator.Ga = ones(6,1)*1;
n_hexapod.actuator.Gs = ones(6,1)*1;

6.3 Identification

Matlab

options = linearizeOptions;
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options.SampleTime = 0;

mdl = 'test_bench_struts';

clear io; io_i = 1;

io(io_i) = linio([mdl,
io(io_i) = linio([mdl,
io(io_i) = linio([mdl,
io(io_i) = linio([mdl,

'/Va'l, 1
"/Ns'1, 1,
t/dLt, 1
'/z2'1, 1

'openinput');

'openoutput');
'openoutput');
'openoutput');

Gs = linearize(mdl, io, 0.0, options);

Gs.InputName = {'Va'};
Gs.OutputName = {'Vs',

dr,

‘z'};

io_i =
io_i =

io_i
io_i

io_i
io_i
io_i
io_i

+ 4+ + o+

6.4 Compare

6.4.1 Perfect

flexible joints

Matlab

n_hexapod. flex_bot.type
n_hexapod. flex_top.type

Matlab

Gp = linearize(mdl, io, 0.0, options);

Gp.InputName = {'Va'};
Gp.OutputName = {'Vs',

dr,

'z'};

6.4.2 Top Flexible

Matlab

n_hexapod. flex_bot.type = 1;

n_hexapod. flex_top.type

3;

Matlab

Gt = linearize(mdl, io, 0.0, options);

Gt.InputName = {'Va'};
Gt.OutputName = {'Vs',

de,

'z'};

6.4.3 Bottom Flexible

Matlab

n_hexapod. flex_bot.type = 3;

n_hexapod.flex_top.type

2;
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Matlab

Gb = linearize(mdl, io, 0.0, options);
Gb.InputName = {'Va'};
Gb.OutputName = {'Vs', 'dL', 'z'};

6.4.4 Both Flexible

Matlab

n_hexapod. flex_bot.type
n_hexapod.flex_top.type

Matlab

Gf = linearize(mdl, io, 0.0, options);
Gf.InputName = {'Va'};
Gf.OutputName = {'Vs', 'dL', 'z'};

6.4.5 Comparison
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7 Function

7.1 generateSweepExc: Generate sweep sinus excitation

Function description

Matlab
function [U_exc] = generateSweepExc(args)
Optional Parameters
Matlab
arguments
args.Ts (1,1) double {mustBeNumeric, mustBePositive} = le-4
args.f_start (1,1) double {mustBeNumeric, mustBePositive} = 1
args.f_end (1,1) double {mustBeNumeric, mustBePositive} = 1e3
args.V_mean (1,1) double {mustBeNumeric} = @
args.V_exc =1
args.t_start (1,1) double {mustBeNumeric, mustBeNonnegative} = 5
args.exc_duration (1,1) double {mustBeNumeric, mustBePositive} = 10
args.sweep_type char {mustBeMember (args.sweep_type,{'log', 'lin'})} = 'lin
args.smooth_ends logical {mustBeNumericOrlLogical} = true
end
Sweep Sine part
Matlab

t_sweep = 0:args.Ts:args.exc_duration;

if strcmp(args.sweep_type, 'log')

V_exc = sin(2*pixargs.f_start * args.exc_duration/log(args.f_end/args.f_start) *
s (exp(log(args.f_end/args.f_start)xt_sweep/args.exc_duration) - 1));
elseif strcmp(args.sweep_type, 'lin')
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V_exc = sin(2xpi*(args.f_start + (args.f_end - args.f_start)/2/args.exc_duration*t_sweep).xt_sweep);

else
error('sweep_type should either be equal to "log"” or to "lin"');
end

Matlab

if isnumeric(args.V_exc)
V_sweep = args.V_mean + args.V_exc*V_exc;
elseif isct(args.V_exc)
if strcmp(args.sweep_type, 'log')
V_sweep = args.V_mean + abs(squeeze(freqresp(args.V_exc,

— args.f_start*(args.f_end/args.f_start).*(t_sweep/args.exc_duration),

elseif strcmp(args.sweep_type, 'lin')
V_sweep = args.V_mean + abs(squeeze(freqresp(args.V_exc,

— args.f_start+(args.f_end-args.f_start)/args.exc_duration*t_sweep,

end
end

'Hz')))'.*V_exc;

'Hz'))) ' . *V_exc;

Smooth Ends

Matlab

if args.t_start > 0
t_smooth_start = args.Ts:args.Ts:args.t_start;

V_smooth_start = zeros(size(t_smooth_start));
V_smooth_end = zeros(size(t_smooth_start));

if args.smooth_ends
Vd_max = args.V_mean/(0.7*args.t_start);

V_d = zeros(size(t_smooth_start));

V_d(t_smooth_start < 0.2*args.t_start) = t_smooth_start(t_smooth_start < 0.2xargs.t_start)*Vd_max/(0.2*args.t_start);

V_d(t_smooth_start > 0.2%args.t_start & t_smooth_start < 0.7*args.t_start) = Vd_max;

V_d(t_smooth_start > 0.7*xargs.t_start & t_smooth_start < 0.9*%args.t_start) = Vd_max - (t_smooth_start(t_smooth_start >
— 0.7*xargs.t_start & t_smooth_start < 0.9*%args.t_start) - 0.7*xargs.t_start)*Vd_max/(0.2*args.t_start);

V_smooth_start = cumtrapz(V_d)*args.Ts;

V_smooth_end = args.V_mean - V_smooth_start;
end
else
V_smooth_start = [];
V_smooth_end = [];
end

Combine Excitation signals

Matlab

V_exc = [V_smooth_start, V_sweep, V_smooth_end];
t_exc = args.Ts*[0:1:1length(V_exc)-11;

Matlab

U_exc = [t_exc; V_excl;
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7.2 generateShapedNoise: Generate Shaped Noise excitation

Function description

Matlab
function [U_exc] = generateShapedNoise(args)
Optional Parameters
Matlab
arguments
args.Ts (1,1) double {mustBeNumeric, mustBePositive} = le-4
args.V_mean (1,1) double {mustBeNumeric} = @
args.V_exc =1
args.t_start (1,1) double {mustBeNumeric, mustBePositive} = 5
args.exc_duration (1,1) double {mustBeNumeric, mustBePositive} = 10
args.smooth_ends logical {mustBeNumericOrLogical} = true
end
Shaped Noise
Matlab
t_noise = 0:args.Ts:args.exc_duration;
Matlab

if isnumeric(args.V_exc)

V_noise = args.V_mean + args.V_excxsqrt(1/args.Ts/2)*randn(length(t_noise), 1)';
elseif isct(args.V_exc)

V_noise = args.V_mean + lsim(args.V_exc, sqrt(1/args.Ts/2)*randn(length(t_noise), 1), t_noise)';
end

Smooth Ends

Matlab

t_smooth_start = args.Ts:args.Ts:args.t_start;

V_smooth_start = zeros(size(t_smooth_start));
V_smooth_end = zeros(size(t_smooth_start));
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if args.smooth_ends
Vd_max = args.V_mean/(0.7xargs.t_start);

V_d = zeros(size(t_smooth_start));

V_d(t_smooth_start < 0.2*args.t_start) = t_smooth_start(t_smooth_start < 0.2xargs.t_start)*Vd_max/(0.2*args.t_start);

V_d(t_smooth_start > 0.2%args.t_start & t_smooth_start < 0.7*args.t_start) = Vd_max;

V_d(t_smooth_start > 0.7*xargs.t_start & t_smooth_start < 0.9*args.t_start) = Vd_max - (t_smooth_start(t_smooth_start >
— 0.7*xargs.t_start & t_smooth_start < 0.9*%args.t_start) - 0.7*xargs.t_start)*Vd_max/(0.2*args.t_start);

V_smooth_start = cumtrapz(V_d)*args.Ts;

V_smooth_end = args.V_mean - V_smooth_start;
end

Combine Excitation signals

Matlab

V_exc = [V_smooth_start, V_noise, V_smooth_end];
t_exc = args.Ts*[0:1:1length(V_exc)-1];

Matlab

U_exc = [t_exc; V_excl;

7.3 generateSinIncreasingAmpl: Generate Sinus with increasing
amplitude

Function description

Matlab
function [U_exc] = generateSinIncreasingAmpl(args)
Optional Parameters
Matlab
arguments
args.Ts (1,1) double {mustBeNumeric, mustBePositive} = 1e-4
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args.V_mean (1,1) double {mustBeNumeric} = @

args.sin_ampls double {mustBeNumeric, mustBePositive} = [0.1, 0.2, 0.3]
args.sin_period (1,1) double {mustBeNumeric, mustBePositive} = 1

args.sin_num (1,1) double {mustBeNumeric, mustBePositive, mustBeInteger} = 3
args.t_start (1,1) double {mustBeNumeric, mustBePositive} = 5
args.smooth_ends logical {mustBeNumericOrLogical} = true

end

Sinus excitation

Matlab

t_noise = 0:args.Ts:args.sin_period*args.sin_num;
sin_exc = [];

Matlab

for sin_ampl = args.sin_ampls

sin_exc = [sin_exc, args.V_mean + sin_amplxsin(2*pi/args.sin_periodxt_noise)];

end

Smooth Ends

Matlab

t_smooth_start = args.Ts:args.Ts:args.t_start;

V_smooth_start = zeros(size(t_smooth_start));
V_smooth_end = zeros(size(t_smooth_start));

if args.smooth_ends
Vd_max = args.V_mean/(0.7*args.t_start);

V_d = zeros(size(t_smooth_start));

V_d(t_smooth_start < 0.2*args.t_start) = t_smooth_start(t_smooth_start < 0.
V_d(t_smooth_start > 0.2*args.t_start & t_smooth_start < 0.7*args.t_start)
V_d(t_smooth_start > 0.7*xargs.t_start & t_smooth_start < 0.9*%args.t_start)

2xargs.t_start)*Vd_max/(0.2*args.t_start);

Vd_max;
Vd_max - (t_smooth_start(t_smooth_start >

< 0.7*args.t_start & t_smooth_start < 0.9*args.t_start) - 0.7*args.t_start)*Vd_max/(0.2*args.t_start);

V_smooth_start = cumtrapz(V_d)*args.Ts;

V_smooth_end = args.V_mean - V_smooth_start;
end

Combine Excitation signals

Matlab

V_exc = [V_smooth_start, sin_exc, V_smooth_end];
t_exc = args.Ts*[0:1:1length(V_exc)-1];

Matlab

U_exc = [t_exc; V_excl;
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