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In this document, a test-bench is used to characterize the struts of the nano-hexapod.

Each strut includes (Figure 0.1):

• 2 flexible joints at each ends. These flexible joints have been characterized in a separate test
bench.

• 1 Amplified Piezoelectric Actuator (APA300ML) (described in Section 1). Two stacks are used as
an actuator and one stack as a (force) sensor.

• 1 encoder (Renishaw Vionic) that has been characterized in a separate test bench.

Figure 0.1: One strut including two flexible joints, an amplified piezoelectric actuator and an encoder

The first goal is to characterize the APA300ML in terms of:

• The, geometric features, electrical capacitance, stroke, hysteresis, spurious resonances. This is
performed in Section 2.

• The dynamics from the generated DAC voltage (going to the voltage amplifiers and then applied
on the actuator stacks) to the induced displacement, and to the measured voltage by the force
sensor stack. Also the “actuator constant” and “sensor constant” are identified. This is done in
Section 3.

• Compare the measurements with the Simscape models (2DoF, Super-Element) in order to tuned/-
validate the models. This is explained in Section 4.

Then the struts are mounted (procedure described here), and are fixed to the same measurement bench.
Similarly, the goals are to:

• Section 5: Identify the dynamics from the generated DAC voltage to:

– the sensors stack generated voltage

– the measured displacement by the encoder

– the measured displacement by the interferometer (representing encoders that would be fixed
to the nano-hexapod’s plates instead of the struts)
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• Section 6: Compare the measurements with the Simscape model of the struts and tune the models

The final goal of the work presented in this document is to have an accurate Simscape model of the
struts that can then be included in the Simscape model of the nano-hexapod.
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1 Model of the Amplified Piezoelectric
Actuator

The Amplified Piezoelectric Actuator (APA) used is the APA300ML from Cedrat technologies (Figure
1.1).

Figure 1.1: Picture of the APA300ML

Two simscape models of the APA300ML are developed:

• Section 1.1: a simple 2 degrees of freedom (DoF) model

• Section 1.2: a “flexible” model using a “super-element” extracted from a Finite Element Model of
the APA

For both models, an “actuator constant” and a “sensor constant” are used. These constants are used to
link the electrical domain and the mechanical domain. They are described in Section 1.3.

1.1 Two Degrees of Freedom Model

The presented model is based on [2] and represented in Figure 1.2.

The parameters are described in Table 1.1.

The model is shown again in Figure 1.3. As will be shown in the next section, such model can be quite
accurate in modelling the axial behavior of the APA. However, it does not model the flexibility of the
APA in the other directions.
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Figure 1.2: Picture of an APA100M from Cedrat Technologies. Simplified model of a one DoF payload
mounted on such isolator

Table 1.1: Parameters used for the model of the APA 100M

Meaning

ke Stiffness used to adjust the pole of the isolator
k1 Stiffness of the metallic suspension when the stack is

removed
ka Stiffness of the actuator
c1 Added viscous damping

Therefore this model can be useful for quick simulations as it contains a very limited number of states,
but when more complex dynamics of the APA is to be modelled, a flexible model will be used.

Figure 1.3: Schematic of the 2DoF model for the Amplified Piezoelectric Actuator

1.2 Flexible Model

In order to model with high accuracy the behavior of the APA, a flexible model can be used.

The idea is to do a Finite element model of the structure, and to defined “remote points” as shown in
Figure 1.4. Then, on the finite element software, a “super-element” can be extracted which consists of
a mass matrix, a stiffness matrix, and the coordinates of the remote points.

This “super-element” can then be included in the Simscape model as shown in Figure 1.5. The re-
motes points are defined as “frames” in Simscape, and the “super-element” can be connected with other
Simscape elements (mechanical joints, masses, force actuators, etc..).
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Figure 1.4: Remote points for the APA300ML (Ansys)
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Figure 1.5: From a finite Element Model (Ansys, bottom left) is extract the mass and stiffness matrices
that are then used on Simscape (right)
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1.3 Actuator and Sensor constants

On Simscape, we want to model both the actuator stacks and the sensors stack. We therefore need to
link the electrical domain (voltages, charges) with the mechanical domain (forces, strain). To do so, we
use the “actuator constant” and the “sensor constant”.

Consider a schematic of the Amplified Piezoelectric Actuator in Figure 1.6.

Figure 1.6: Amplified Piezoelectric Actuator Schematic

A voltage Va applied to the actuator stacks will induce an actuator force Fa:

Fa = ga · Va (1.1)

A change of length dl of the sensor stack will induce a voltage Vs:

Vs = gs · dl (1.2)

The block-diagram model of the piezoelectric actuator is then as shown in Figure 1.7.

Simscape
Modelga(s) gs(s)

Va

[V ]
Fa

[N ]
dl

[m]
Vs

[V ]

Figure 1.7: Model of the APA with Simscape/Simulink

The constants ga and gs will be experimentally estimated.
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2 First Basic Measurements

Before using the measurement bench to characterize the APA300ML, first simple measurements are
performed:

• Section 2.1: the geometric tolerances of the interface planes are checked

• Section 2.2: the capacitance of the stacks are measured

• Section 2.3: the stroke of the APA are measured

• Section 2.4: the “spurious” resonances of the APA are investigated

2.1 Geometrical Measurements

The received APA are shown in Figure 2.1.

Figure 2.1: Received APA

2.1.1 Measurement Setup

The flatness corresponding to the two interface planes are measured as shown in Figure 2.2.

2.1.2 Measurement Results

The height (Z) measurements at the 8 locations (4 points by plane) are defined below.
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Figure 2.2: Measurement Setup

Matlab
%% Measured height for all the APA at the 8 locations
apa1 = 1e-6*[0, -0.5 , 3.5 , 3.5 , 42 , 45.5, 52.5 , 46];
apa2 = 1e-6*[0, -2.5 , -3 , 0 , -1.5 , 1 , -2 , -4];
apa3 = 1e-6*[0, -1.5 , 15 , 17.5 , 6.5 , 6.5 , 21 , 23];
apa4 = 1e-6*[0, 6.5 , 14.5 , 9 , 16 , 22 , 29.5 , 21];
apa5 = 1e-6*[0, -12.5, 16.5 , 28.5 , -43 , -52 , -22.5, -13.5];
apa6 = 1e-6*[0, -8 , -2 , 5 , -57.5, -62 , -55.5, -52.5];
apa7 = 1e-6*[0, 19.5 , -8 , -29.5, 75 , 97.5, 70 , 48];
apa7b = 1e-6*[0, 9 , -18.5, -30 , 31 , 46.5, 16.5 , 7.5];

apa = {apa1, apa2, apa3, apa4, apa5, apa6, apa7b};

The X/Y Positions of the 8 measurement points are defined below.
Matlab

%% X-Y positions of the measurements points
W = 20e-3; % Width [m]
L = 61e-3; % Length [m]
d = 1e-3; % Distance from border [m]
l = 15.5e-3; % [m]

pos = [[-L/2 + d; W/2 - d],
[-L/2 + l - d; W/2 - d],
[-L/2 + l - d; -W/2 + d],
[-L/2 + d; -W/2 + d],
[L/2 - l + d; W/2 - d],
[L/2 - d; W/2 - d],
[L/2 - d; -W/2 + d],
[L/2 - l + d; -W/2 + d]];

Finally, the flatness is estimated by fitting a plane through the 8 points using the fminsearch command.

Matlab
%% Using fminsearch to find the best fitting plane
apa_d = zeros(1, 7);
for i = 1:7

fun = @(x)max(abs(([pos; apa{i}]-[0;0;x(1)])'*([x(2:3);1]/norm([x(2:3);1]))));
x0 = [0;0;0];
[x, min_d] = fminsearch(fun,x0);
apa_d(i) = min_d;

end
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The obtained flatness are shown in Table 2.1.

Table 2.1: Estimated flatness

Flatness [µm]

APA 1 8.9
APA 2 3.1
APA 3 9.1
APA 4 3.0
APA 5 1.9
APA 6 7.1
APA 7 18.7

Important

The measured flatness of the APA300ML interface planes are within the specifications.

2.2 Electrical Measurements

2.2.1 Measurement Setup

Note

The capacitance of the stacks is measure with the LCR-800 Meter (doc) shown in Figure 2.3.
The excitation frequency is set to be 1kHz.

2.2.2 Measured Capacitance

From the documentation of the APA300ML, the total capacitance of the three stacks should be between
18µF and 26µF with a nominal capacitance of 20µF . However, from the documentation of the stack
themselves, it can be seen that the capacitance of a single stack should be 4.4µF . Clearly, the total
capacitance of the APA300ML if more than just three times the capacitance of one stack.

Question

Could it be possible that the capacitance of the stacks increase that much when they are pre-
stressed?

The measured capacitance of the stacks are summarized in Table 2.2.

Important

From the measurements (Table 2.2), the capacitance of one stack is found to be ≈ 5µF .
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Figure 2.3: LCR Meter used for the measurements

Table 2.2: Capacitance measured with the LCR meter. The excitation signal is a sinus at 1kHz

Sensor Stack Actuator Stacks

APA 1 5.10 10.03
APA 2 4.99 9.85
APA 3 1.72 5.18
APA 4 4.94 9.82
APA 5 4.90 9.66
APA 6 4.99 9.91
APA 7 4.85 9.85
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Warning

There is clearly a problem with APA300ML number 3 The APA number 3 has ben sent back to
Cedrat, and a new APA300ML has been shipped back.

2.3 Stroke measurement

We here wish to estimate the stroke of the APA.

To do so, one side of the APA is fixed, and a displacement probe is located on the other side as shown
in Figure 2.4.

Then, a voltage is applied on either one or two stacks using a DAC and a voltage amplifier.

Note

Here are the documentation of the equipment used for this test bench:

• Voltage Amplifier: PD200 with a gain of 20

• 16bits DAC: IO313 Speedgoat card

• Displacement Probe: Millimar C1216 electronics and Millimar 1318 probe

From the documentation, the nominal stroke of the APA300ML is 304µm.

2.3.1 Voltage applied on one stack

Let’s first look at the relation between the voltage applied to one stack to the displacement of the APA
as measured by the displacement probe.

The applied voltage is shown in Figure 2.5.

The obtained displacements for all the APA are shown in Figure 2.6. The displacement is set to zero
at initial time when the voltage applied is -20V.

Finally, the displacement is shown as a function of the applied voltage in Figure 2.7. We can clearly
see that there is a problem with the APA 3. Also, there is a large hysteresis.

Important

We can clearly confirm from Figure 2.7 that there is a problem with the APA number 3.

2.3.2 Voltage applied on two stacks

Now look at the relation between the voltage applied to the two other stacks to the displacement of
the APA as measured by the displacement probe.
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Figure 2.4: Bench to measured the APA stroke
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Figure 2.5: Applied voltage as a function of time
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Figure 2.6: Displacement as a function of time for all the APA300ML (only one stack is used as an
actuator)
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Figure 2.7: Displacement as a function of the applied voltage (on only one stack)
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The obtained displacement is shown in Figure 2.8. The displacement is set to zero at initial time when
the voltage applied is -20V.
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Figure 2.8: Displacement as a function of time for all the APA300ML (two stacks are used as actuators)

Finally, the displacement is shown as a function of the applied voltage in Figure 2.9.

2.3.3 Voltage applied on all three stacks

Finally, we can combine the two measurements to estimate the relation between the displacement and
the voltage applied to the three stacks (Figure 2.10).

The obtained maximum stroke for all the APA are summarized in Table 2.3.

Table 2.3: Measured maximum stroke

Stroke [µm]

APA 1 373.2
APA 2 365.5
APA 3 181.7
APA 4 359.7
APA 5 361.5
APA 6 363.9
APA 7 358.4
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Figure 2.9: Displacement as a function of the applied voltage on two stacks
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Figure 2.10: Displacement as a function of the applied voltage on all three stacks
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2.3.4 Conclusion

Important

The except from APA 3 that has a problem, all the APA are similar when it comes to stroke and
hysteresis. Also, the obtained stroke is more than specified in the documentation. Therefore,
only two stacks can be used as an actuator.

2.4 Spurious resonances

2.4.1 Introduction

From a Finite Element Model of the struts, it have been found that three main resonances are foreseen
to be problematic for the control of the APA300ML (Figure 2.11):

• Mode in X-bending at 200Hz

• Mode in Y-bending at 285Hz

• Mode in Z-torsion at 400Hz

Figure 2.11: Spurious resonances. a) X-bending mode at 189Hz. b) Y-bending mode at 285Hz. c)
Z-torsion mode at 400Hz

These modes are present when flexible joints are fixed to the ends of the APA300ML.

In this section, we try to find the resonance frequency of these modes when one end of the APA is fixed
and the other is free.
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2.4.2 Measurement Setup

The measurement setup is shown in Figure 2.12. A Laser vibrometer is measuring the difference
of motion between two points. The APA is excited with an instrumented hammer and the transfer
function from the hammer to the measured rotation is computed.

Note

The instrumentation used are:

• Laser Doppler Vibrometer Polytec OFV512

• Instrumented hammer

Figure 2.12: Measurement setup with a Laser Doppler Vibrometer and one instrumental hammer

2.4.3 X-Bending Mode

The vibrometer is setup to measure the X-bending motion is shown in Figure 2.13. The APA is excited
with an instrumented hammer having a solid metallic tip. The impact point is on the back-side of the
APA aligned with the top measurement point.

The data is loaded.
Matlab

%% Load Data
bending_X = load('apa300ml_bending_X_top.mat');

The configuration (Sampling time and windows) for tfestimate is done:
Matlab

%% Spectral Analysis setup
Ts = bending_X.Track1_X_Resolution; % Sampling Time [s]
win = hann(ceil(1/Ts));

The transfer function from the input force to the output “rotation” (difference between the two measured
distances).
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Figure 2.13: X-Bending measurement setup

Matlab
%% Compute the transfer function from applied force to measured rotation
[G_bending_X, f] = tfestimate(bending_X.Track1, bending_X.Track2, win, [], [], 1/Ts);

The result is shown in Figure 2.14.

The can clearly observe a nice peak at 280Hz, and then peaks at the odd “harmonics” (third “harmonic”
at 840Hz, and fifth “harmonic” at 1400Hz).
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Figure 2.14: Obtained FRF for the X-bending

Then the APA is in the “free-free” condition, this bending mode is foreseen to be at 200Hz (Figure
2.11). We are here in the “fixed-free” condition. If we consider that we therefore double the stiffness
associated with this mode, we should obtain a resonance a factor

√
2 higher than 200Hz which is indeed

280Hz. Not sure this reasoning is correct though.
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2.4.4 Y-Bending Mode

The setup to measure the Y-bending is shown in Figure 2.15.

The impact point of the instrumented hammer is located on the back surface of the top interface (on
the back of the 2 measurements points).

Figure 2.15: Y-Bending measurement setup

The data is loaded, and the transfer function from the force to the measured rotation is computed.

Matlab
%% Load Data
bending_Y = load('apa300ml_bending_Y_top.mat');

%% Compute the transfer function
[G_bending_Y, ~] = tfestimate(bending_Y.Track1, bending_Y.Track2, win, [], [], 1/Ts);

The results are shown in Figure 2.16. The main resonance is at 412Hz, and we also see the third
“harmonic” at 1220Hz.

102 103

Frequency [Hz]

10!4

10!3

10!2

A
m

p
li
tu

d
e

412Hz 1220Hz

Figure 2.16: Obtained FRF for the Y-bending
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We can apply the same reasoning as in the previous section and estimate the mode to be a factor
√

2
higher than the mode estimated in the “free-free” condition. We would obtain a mode at 403Hz which
is very close to the one estimated here.

2.4.5 Z-Torsion Mode

Finally, we measure the Z-torsion resonance as shown in Figure 2.17.

The excitation is shown on the other side of the APA, on the side to excite the torsion motion.

Figure 2.17: Z-Torsion measurement setup

The data is loaded, and the transfer function computed.
Matlab

%% Load Data
torsion = load('apa300ml_torsion_left.mat');

%% Compute transfer function
[G_torsion, ~] = tfestimate(torsion.Track1, torsion.Track2, win, [], [], 1/Ts);

The results are shown in Figure 2.18. We observe a first peak at 267Hz, which corresponds to the
X-bending mode that was measured at 280Hz. And then a second peak at 415Hz, which corresponds
to the X-bending mode that was measured at 412Hz. A third mode at 800Hz could correspond to this
torsion mode.

In order to verify that, the APA is excited on the top part such that the torsion mode should not be
excited.

Matlab
%% Load data
torsion = load('apa300ml_torsion_top.mat');

%% Compute transfer function
[G_torsion_top, ~] = tfestimate(torsion.Track1, torsion.Track2, win, [], [], 1/Ts);

The two FRF are compared in Figure 2.19. It is clear that the first two modes does not correspond to

23



102 103

Frequency [Hz]

10!4

10!3

10!2

A
m

p
li
tu

d
e

415Hz

267Hz
800Hz

Figure 2.18: Obtained FRF for the Z-torsion

the torsional mode. Maybe the resonance at 800Hz, or even higher resonances. It is difficult to conclude
here.
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Figure 2.19: Obtained FRF for the Z-torsion

2.4.6 Compare

The three measurements are shown in Figure 2.20.

2.4.7 Conclusion

When two flexible joints are fixed at each ends of the APA, the APA is mostly in a free/free condition
in terms of bending/torsion (the bending/torsional stiffness of the joints being very small).
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Figure 2.20: Obtained FRF - Comparison

In the current tests, the APA are in a fixed/free condition. Therefore, it is quite obvious that we
measured higher resonance frequencies than what is foreseen for the struts. It is however quite interesting
that there is a factor ≈

√
2 between the two (increased of the stiffness by a factor 2?).

Table 2.4: Measured frequency of the modes

Mode FEM - Strut mode Measured Frequency

X-Bending 189Hz 280Hz
Y-Bending 285Hz 410Hz
Z-Torsion 400Hz 800Hz?
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3 Dynamical measurements - APA

In this section, a measurement test bench is used to extract all the important parameters of the Amplified
Piezoelectric Actuator APA300ML.

This include:

• Stroke

• Stiffness

• Hysteresis

• “Actuator constant”: Gain from the applied voltage Va to the generated Force Fa

• “Sensor constant”: Gain from the sensor stack strain δL to the generated voltage Vs

• Dynamical behavior from the actuator to the force sensor and to the motion of the APA

The bench is shown in Figure 3.1, and a zoom picture on the APA and encoder is shown in Figure
3.2.

Note

Here are the documentation of the equipment used for this test bench:

• Voltage Amplifier: PD200

• Amplified Piezoelectric Actuator: APA300ML

• DAC/ADC: Speedgoat IO313

• Encoder: Renishaw Vionic and used Ruler

• Interferometer: Attocube IDS3010

The bench is schematically shown in Figure 3.3 and the signal used are summarized in Table 3.1.

Table 3.1: Variables used during the measurements

Variable Description Unit Hardware

Va Output DAC voltage [V] DAC - Ch. 1 - PD200 - APA
Vs Measured stack voltage (ADC) [V] APA - ADC - Ch. 1
de Encoder Measurement [m] PEPU Ch. 1 - IO318(1) Ch. 1
da Attocube Measurement [m] PEPU Ch. 2 - IO318(1) Ch. 2
t Time [s]
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Figure 3.1: Picture of the test bench

Figure 3.2: Zoom on the APA with the encoder
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Figure 3.3: Schematic of the Test Bench

This section is structured as follows:

• Section 3.1: the measurements are first performed on one APA.

• Section 3.2: the same measurements are performed on all the APA and are compared.

3.1 Measurements on APA 1

Measurements are first performed on only one APA. Once the measurement procedure is validated, it
is performed on all the other APA.

3.1.1 Excitation Signals

Different excitation signals are used to perform FRF estimations.

Typically, this is done in three steps:

1. A low pass filtered white noise is used with rather small amplitudes (Figure 3.4). This first
excitation is used to estimate the main resonance of the system.

2. A sweep-sine from 10Hz to 400Hz is used (Figure 3.5). The sweep-sine is is notched around the
estimated resonance of the system.

3. A band-limited white noise from 300Hz to 2kHz is used to estimate the high frequency behavior
(Figure 3.6).
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For all the excitation signals, before the excitation starts, the mean voltage is slowly increased halfway
between the minimum voltage (-20V) and the maximum (150V).

The first measurement is only used to have a first estimation of the dynamics and verify that everything
is setup correctly. The second excitation is done to estimate the dynamics from 10Hz to 350Hz and the
third excitation from 350Hz to 2kHz. The second and third measurements are therefore combined in
the frequency domain to form one good estimation of the dynamics from 10Hz up to 2kHz.
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Figure 3.4: Low pass filtered white noise. Time domain (left), Frequency domain (right)
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Figure 3.5: Sweep Sine with a decreased amplitude around the resonance of the APA

3.1.2 First Measurement

For this first measurement for the first APA, a basic logarithmic sweep is used between 10Hz and
2kHz.

The data are loaded.
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Figure 3.6: Band-pass white noise. Time domain (left), Frequency domain (right)

Matlab
%% Load data
apa_sweep = load(sprintf('mat/frf_data_%i_sweep.mat', 1), 't', 'Va', 'Vs', 'da', 'de');

The initial time is set to zero.

Matlab
%% Time vector
t = apa_sweep.t - apa_sweep.t(1) ; % Time vector [s]

The excitation signal is shown in Figure 3.7. It is a sweep sine from 10Hz up to 2kHz filtered with a
notch centered with the main resonance of the system and a low pass filter.
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Figure 3.7: Excitation voltage
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3.1.3 FRF - Setup

Let’s define the sampling time/frequency.
Matlab

%% Sampling Frequency / Time
Ts = (t(end) - t(1))/(length(t)-1); % Sampling Time [s]
Fs = 1/Ts; % Sampling Frequency [Hz]

Then we defined a “Hanning” windows that will be used for the spectral analysis:
Matlab

win = hanning(ceil(1*Fs)); % Hannning Windows

We get the frequency vector that will be the same for all the frequency domain analysis.
Matlab

% Only used to have the frequency vector "f"
[~, f] = tfestimate(apa_sweep.Va, apa_sweep.de, win, [], [], 1/Ts);

3.1.4 FRF - Encoder and Interferometer

In this section, the transfer function from the excitation voltage Va to the encoder measured displace-
ment de and interferometer measurement da.

The coherence from Va to de and from Va to da are computed and shown in Figure 3.8. They are quite
good from 10Hz up to 500Hz.

Matlab
%% Compute the coherence
[enc_coh, ~] = mscohere(apa_sweep.Va, apa_sweep.de, win, [], [], 1/Ts);
[int_coh, ~] = mscohere(apa_sweep.Va, apa_sweep.da, win, [], [], 1/Ts);

The transfer functions are then estimated and shown in Figure 3.9.
Matlab

%% TF - Encoder and interferometer
[frf_enc, ~] = tfestimate(apa_sweep.Va, apa_sweep.de, win, [], [], 1/Ts);
[frf_int, ~] = tfestimate(apa_sweep.Va, apa_sweep.da, win, [], [], 1/Ts);

It is shown than both the encoder and interferometers are measuring the same dynamics up to ≈ 700Hz.
Above that, it is possible that there is some flexible elements apart from the APA that is adding
resonances into one or the other FRF.

Important

The transfer functions obtained in Figure 3.9 are very close to what was expected:

• constant gain at low frequency
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10!8

10!6

10!4

A
m
p
li
tu

d
e

d
=V

a
[m

/V
]

Encoder
Interferometer

101 102 103

Frequency [Hz]

-180

-90

0

90

180

P
h
as

e
[d
eg

]

Figure 3.9: Obtained transfer functions from Va to both de and da

32



• resonance at around 100Hz which corresponds to the APA axial mode

• no further resonance up until high frequency (≈ 700Hz) at which points several elements
of the test bench can induces resonances in the measured FRF

However, it was not expected to observe a “double resonance” at around 95Hz (instead of only
one resonance).

3.1.5 FRF - Force Sensor

Now the dynamics from excitation voltage Va to the force sensor stack voltage Vs is identified.

The coherence is computed and shown in Figure 3.10 and found very good from 10Hz up to 2kHz.
Matlab

%% Compute the coherence from Va to Vs
[iff_coh, ~] = mscohere(apa_sweep.Va, apa_sweep.Vs, win, [], [], 1/Ts);
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Figure 3.10: Coherence for the identification from Va to Vs

The transfer function is estimated and shown in Figure 3.11.
Matlab

%% Compute the TF from Va to Vs
[iff_sweep, ~] = tfestimate(apa_sweep.Va, apa_sweep.Vs, win, [], [], 1/Ts);

Important

The obtained dynamics from the excitation voltage Va to the measured sensor stack voltage Vs
is corresponding to what was expected:

• constant gain at low frequency

• complex conjugate zero and then complex conjugate pole
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Figure 3.11: Obtained transfer functions from Va to Vs
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• constant gain at high frequency

3.1.6 Hysteresis

We here wish to visually see the amount of hysteresis present in the APA.

To do so, a quasi static sinusoidal excitation Va at different voltages is used.

The offset is 65V (halfway between -20V and 150V), and the sin amplitude is ranging from 1V up to
80V (full range).

For each excitation amplitude, the vertical displacement d of the mass is measured.

Then, d is plotted as a function of Va for all the amplitudes.

We expect to obtained something like the hysteresis shown in Figure 3.12.

Figure 3.12: Expected Hysteresis [1]

The data is loaded.
Matlab

%% Load measured data - hysteresis
apa_hyst = load('frf_data_1_hysteresis.mat', 't', 'Va', 'de');
% Initial time set to zero
apa_hyst.t = apa_hyst.t - apa_hyst.t(1);

The excitation voltage amplitudes are:
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Matlab
ampls = [0.1, 0.2, 0.4, 1, 2, 4]; % Excitation voltage amplitudes

The excitation voltage and the measured displacement are shown in Figure 3.13.

0 10 20 30

Time [s]

-2

0

2

4

6

8

O
u
tp
u
t
V
o
lt
a
g
e
[V
]

0 10 20 30

Time [s]

-2.5

-2

-1.5

-1

-0.5

0

0.5

M
ea
su
re
d
D
is
p
la
ce
m
en
t
[m

]

#10!4

Figure 3.13: Excitation voltage and measured displacement

For each amplitude, we only take the last sinus in order to reduce possible transients. Also, the motion
is centered on zero.

The measured displacement at a function of the output voltage are shown in Figure 3.14.

Important

From Figure 3.14, it is quite clear that hysteresis is increasing with the excitation amplitude.
For small excitation amplitudes (Va < 0.4V ) the hysteresis stays reasonably small.
Also, it is quite interesting to see that no hysteresis is found on the sensor stack voltage when
using the same excitation signal.

3.1.7 Estimation of the APA axial stiffness

In order to estimate the stiffness of the APA, a weight with known mass ma is added on top of the
suspended granite and the deflection de is measured using the encoder.

The APA stiffness can then be estimated to be:

kapa =
mag

d
(3.1)

The data is loaded, and the measured displacement is shown in Figure 3.15.
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Figure 3.14: Obtained hysteresis for multiple excitation amplitudes
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Matlab
%% Load data for stiffness measurement
apa_mass = load(sprintf('frf_data_%i_add_mass_closed_circuit.mat', 1), 't', 'de');
apa_mass.de = apa_mass.de - mean(apa_mass.de(apa_mass.t<11));
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Figure 3.15: Measured displacement when adding the mass and removing the mass

From Figure 3.15, it can be seen that there are some drifts that are probably due to some creep. This
will induce some uncertainties in the measured stiffness.

Here, a mass of 6.4 kg was used:

Matlab
added_mass = 6.4; % Added mass [kg]

The stiffness is then computed as follows:

Matlab
k = 9.8 * added_mass / (mean(apa_mass.de(apa_mass.t > 12 & apa_mass.t < 12.5)) - mean(apa_mass.de(apa_mass.t > 20 & apa_mass.t

< 20.5)));↪→

And the stiffness obtained is very close to the one specified in the documentation (k = 1.794 [N/µm]).

Results
k = 1.68 [N/um]

The stiffness could also be estimated based on the main vertical resonance of the system at ωz =
2π · 94 [rad/s]. The suspended mass is msus = 5 kg. And therefore, the axial stiffness of the APA can
be estimated to be:

kAPA = msusω
2
z (3.2)
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Matlab
wz = 2*pi*94; % [rad/s]
msus = 5.7; % [kg]
k = msus * wz^2;

Results
k = 1.99 [N/um]

The two values are found relatively close to each other. Anyway, the stiffness of the model will be tuned
to match the measured FRF.

3.1.8 Stiffness change due to electrical connections

Changes in the electrical impedance connected to the piezoelectric actuator causes changes in the
mechanical compliance (or stiffness) of the piezoelectric actuator.

In this section is measured the stiffness of the APA whether the piezoelectric actuator is connected to
an open circuit or a short circuit (e.g. the output of a voltage amplifier).

Note here that the resistor in parallel to the sensor stack is present in both cases.

First, the data are loaded.

Matlab
%% Load Data
add_mass_oc = load(sprintf('frf_data_%i_add_mass_open_circuit.mat', 1), 't', 'de');
add_mass_cc = load(sprintf('frf_data_%i_add_mass_closed_circuit.mat', 1), 't', 'de');

And the initial displacement is set to zero.

Matlab
%% Zero displacement at initial time
add_mass_oc.de = add_mass_oc.de - mean(add_mass_oc.de(add_mass_oc.t<11));
add_mass_cc.de = add_mass_cc.de - mean(add_mass_cc.de(add_mass_cc.t<11));

The measured displacements are shown in Figure 3.16.

And the stiffness is estimated in both case. The results are shown in Table 3.2.

Matlab
apa_k_oc = 9.8 * added_mass / (mean(add_mass_oc.de(add_mass_oc.t > 12 & add_mass_oc.t < 12.5)) -

mean(add_mass_oc.de(add_mass_oc.t > 20 & add_mass_oc.t < 20.5)));↪→
apa_k_cc = 9.8 * added_mass / (mean(add_mass_cc.de(add_mass_cc.t > 12 & add_mass_cc.t < 12.5)) -

mean(add_mass_cc.de(add_mass_cc.t > 20 & add_mass_cc.t < 20.5)));↪→

39



10 15 20 25 30

Time [s]

-4

-3

-2

-1

0

1

2

D
is
p
la

ce
m

en
t
d

e
[m

]

#10!5

Not connected
Connected

Figure 3.16: Measured displacement

Table 3.2: Measured stiffnesses on “open” and “closed” circuits

k[N/µm]

Not connected 2.3
Connected 1.7

Important

Clearly, connecting the actuator stacks to the amplified (basically equivalent as to short circuiting
them) lowers its stiffness.

3.1.9 Effect of the resistor on the IFF Plant

A resistor R ≈ 80.6 kΩ is added in parallel with the sensor stack. This has the effect to form a high
pass filter with the capacitance of the stack.

This is done for two reasons (explained in details this document):

1. Limit the voltage offset due to the input bias current of the ADC

2. Limit the low frequency gain

The (low frequency) transfer function from Va to Vs with and without this resistor have been measured.

Matlab
%% Load the data
wi_k = load('frf_data_1_sweep_lf_with_R.mat', 't', 'Vs', 'Va'); % With the resistor
wo_k = load('frf_data_1_sweep_lf.mat', 't', 'Vs', 'Va'); % Without the resistor

We use a very long “Hanning” window for the spectral analysis in order to estimate the low frequency
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behavior.
Matlab

win = hanning(ceil(50*Fs)); % Hannning Windows

And we estimate the transfer function from Va to Vs in both cases:
Matlab

%% Compute the transfer functions from Va to Vs
[frf_wo_k, f] = tfestimate(wo_k.Va, wo_k.Vs, win, [], [], 1/Ts);
[frf_wi_k, ~] = tfestimate(wi_k.Va, wi_k.Vs, win, [], [], 1/Ts);

With the following values of the resistor and capacitance, we obtain a first order high pass filter with a
crossover frequency equal to:

Matlab
%% Model for the high pass filter
C = 5.1e-6; % Sensor Stack capacitance [F]
R = 80.6e3; % Parallel Resistor [Ohm]

f0 = 1/(2*pi*R*C); % Crossover frequency of RC HPF [Hz]

Results
f0 = 0.39 [Hz]

The transfer function of the corresponding high pass filter is:
Matlab

G_hpf = 0.6*(s/2*pi*f0)/(1 + s/2*pi*f0);

Let’s compare the transfer function from actuator stack to sensor stack with and without the added
resistor in Figure 3.17.

Important

The added resistor has indeed the expected effect of forming an high pass filter.

3.2 Comparison of all the APA

The same measurements that was performed in Section 3.1 are now performed on all the APA and then
compared.

3.2.1 Axial Stiffnesses - Comparison

Let’s first compare the APA axial stiffnesses.
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Figure 3.17: Transfer function from Va to Vs with and without the resistor k

42



The added mass is:

Matlab
added_mass = 6.4; % Added mass [kg]

Here are the numbers of the APA that have been measured:

Matlab
apa_nums = [1 2 4 5 6 7 8];

The data are loaded.

Matlab
%% Load Data
apa_mass = {};
for i = 1:length(apa_nums)

apa_mass(i) = {load(sprintf('frf_data_%i_add_mass_closed_circuit.mat', apa_nums(i)), 't', 'de')};
% The initial displacement is set to zero
apa_mass{i}.de = apa_mass{i}.de - mean(apa_mass{i}.de(apa_mass{i}.t<11));

end

The raw measurements are shown in Figure 3.18. All the APA seems to have similar stiffness except
the APA 7 which show strange behavior.

Question

It is however strange that the displacement de when the mass is removed is higher for the APA
7 than for the other APA. What could cause that? It is probably due to the fact that the
mechanical element holding the granite in place was not removed.

10 15 20 25 30

Time [s]

-4

-3

-2

-1

0

1

2

3

D
is
p
la

ce
m

en
t
d

e
[m

]

#10!5

APA 1
APA 2
APA 4
APA 5

APA 6
APA 7
APA 8

Figure 3.18: Raw measurements for all the APA. A mass of 6.4kg is added at arround 15s and removed
at arround 22s

The stiffnesses are computed for all the APA and are summarized in Table 3.3.

43



Table 3.3: Measured stiffnesses

APA Num k[N/µm]

1 1.68
2 1.69
4 1.7
5 1.7
6 1.7
7 1.93
8 1.73

Important

The APA300ML manual specifies the nominal stiffness to be 1.8 [N/µm] which is very close to
what have been measured. Only the APA number 7 is a little bit off, maybe there was a problem
with the experimental setup.

3.2.2 FRF - Setup

The identification is performed in three steps:

1. White noise excitation with small amplitude. This is used to determine the main resonance of the
system.

2. Sweep sine excitation with the amplitude lowered around the resonance. The sweep sine is from
10Hz to 400Hz.

3. High frequency noise. The noise is band-passed between 300Hz and 2kHz.

Then, the result of the second identification is used between 10Hz and 350Hz and the result of the third
identification if used between 350Hz and 2kHz.

The data are loaded for both the second and third identification:

Matlab
%% Second identification
apa_sweep = {};
for i = 1:length(apa_nums)

apa_sweep(i) = {load(sprintf('frf_data_%i_sweep.mat', apa_nums(i)), 't', 'Va', 'Vs', 'de', 'da')};
end

%% Third identification
apa_noise_hf = {};
for i = 1:length(apa_nums)

apa_noise_hf(i) = {load(sprintf('frf_data_%i_noise_hf.mat', apa_nums(i)), 't', 'Va', 'Vs', 'de', 'da')};
end

The time is the same for all measurements.

Matlab
%% Time vector
t = apa_sweep{1}.t - apa_sweep{1}.t(1) ; % Time vector [s]
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%% Sampling
Ts = (t(end) - t(1))/(length(t)-1); % Sampling Time [s]
Fs = 1/Ts; % Sampling Frequency [Hz]

Then we defined a “Hanning” windows that will be used for the spectral analysis:

Matlab
win = hanning(ceil(0.5*Fs)); % Hannning Windows

We get the frequency vector that will be the same for all the frequency domain analysis.

Matlab
% Only used to have the frequency vector "f"
[~, f] = tfestimate(apa_sweep{1}.Va, apa_sweep{1}.de, win, [], [], 1/Ts);
i_lf = f <= 350;
i_hf = f > 350;

3.2.3 FRF - Encoder and Interferometer

In this section, the dynamics from excitation voltage Va to encoder measured displacement de is iden-
tified.

We compute the coherence for 2nd and 3rd identification:

Matlab
%% Coherence computation
coh_enc = zeros(length(f), length(apa_nums));
for i = 1:length(apa_nums)

[coh_lf, ~] = mscohere(apa_sweep{i}.Va, apa_sweep{i}.de, win, [], [], 1/Ts);
[coh_hf, ~] = mscohere(apa_noise_hf{i}.Va, apa_noise_hf{i}.de, win, [], [], 1/Ts);
coh_enc(:, i) = [coh_lf(i_lf); coh_hf(i_hf)];

end

The coherence is shown in Figure 3.19, and it is found that the coherence is good from low frequency
up to 700Hz.

Then, the transfer function from the DAC output voltage Va to the measured displacement by the
encoders is computed:

Matlab
%% Transfer function estimation
enc_frf = zeros(length(f), length(apa_nums));
for i = 1:length(apa_nums)

[frf_lf, ~] = tfestimate(apa_sweep{i}.Va, apa_sweep{i}.de, win, [], [], 1/Ts);
[frf_hf, ~] = tfestimate(apa_noise_hf{i}.Va, apa_noise_hf{i}.de, win, [], [], 1/Ts);
enc_frf(:, i) = [frf_lf(i_lf); frf_hf(i_hf)];

end

The obtained transfer functions are shown in Figure 3.20. They are all superimposed except for the
APA7.
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Figure 3.19: Obtained coherence for the plant from Va to de

Question

Why is the APA7 dynamical behavior is so different from the other? We could think that the
APA7 is stiffer, but also the mass line is off, and it should indeed be identical.

A zoom on the main resonance is shown in Figure 3.21. It is clear that expect for the APA 7, the
response around the resonances are well matching for all the APA.

It is also clear that there is not a single resonance but two resonances, a first one at 95Hz and a second
one at 105Hz.

Question

Why is there a double resonance at around 94Hz?

3.2.4 FRF - Force Sensor

In this section, the dynamics from Va to Vs is identified.

First the coherence is computed and shown in Figure 3.22. The coherence is very nice from 10Hz
to 2kHz. It is only dropping near a zeros at 40Hz, and near the resonance at 95Hz (the excitation
amplitude being lowered).

Matlab
%% Compute the Coherence
coh_iff = zeros(length(f), length(apa_nums));
for i = 1:length(apa_nums)

[coh_lf, ~] = mscohere(apa_sweep{i}.Va, apa_sweep{i}.Vs, win, [], [], 1/Ts);
[coh_hf, ~] = mscohere(apa_noise_hf{i}.Va, apa_noise_hf{i}.Vs, win, [], [], 1/Ts);
coh_iff(:, i) = [coh_lf(i_lf); coh_hf(i_hf)];

end

Then the FRF are estimated and shown in Figure 3.23
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Figure 3.20: Estimated FRF for the DVF plant (transfer function from Va to the encoder de)

Matlab
%% FRF estimation of the transfer function from Va to Vs
iff_frf = zeros(length(f), length(apa_nums));
for i = 1:length(apa_nums)

[frf_lf, ~] = tfestimate(apa_sweep{i}.Va, apa_sweep{i}.Vs, win, [], [], 1/Ts);
[frf_hf, ~] = tfestimate(apa_noise_hf{i}.Va, apa_noise_hf{i}.Vs, win, [], [], 1/Ts);
iff_frf(:, i) = [frf_lf(i_lf); frf_hf(i_hf)];

end

3.2.5 Conclusion

Important

Except the APA 7 which shows strange behavior, all the other APA are showing a very similar
behavior.
So far, all the measured FRF are showing the dynamical behavior that was expected.

Matlab
%% Remove the APA 7 (6 in the list) from measurements
apa_nums(6) = [];
enc_frf(:,6) = [];
iff_frf(:,6) = [];
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Figure 3.21: Estimated FRF for the DVF plant (transfer function from Va to the encoder de) - Zoom
on the main resonance
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Figure 3.22: Obtained coherence for the IFF plant
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Figure 3.23: Identified IFF Plant
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Matlab
%% Save the measured FRF
save('mat/meas_apa_frf.mat', 'f', 'Ts', 'enc_frf', 'iff_frf', 'apa_nums');
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4 Test Bench APA300ML - Simscape
Model

In this section, a simscape model (Figure 4.1) of the measurement bench is used to compare the model
of the APA with the measured FRF.

After the transfer functions are extracted from the model (Section 4.1), the comparison of the obtained
dynamics with the measured FRF will permit to:

1. Estimate the “actuator constant” and “sensor constant” (Section 4.2)

2. Tune the model of the APA to match the measured dynamics (Section 4.3)

4.1 First Identification

The APA is first initialized with default parameters:

Matlab
%% Initialize the structure with default values
n_hexapod = struct();
n_hexapod.actuator = initializeAPA(...

'type', '2dof', ...
'Ga', 1, ... % Actuator constant [N/V]
'Gs', 1); % Sensor constant [V/m]

The transfer function from excitation voltage Va (before the amplification of 20 due to the PD200
amplifier) to:

1. the sensor stack voltage Vs

2. the measured displacement by the encoder de

3. the measured displacement by the interferometer da
Matlab

%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/Va'], 1, 'openinput'); io_i = io_i + 1; % DAC Voltage
io(io_i) = linio([mdl, '/Vs'], 1, 'openoutput'); io_i = io_i + 1; % Sensor Voltage
io(io_i) = linio([mdl, '/de'], 1, 'openoutput'); io_i = io_i + 1; % Encoder
io(io_i) = linio([mdl, '/da'], 1, 'openoutput'); io_i = io_i + 1; % Interferometer

%% Run the linearization
Ga = linearize(mdl, io, 0.0, options);
Ga.InputName = {'Va'};
Ga.OutputName = {'Vs', 'de', 'da'};
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Figure 4.1: Screenshot of the Simscape model

52



The obtain dynamics are shown in Figure 4.2 and 4.3. It can be seen that:

• the shape of these bode plots are very similar to the one measured in Section 3 expect from a
change in gain and exact location of poles and zeros

• there is a sign error for the transfer function from Va to Vs. This will be corrected by taking a
negative “sensor gain”.

• the low frequency zero of the transfer function from Va to Vs is minimum phase as expected. The
measured FRF are showing non-minimum phase zero, but it is most likely due to measurements
artifacts.
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Figure 4.2: Bode plot of the transfer function from Va to Vs
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Figure 4.3: Bode plot of the transfer function from Va to dL and to z
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4.2 Identify Sensor/Actuator constants and compare with
measured FRF

4.2.1 How to identify these constants?

Piezoelectric Actuator Constant

Using the measurement test-bench, it is rather easy the determine the static gain between the applied
voltage Va to the induced displacement d.

d = gd/Va
· Va (4.1)

Using the Simscape model of the APA, it is possible to determine the static gain between the actuator
force Fa to the induced displacement d:

d = gd/Fa
· Fa (4.2)

From the two gains, it is then easy to determine ga:

ga =
Fa

Va
=
Fa

d
· d
Va

=
gd/Va

gd/Fa

(4.3)

Piezoelectric Sensor Constant

Similarly, it is easy to determine the gain from the excitation voltage Va to the voltage generated by
the sensor stack Vs:

Vs = gVs/Va
Va (4.4)

Note here that there is an high pass filter formed by the piezoelectric capacitor and parallel resistor.

The gain can be computed from the dynamical identification and taking the gain at the wanted frequency
(above the first resonance).

Using the simscape model, compute the gain at the same frequency from the actuator force Fa to the
strain of the sensor stack dl:

dl = gdl/Fa
Fa (4.5)

Then, the “sensor” constant is:

gs =
Vs
dl

=
Vs
Va
· Va
Fa
· Fa

dl
=

gVs/Va

ga · gdl/Fa

(4.6)

4.2.2 Identification Data

Let’s load the measured FRF from the DAC voltage to the measured encoder and to the sensor stack
voltage.
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Matlab
%% Load Data
load('meas_apa_frf.mat', 'f', 'Ts', 'enc_frf', 'iff_frf', 'apa_nums');

4.2.3 2DoF APA

2DoF APA

Let’s initialize the APA as a 2DoF model with unity sensor and actuator gains.

Matlab
%% Initialize a 2DoF APA with Ga=Gs=1
n_hexapod.actuator = initializeAPA(...

'type', '2dof', ...
'ga', 1, ...
'gs', 1);

Identification without actuator or sensor constants

The transfer function from Va to Vs, de and da is identified.

Matlab
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/Va'], 1, 'openinput'); io_i = io_i + 1; % Actuator Voltage
io(io_i) = linio([mdl, '/Vs'], 1, 'openoutput'); io_i = io_i + 1; % Sensor Voltage
io(io_i) = linio([mdl, '/de'], 1, 'openoutput'); io_i = io_i + 1; % Encoder
io(io_i) = linio([mdl, '/da'], 1, 'openoutput'); io_i = io_i + 1; % Attocube

%% Identification
Gs = linearize(mdl, io, 0.0, options);
Gs.InputName = {'Va'};
Gs.OutputName = {'Vs', 'de', 'da'};

Actuator Constant

Then, the actuator constant can be computed as shown in Eq. (4.3) by dividing the measured DC gain
of the transfer function from Va to de by the estimated DC gain of the transfer function from Va (in
truth the actuator force called Fa) to de using the Simscape model.

Matlab
%% Estimated Actuator Constant
ga = -mean(abs(enc_frf(f>10 & f<20)))./dcgain(Gs('de', 'Va')); % [N/V]

Results
ga = -32.2 [N/V]
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Sensor Constant

Similarly, the sensor constant can be estimated using Eq. (4.6).

Matlab
%% Estimated Sensor Constant
gs = -mean(abs(iff_frf(f>400 & f<500)))./(ga*abs(squeeze(freqresp(Gs('Vs', 'Va'), 1e3, 'Hz')))); % [V/m]

Results
gs = 0.088 [V/m]

Comparison

Let’s now initialize the APA with identified sensor and actuator constant:

Matlab
%% Set the identified constants
n_hexapod.actuator = initializeAPA(...

'type', '2dof', ...
'ga', ga, ... % Actuator gain [N/V]
'gs', gs); % Sensor gain [V/m]

And identify the dynamics with included constants.

Matlab
%% Identify again the dynamics with correct Ga,Gs
Gs = linearize(mdl, io, 0.0, options);
Gs = Gs*exp(-Ts*s);
Gs.InputName = {'Va'};
Gs.OutputName = {'Vs', 'de', 'da'};

The transfer functions from Va to de are compared in Figure 4.4 and the one from Va to Vs are compared
in Figure 4.5.

Important

The “actuator constant” and “sensor constant” can indeed be identified using this test bench.
After identifying these constants, the 2DoF model shows good agreement with the measured
dynamics.

4.2.4 Flexible APA

In this section, the sensor and actuator “constants” are also estimated for the flexible model of the
APA.
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Figure 4.4: Comparison of the experimental data and Simscape model (Va to de)
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Figure 4.5: Comparison of the experimental data and Simscape model (Va to Vs)
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Flexible APA

The Simscape APA model is initialized as a flexible one with unity “constants”.
Matlab

%% Initialize the APA as a flexible body
n_hexapod.actuator = initializeAPA(...

'type', 'flexible', ...
'ga', 1, ...
'gs', 1);

Identification without actuator or sensor constants

The dynamics from Va to Vs, de and da is identified.
Matlab

%% Identify the dynamics
Gs = linearize(mdl, io, 0.0, options);
Gs.InputName = {'Va'};
Gs.OutputName = {'Vs', 'de', 'da'};

Actuator Constant

Then, the actuator constant can be computed as shown in Eq. (4.3):
Matlab

%% Actuator Constant
ga = -mean(abs(enc_frf(f>10 & f<20)))./dcgain(Gs('de', 'Va')); % [N/V]

Results
ga = 23.5 [N/V]

Sensor Constant

Matlab
%% Sensor Constant
gs = -mean(abs(iff_frf(f>400 & f<500)))./(ga*abs(squeeze(freqresp(Gs('Vs', 'Va'), 1e3, 'Hz')))); % [V/m]

Results
gs = -4839841.756 [V/m]

Comparison

Let’s now initialize the flexible APA with identified sensor and actuator constant:
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Matlab
%% Set the identified constants
n_hexapod.actuator = initializeAPA(...

'type', 'flexible', ...
'ga', ga, ... % Actuator gain [N/V]
'gs', gs); % Sensor gain [V/m]

And identify the dynamics with included constants.

Matlab
%% Identify with updated constants
Gs = linearize(mdl, io, 0.0, options);
Gs = Gs*exp(-Ts*s);
Gs.InputName = {'Va'};
Gs.OutputName = {'Vs', 'de', 'da'};

The obtained dynamics is compared with the measured one in Figures 4.6 and 4.7.
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Figure 4.6: Comparison of the experimental data and Simscape model (u to dLm)

Important

The flexible model is a bit “soft” as compared with the experimental results.

60



10!2

10!1

100

101

102

A
m

p
li
tu

d
e
= m

=u
[V

/V
]

101 102 103

Frequency [Hz]

-180

-90

0

90

180

P
h
as

e
[d

eg
]

Figure 4.7: Comparison of the experimental data and Simscape model (u to τm)
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4.3 Optimize 2-DoF model to fit the experimental Data

The parameters of the 2DoF model presented in Section 1.1 are now optimize such that the model best
matches the measured FRF.

After optimization, the following parameters are used:

Matlab
%% Optimized parameters
n_hexapod.actuator = initializeAPA('type', '2dof', ...

'Ga', -32.2, ...
'Gs', 0.088, ...
'k', ones(6,1)*0.38e6, ...
'ke', ones(6,1)*1.75e6, ...
'ka', ones(6,1)*3e7, ...
'c', ones(6,1)*1.3e2, ...
'ce', ones(6,1)*1e1, ...
'ca', ones(6,1)*1e1 ...
);

The dynamics is identified using the Simscape model and compared with the measured FRF in Figure
4.8.
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Figure 4.8: Comparison of the measured FRF and the optimized model

Important

The tuned 2DoF is very well representing the (axial) dynamics of the APA.
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5 Dynamical measurements - Struts

The same bench used in Section 3 is here used with the strut instead of only the APA.

The bench is shown in Figure 5.1. Measurements are performed either when no encoder is fixed to the
strut (Figure 5.2) or when one encoder is fixed to the strut (Figure 5.3).

Figure 5.1: Test Bench with Strut - Overview

Variables are named the same as in Section 3.

First, only one strut is measured in details (Section 5.1), and then all the struts are measured and
compared (Section 5.2).

5.1 Measurement on Strut 1

Measurements are first performed on one of the strut that contains:

• the Amplified Piezoelectric Actuator (APA) number 1
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Figure 5.2: Test Bench with Strut - Zoom on the strut

Figure 5.3: Test Bench with Strut - Zoom on the strut with the encoder
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• flexible joints 1 and 2

In Section 5.1.1, the dynamics of the strut is measured without the encoder attached to it. Then in
Section 5.1.2, the encoder is attached to the struts, and the dynamic is identified.

5.1.1 Without Encoder

FRF Identification - Setup

Similarly to what was done for the identification of the APA, the identification is performed in three
steps:

1. White noise excitation with small amplitude. This is used to determine the main resonance of the
system.

2. Sweep sine excitation with the amplitude lowered around the resonance. The sweep sine is from
10Hz to 400Hz.

3. High frequency noise. The noise is band-passed between 300Hz and 2kHz.

Then, the result of the second identification is used between 10Hz and 350Hz and the result of the third
identification if used between 350Hz and 2kHz.

Matlab
%% Load Data
leg_sweep = load(sprintf('frf_data_leg_%i_sweep.mat', 1), 't', 'Va', 'Vs', 'de', 'da');
leg_noise_hf = load(sprintf('frf_data_leg_%i_noise_hf.mat', 1), 't', 'Va', 'Vs', 'de', 'da');

The time is the same for all measurements.

Matlab
%% Time vector
t = leg_sweep.t - leg_sweep.t(1) ; % Time vector [s]

%% Sampling frequency/time
Ts = (t(end) - t(1))/(length(t)-1); % Sampling Time [s]
Fs = 1/Ts; % Sampling Frequency [Hz]

Then we defined a “Hanning” windows that will be used for the spectral analysis:

Matlab
win = hanning(ceil(0.5*Fs)); % Hannning Windows

We get the frequency vector that will be the same for all the frequency domain analysis.

Matlab
% Only used to have the frequency vector "f"
[~, f] = tfestimate(leg_sweep.Va, leg_sweep.de, win, [], [], 1/Ts);
i_lf = f <= 350; % Indices used for the low frequency
i_hf = f > 350; % Indices used for the low frequency
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FRF Identification - Interferometer

In this section, the dynamics from the excitation voltage Va to the interferometer da is identified.

We compute the coherence for 2nd and 3rd identification and combine them.
Matlab

%% Compute the coherence for both excitation signals
[int_coh_sweep, ~] = mscohere(leg_sweep.Va, leg_sweep.da, win, [], [], 1/Ts);
[int_coh_noise_hf, ~] = mscohere(leg_noise_hf.Va, leg_noise_hf.da, win, [], [], 1/Ts);

%% Combine the coherence
int_coh = [int_coh_sweep(i_lf); int_coh_noise_hf(i_hf)];

The combined coherence is shown in Figure 5.4, and is found to be very good up to at least 1kHz.
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Figure 5.4: Obtained coherence for the plant from Va to da

The transfer function from Va to the interferometer measured displacement da is estimated and shown
in Figure 5.5.

Matlab
%% Compute FRF function from Va to da
[frf_sweep, ~] = tfestimate(leg_sweep.Va, leg_sweep.da, win, [], [], 1/Ts);
[frf_noise_hf, ~] = tfestimate(leg_noise_hf.Va, leg_noise_hf.da, win, [], [], 1/Ts);

%% Combine the FRF
int_frf = [frf_sweep(i_lf); frf_noise_hf(i_hf)];

FRF Identification - IFF

In this section, the dynamics from Va to Vs is identified.

First the coherence is computed and shown in Figure 5.6. The coherence is very nice from 10Hz to 2kHz.
It is only dropping near a zeros at 40Hz, and near the resonance at 95Hz (the excitation amplitude
being lowered).
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Figure 5.5: Estimated FRF for the DVF plant (transfer function from Va to the interferometer da)

Matlab
%% Compute the coherence for both excitation signals
[iff_coh_sweep, ~] = mscohere(leg_sweep.Va, leg_sweep.Vs, win, [], [], 1/Ts);
[iff_coh_noise_hf, ~] = mscohere(leg_noise_hf.Va, leg_noise_hf.Vs, win, [], [], 1/Ts);

%% Combine the coherence
iff_coh = [iff_coh_sweep(i_lf); iff_coh_noise_hf(i_hf)];

Then the FRF are estimated and shown in Figure 5.7

Matlab
%% Compute the FRF
[frf_sweep, ~] = tfestimate(leg_sweep.Va, leg_sweep.Vs, win, [], [], 1/Ts);
[frf_noise_hf, ~] = tfestimate(leg_noise_hf.Va, leg_noise_hf.Vs, win, [], [], 1/Ts);

%% Combine the FRF
iff_frf = [frf_sweep(i_lf); frf_noise_hf(i_hf)];

5.1.2 With Encoder

Now the encoder is fixed to the strut and the identification is performed.
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Figure 5.6: Obtained coherence for the IFF plant
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Figure 5.7: Identified IFF Plant for the Strut 1
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Measurement Data

The measurements are loaded.
Matlab

%% Load data
leg_enc_sweep = load(sprintf('frf_data_leg_coder_badly_align_%i_noise.mat', 1), 't', 'Va', 'Vs', 'de', 'da');
leg_enc_noise_hf = load(sprintf('frf_data_leg_coder_badly_align_%i_noise_hf.mat', 1), 't', 'Va', 'Vs', 'de', 'da');

FRF Identification - Interferometer

In this section, the dynamics from Va to da is identified.

First, the coherence is computed and shown in Figure 5.8.
Matlab

%% Compute the coherence for both excitation signals
[int_coh_sweep, ~] = mscohere(leg_enc_sweep.Va, leg_enc_sweep.da, win, [], [], 1/Ts);
[int_coh_noise_hf, ~] = mscohere(leg_enc_noise_hf.Va, leg_enc_noise_hf.da, win, [], [], 1/Ts);

%% Combine the coherinte
int_coh = [int_coh_sweep(i_lf); int_coh_noise_hf(i_hf)];
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Figure 5.8: Obtained coherence for the plant from Va to da

Then the FRF are computed and shown in Figure 5.9.
Matlab

%% Compute FRF function from Va to da
[frf_sweep, ~] = tfestimate(leg_enc_sweep.Va, leg_enc_sweep.da, win, [], [], 1/Ts);
[frf_noise_hf, ~] = tfestimate(leg_enc_noise_hf.Va, leg_enc_noise_hf.da, win, [], [], 1/Ts);

%% Combine the FRF
int_with_enc_frf = [frf_sweep(i_lf); frf_noise_hf(i_hf)];

The obtained FRF is very close to the one that was obtained when no encoder was fixed to the struts
as shown in Figure 5.10.
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Figure 5.9: Estimated FRF for the DVF plant (transfer function from Va to the encoder de)
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Figure 5.10: Comparison of the measured FRF from Va to da with and without the encoders fixed to
the struts
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FRF Identification - Encoder

In this section, the dynamics from Va to de (encoder) is identified.

The coherence is computed and shown in Figure 5.11.

Matlab
%% Compute the coherence for both excitation signals
[enc_coh_sweep, ~] = mscohere(leg_enc_sweep.Va, leg_enc_sweep.de, win, [], [], 1/Ts);
[enc_coh_noise_hf, ~] = mscohere(leg_enc_noise_hf.Va, leg_enc_noise_hf.de, win, [], [], 1/Ts);

%% Combine the coherence
enc_coh = [enc_coh_sweep(i_lf); enc_coh_noise_hf(i_hf)];
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Figure 5.11: Obtained coherence for the plant from Va to de and from Va to da

The FRF from Va to the encoder measured displacement de is computed and shown in Figure 5.12.

Matlab
%% Compute FRF function from Va to da
[frf_sweep, ~] = tfestimate(leg_enc_sweep.Va, leg_enc_sweep.de, win, [], [], 1/Ts);
[frf_noise_hf, ~] = tfestimate(leg_enc_noise_hf.Va, leg_enc_noise_hf.de, win, [], [], 1/Ts);

%% Combine the FRF
enc_frf = [frf_sweep(i_lf); frf_noise_hf(i_hf)];

The transfer functions from Va to de (encoder) and to da (interferometer) are compared in Figure 5.13.

Important

The dynamics from the excitation voltage Va to the measured displacement by the encoder de
presents much more complicated behavior than the transfer function to the displacement as
measured by the Interferometer (compared in Figure 5.13). It will be further investigated why
the two dynamics as so different and what are causing all these resonances.
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Figure 5.12: Estimated FRF for the DVF plant (transfer function from Va to the encoder de)
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Figure 5.13: Comparison of the transfer functions from excitation voltage Va to either the encoder de
or the interferometer da
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APA Resonances Frequency

As shown in Figure 5.14, we can clearly see three spurious resonances at 197Hz, 290Hz and 376Hz.
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Figure 5.14: Magnitude of the transfer function from excitation voltage Va to encoder measurement
de. The frequency of the resonances are noted.

These resonances correspond to parasitic resonances of the strut itself.

They are very close to what was estimated using a finite element model of the strut (Figure 5.15):

• Mode in X-bending at 189Hz

• Mode in Y-bending at 285Hz

• Mode in Z-torsion at 400Hz

Important

The resonances seen by the encoder in Figure 5.14 are indeed corresponding to the modes of the
strut as shown in Figure 5.15.

FRF Identification - Force Sensor

In this section, the dynamics from Va to Vs is identified.
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Figure 5.15: Spurious resonances. a) X-bending mode at 189Hz. b) Y-bending mode at 285Hz. c)
Z-torsion mode at 400Hz

First the coherence is computed and shown in Figure 5.16. The coherence is very nice from 10Hz
to 2kHz. It is only dropping near a zeros at 40Hz, and near the resonance at 95Hz (the excitation
amplitude being lowered).

Matlab
%% Compute the coherence for both excitation signals
[iff_coh_sweep, ~] = mscohere(leg_enc_sweep.Va, leg_enc_sweep.Vs, win, [], [], 1/Ts);
[iff_coh_noise_hf, ~] = mscohere(leg_enc_noise_hf.Va, leg_enc_noise_hf.Vs, win, [], [], 1/Ts);

%% Combine the coherence
iff_coh = [iff_coh_sweep(i_lf); iff_coh_noise_hf(i_hf)];
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Figure 5.16: Obtained coherence for the IFF plant

Then the FRF are estimated and shown in Figure 5.17
Matlab

%% Compute FRF function from Va to da
[frf_sweep, ~] = tfestimate(leg_enc_sweep.Va, leg_enc_sweep.Vs, win, [], [], 1/Ts);
[frf_noise_hf, ~] = tfestimate(leg_enc_noise_hf.Va, leg_enc_noise_hf.Vs, win, [], [], 1/Ts);

76



%% Combine the FRF
iff_with_enc_frf = [frf_sweep(i_lf); frf_noise_hf(i_hf)];
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Figure 5.17: Identified IFF Plant

Let’s now compare the IFF plants whether the encoders are fixed to the APA or not (Figure 5.18).

Important

The transfer function from the excitation voltage Va to the generated voltage Vs by the sensor
stack is not influence by the fixation of the encoder. This means that the IFF control strategy
should be as effective whether or not the encoders are fixed to the struts.

5.2 Comparison of all the Struts

Now all struts are measured using the same procedure and test bench as in Section 5.1.

5.2.1 FRF Identification - Setup

The identification of the struts dynamics is performed in two steps:
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Figure 5.18: Effect of the encoder on the IFF plant
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1. The excitation signal is a white noise with small amplitude. This is used to estimate the low
frequency dynamics.

2. Then a high frequency noise band-passed between 300Hz and 2kHz is used to estimate the high
frequency dynamics.

Then, the result of the first identification is used between 10Hz and 350Hz and the result of the second
identification if used between 350Hz and 2kHz.

Here are the leg numbers that have been measured.

Matlab
%% Numnbers of the measured legs
leg_nums = [1 2 3 4 5];

The data are loaded for both the first and second identification:

Matlab
%% First identification (low frequency noise)
leg_noise = {};
for i = 1:length(leg_nums)

leg_noise(i) = {load(sprintf('frf_data_leg_coder_%i_noise.mat', leg_nums(i)), 't', 'Va', 'Vs', 'de', 'da')};
end

%% Second identification (high frequency noise)
leg_noise_hf = {};
for i = 1:length(leg_nums)

leg_noise_hf(i) = {load(sprintf('frf_data_leg_coder_%i_noise_hf.mat', leg_nums(i)), 't', 'Va', 'Vs', 'de', 'da')};
end

The time is the same for all measurements.

Matlab
%% Time vector
t = leg_noise{1}.t - leg_noise{1}.t(1) ; % Time vector [s]

%% Sampling
Ts = (t(end) - t(1))/(length(t)-1); % Sampling Time [s]
Fs = 1/Ts; % Sampling Frequency [Hz]

Then we defined a “Hanning” windows that will be used for the spectral analysis:

Matlab
win = hanning(ceil(0.5*Fs)); % Hannning Windows

We get the frequency vector that will be the same for all the frequency domain analysis.

Matlab
% Only used to have the frequency vector "f"
[~, f] = tfestimate(leg_noise{1}.Va, leg_noise{1}.de, win, [], [], 1/Ts);
i_lf = f <= 350;
i_hf = f > 350;

79



5.2.2 FRF Identification - Encoder

In this section, the dynamics from Va to de (encoder) is identified.

The coherence is computed and shown in Figure 5.19 for all the measured struts.
Matlab

%% Coherence computation
coh_enc = zeros(length(f), length(leg_nums));
for i = 1:length(leg_nums)

[coh_lf, ~] = mscohere(leg_noise{i}.Va, leg_noise{i}.de, win, [], [], 1/Ts);
[coh_hf, ~] = mscohere(leg_noise_hf{i}.Va, leg_noise_hf{i}.de, win, [], [], 1/Ts);
coh_enc(:, i) = [coh_lf(i_lf); coh_hf(i_hf)];

end
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Figure 5.19: Obtained coherence for the plant from Va to de

Then, the transfer function from the DAC output voltage Va to the measured displacement by the
encoder de is computed:

Matlab
%% Transfer function estimation
enc_frf = zeros(length(f), length(leg_nums));

for i = 1:length(leg_nums)
[frf_lf, ~] = tfestimate(leg_noise{i}.Va, leg_noise{i}.de, win, [], [], 1/Ts);
[frf_hf, ~] = tfestimate(leg_noise_hf{i}.Va, leg_noise_hf{i}.de, win, [], [], 1/Ts);
enc_frf(:, i) = [frf_lf(i_lf); frf_hf(i_hf)];

end

The obtained transfer functions are shown in Figure 5.20.

Important

There is a very large variability of the dynamics as measured by the encoder as shown in Figure
5.20. Even-though the same peaks are seen for all of the struts (95Hz, 200Hz, 300Hz, 400Hz),
the amplitude of the peaks are not the same. Moreover, the location or even the presence of
complex conjugate zeros is changing from one strut to the other.
All of this will be explained in Section 6 thanks to the Simscape model.
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Figure 5.20: Estimated FRF for the DVF plant (transfer function from Va to the encoder de)
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5.2.3 FRF Identification - Interferometer

In this section, the dynamics from Va to da (interferometer) is identified.

The coherence is computed and shown in Figure 5.21.

Matlab
%% Coherence computation
coh_int = zeros(length(f), length(leg_nums));
for i = 1:length(leg_nums)

[coh_lf, ~] = mscohere(leg_noise{i}.Va, leg_noise{i}.da, win, [], [], 1/Ts);
[coh_hf, ~] = mscohere(leg_noise_hf{i}.Va, leg_noise_hf{i}.da, win, [], [], 1/Ts);
coh_int(:, i) = [coh_lf(i_lf); coh_hf(i_hf)];

end
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Figure 5.21: Obtained coherence for the plant from Va to de

Then, the transfer function from the DAC output voltage Va to the measured displacement by the
Attocube is computed for all the struts and shown in Figure 5.22. All the struts are giving very similar
FRF.

Matlab
%% Transfer function estimation
int_frf = zeros(length(f), length(leg_nums));
for i = 1:length(leg_nums)

[frf_lf, ~] = tfestimate(leg_noise{i}.Va, leg_noise{i}.da, win, [], [], 1/Ts);
[frf_hf, ~] = tfestimate(leg_noise_hf{i}.Va, leg_noise_hf{i}.da, win, [], [], 1/Ts);
int_frf(:, i) = [frf_lf(i_lf); frf_hf(i_hf)];

end

5.2.4 FRF Identification - Force Sensor

In this section, the dynamics from Va to Vs is identified.

First the coherence is computed and shown in Figure 5.23.

82



10!8

10!6

10!4

A
m

p
li
tu

d
e

d
a
=V

a
[m

/V
]

Leg 1
Leg 2
Leg 3

Leg 4
Leg 5

101 102 103

Frequency [Hz]

-180

-90

0

90

180

P
h
as

e
[d

eg
]

Figure 5.22: Estimated FRF for the DVF plant (transfer function from Va to the encoder de)

Matlab
%% Coherence
coh_iff = zeros(length(f), length(leg_nums));
for i = 1:length(leg_nums)

[coh_lf, ~] = mscohere(leg_noise{i}.Va, leg_noise{i}.Vs, win, [], [], 1/Ts);
[coh_hf, ~] = mscohere(leg_noise_hf{i}.Va, leg_noise_hf{i}.Vs, win, [], [], 1/Ts);
coh_iff(:, i) = [coh_lf(i_lf); coh_hf(i_hf)];

end

Then the FRF are estimated and shown in Figure 5.24. They are also shown all to be very similar.

Matlab
%% FRF estimation of the transfer function from Va to Vs
iff_frf = zeros(length(f), length(leg_nums));
for i = 1:length(leg_nums)

[frf_lf, ~] = tfestimate(leg_noise{i}.Va, leg_noise{i}.Vs, win, [], [], 1/Ts);
[frf_hf, ~] = tfestimate(leg_noise_hf{i}.Va, leg_noise_hf{i}.Vs, win, [], [], 1/Ts);
iff_frf(:, i) = [frf_lf(i_lf); frf_hf(i_hf)];

end
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Figure 5.23: Obtained coherence for the IFF plant
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Figure 5.24: Identified IFF Plant
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5.2.5 Conclusion

Important

All the struts are giving very consistent behavior from the excitation voltage Va to the force
sensor generated voltage Vs and to the interferometer measured displacement da. However, the
dynamics from Va to the encoder measurement de is much more complex and variable from one
strut to the other.

Matlab
%% Save the estimated FRF for further analysis
save('mat/meas_struts_frf.mat', 'f', 'Ts', 'enc_frf', 'int_frf', 'iff_frf', 'leg_nums');
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6 Test Bench Struts - Simscape Model

The same simscape model that was presented in Section 4 is here used. However, now the full strut is
put instead of only the APA (see Figure 6.1).

Figure 6.1: Screenshot of the Simscape model of the strut fixed to the bench

This Simscape model is used to:

• compare the measured FRF with the modelled FRF

• help the correct understanding/interpretation of the results

• tune the model of the struts (APA, flexible joints, encoder)

This study is structured as follow:

• Section 6.1: the measured FRF are compared with the 2DoF APA model.

• Section 6.2: the flexible APA model is used, and the effect of a misalignment of the APA and
flexible joints is studied. It is found that the misalignment has a large impact on the dynamics
from Va to de.

• Section 6.3: the effect of the flexible joint’s stiffness on the dynamics is studied. It is found that
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the axial stiffness of the joints has a large impact on the location of the zeros on the transfer
function from Vs to de.

6.1 Comparison with the 2-DoF Model

6.1.1 First Identification

The strut is initialized with default parameters (optimized parameters identified from previous experi-
ments).

Matlab
%% Initialize structure containing data for the Simscape model
n_hexapod = struct();
n_hexapod.flex_bot = initializeBotFlexibleJoint('type', '4dof');
n_hexapod.flex_top = initializeTopFlexibleJoint('type', '4dof');
n_hexapod.actuator = initializeAPA('type', '2dof');

The inputs and outputs of the model are defined.

Matlab
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/Va'], 1, 'openinput'); io_i = io_i + 1; % Actuator Voltage
io(io_i) = linio([mdl, '/Vs'], 1, 'openoutput'); io_i = io_i + 1; % Sensor Voltage
io(io_i) = linio([mdl, '/de'], 1, 'openoutput'); io_i = io_i + 1; % Encoder
io(io_i) = linio([mdl, '/da'], 1, 'openoutput'); io_i = io_i + 1; % Interferometer

The dynamics is identified and shown in Figure 6.2.

Matlab
%% Run the linearization
Gs = linearize(mdl, io, 0.0, options);
Gs.InputName = {'Va'};
Gs.OutputName = {'Vs', 'de', 'da'};

6.1.2 Comparison with the experimental Data

The experimentally measured FRF are loaded.

Matlab
%% Load measured FRF
load('meas_struts_frf.mat', 'f', 'Ts', 'enc_frf', 'int_frf', 'iff_frf', 'leg_nums');

Matlab
%% Add time delay to the Simscape model
Gs = exp(-s*Ts)*Gs;
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Figure 6.2: Identified transfer function from Va to Vs and from Va to de, da using the simple 2DoF
model for the APA
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The FRF from Va to da as well as from Va to Vs are shown in Figure 6.3 and compared with the model.
They are both found to match quite well with the model.

10!8

10!7

10!6

10!5

10!4

10!3

A
m
p
li
tu
d
e

d
a
=V

a
[m

/V
]

Meas. FRF
Model

10!2

10!1

100

101

102

A
m
p
li
tu
d
e

V
s
=V

a
[V
/V

]

Meas. FRF
Model

101 102 103

Frequency [Hz]

-180

-90

0

90

180

P
h
as
e
[d
eg
]

101 102 103

Frequency [Hz]

-180

-90

0

90

180
P
h
as
e
[d
eg
]

Figure 6.3: Comparison of the measured FRF and the optimized model

The measured FRF from Va to de (encoder) is compared with the model in Figure 6.4.

Important

The 2-DoF model is quite effective in modelling the transfer function from actuator to force
sensor and from actuator to interferometer (Figure 6.3). But it is not effective in modeling the
transfer function from actuator to encoder (Figure 6.4). This is due to the fact that resonances
greatly affecting the encoder reading are not modelled. In the next section, flexible model of the
APA will be used to model such resonances.

6.2 Effect of a misalignment of the APA and flexible joints on
the transfer function from actuator to encoder

As shown in Figure 5.20, the dynamics from actuator to encoder for all the struts is very different.

This could be explained by a large variability in the alignment of the flexible joints and the APA (at
the time, the alignment pins were not used).

89



10!8

10!7

10!6

10!5

10!4

10!3

A
m
p
li
tu
d
e

d
e
=V

a
[m

/V
]

Meas. FRF
Model

102 103

Frequency [Hz]

-180

-90

0

90

180

P
h
as
e
[d
eg
]

Figure 6.4: Comparison of the measured FRF and the optimized model
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Depending on the alignment, the spurious resonances of the struts (Figure 6.5) can be excited differ-
ently.

Figure 6.5: Spurious resonances. a) X-bending mode at 189Hz. b) Y-bending mode at 285Hz. c)
Z-torsion mode at 400Hz

For instance, consider Figure 6.6 where there is a misalignment in the y direction. In such case, the mode
at 200Hz is foreseen to be more excited as the misalignment dy increases and therefore the dynamics
from the actuator to the encoder should also change around 200Hz.

y
zx

dy

Figure 6.6: Mis-alignement between the joints and the APA

If the misalignment is in the x direction, the mode at 285Hz should be more affected whereas a mis-
alignment in the z direction should not affect these resonances.

Such statement is studied in this section.

But first, the measured FRF of the struts are loaded.
Matlab

%% Load measured FRF of the struts
load('meas_struts_frf.mat', 'f', 'Ts', 'enc_frf', 'int_frf', 'iff_frf', 'leg_nums');

6.2.1 Perfectly aligned APA

Let’s first consider that the strut is perfectly mounted such that the two flexible joints and the APA
are aligned.
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Matlab
%% Initialize Simscape data
n_hexapod.flex_bot = initializeBotFlexibleJoint('type', '4dof');
n_hexapod.flex_top = initializeTopFlexibleJoint('type', '4dof');
n_hexapod.actuator = initializeAPA('type', 'flexible');

And define the inputs and outputs of the models:

• Input: voltage generated by the DAC

• Output: measured displacement by the encoder

Matlab
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/Va'], 1, 'openinput'); io_i = io_i + 1; % Actuator Voltage
io(io_i) = linio([mdl, '/de'], 1, 'openoutput'); io_i = io_i + 1; % Encoder

The transfer function is identified and shown in Figure 6.7.

Matlab
%% Identification
Gs = exp(-s*Ts)*linearize(mdl, io, 0.0, options);
Gs.InputName = {'Va'};
Gs.OutputName = {'de'};

Important

From Figure 6.7, it is clear that:

1. The model with perfect alignment is not matching the measured FRF

2. The mode at 200Hz is not present in the identified dynamics of the Simscape model

3. The measured FRF have different shapes

Question

Why is the flexible mode of the strut at 200Hz is not seen in the model in Figure 6.7? Probably
because the presence of this mode is not due because of the “unbalanced” mass of the encoder,
but rather because of the misalignment of the APA with respect to the two flexible joints. This
will be verified in the next sections.

6.2.2 Effect of a misalignment in y

Let’s compute the transfer function from output DAC voltage Vs to the measured displacement by the
encoder de for several misalignment in the y direction:

Matlab
%% Considered misalignments
dy_aligns = [-0.5, -0.1, 0, 0.1, 0.5]*1e-3; % [m]
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Figure 6.7: Comparison of the model with a perfectly aligned APA and flexible joints with the mea-
sured FRF from actuator to encoder
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Matlab
%% Transfer functions from u to de for all the misalignment in y direction
Gs_align = {zeros(length(dy_aligns), 1)};

for i = 1:length(dy_aligns)
n_hexapod.actuator = initializeAPA('type', 'flexible', 'd_align', [0; dy_aligns(i); 0]);

G = exp(-s*Ts)*linearize(mdl, io, 0.0, options);
G.InputName = {'Va'};
G.OutputName = {'de'};

Gs_align(i) = {G};
end

The obtained dynamics are shown in Figure 6.8.
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Figure 6.8: Effect of a misalignement in the y direction

Important

The alignment of the APA with the flexible joints as a huge influence on the dynamics from
actuator voltage to measured displacement by the encoder. The misalignment in the y direction
mostly influences:

• the presence of the flexible mode at 200Hz

• the location of the complex conjugate zero between the first two resonances:

– if dy < 0: there is no zero between the two resonances and possibly not even between
the second and third ones
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– if dy > 0: there is a complex conjugate zero between the first two resonances

• the location of the high frequency complex conjugate zeros at 500Hz (secondary effect, as
the axial stiffness of the joint also has large effect on the position of this zero)

6.2.3 Effect of a misalignment in x

Let’s compute the transfer function from output DAC voltage to the measured displacement by the
encoder for several misalignment in the x direction:

Matlab
%% Considered misalignments
dx_aligns = [-0.1, -0.05, 0, 0.05, 0.1]*1e-3; % [m]

Matlab
%% Transfer functions from u to de for all the misalignment in x direction
Gs_align = {zeros(length(dx_aligns), 1)};

for i = 1:length(dx_aligns)
n_hexapod.actuator = initializeAPA('type', 'flexible', 'd_align', [dx_aligns(i); 0; 0]);

G = exp(-s*Ts)*linearize(mdl, io, 0.0, options);
G.InputName = {'Va'};
G.OutputName = {'de'};

Gs_align(i) = {G};
end

The obtained dynamics are shown in Figure 6.9.

Important

The misalignment in the x direction mostly influences the presence of the flexible mode at 300Hz.

6.2.4 Find the misalignment of each strut

From the previous analysis on the effect of a x and y misalignment, it is possible to estimate the x, y
misalignment of the measured struts.

The misalignment that gives the best match for the FRF are defined below.
Matlab

%% Tuned misalignment [m]
d_aligns = [[-0.05, -0.3, 0];

[ 0, 0.5, 0];
[-0.1, -0.3, 0];
[ 0, 0.3, 0];
[-0.05, 0.05, 0]]'*1e-3;

For each misalignment, the dynamics from the DAC voltage to the encoder measurement is identified.
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Figure 6.9: Effect of a misalignement in the x direction
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Matlab
%% Idenfity the transfer function from actuator to encoder for all cases
Gs_align = {zeros(size(d_aligns,2), 1)};

for i = 1:size(d_aligns,2)
n_hexapod.actuator = initializeAPA('type', 'flexible', 'd_align', d_aligns(:,i));

G = exp(-s*Ts)*linearize(mdl, io, 0.0, options);
G.InputName = {'Va'};
G.OutputName = {'de'};

Gs_align(i) = {G};
end

The results are shown in Figure 6.10.
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Figure 6.10: Comparison (model and measurements) of the FRF from DAC voltage u to measured
displacement by the encoders for all the struts

Important

By tuning the misalignment of the APA with respect to the flexible joints, it is possible to obtain
a good fit between the model and the measurements (Figure 6.10).
If encoders are to be used when fixed on the struts, it is therefore very important to properly
align the APA and the flexible joints when mounting the struts.
In the future, a “pin” will be used to better align the APA with the flexible joints. We can expect
the amplitude of the spurious resonances to decrease.
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6.3 Effect of flexible joint’s stiffness

As the struts are composed of one APA and two flexible joints, it is obvious that the flexible joint
characteristics will change the dynamic behavior of the struts.

Using the Simscape model, the effect of the flexible joint’s characteristics on the dynamics as measured
on the test bench are studied:

• Section 6.3.1: the effects of a change of bending stiffness is studied

• Section 6.3.2: the effects of a change of axial stiffness is studied

• Section 6.3.3: the effects of a change of bending damping is studied

The studied dynamics is between Va and the encoder displacement de.
Matlab

%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/Va'], 1, 'openinput'); io_i = io_i + 1; % Actuator Voltage
io(io_i) = linio([mdl, '/de'], 1, 'openoutput'); io_i = io_i + 1; % Encoder

6.3.1 Effect of bending stiffness of the flexible joints

Let’s initialize an APA which is a little bit misaligned.
Matlab

%% APA Initialization
n_hexapod.actuator = initializeAPA('type', 'flexible', 'd_align', [0.1e-3; 0.5e-3; 0]);

The bending stiffnesses for which the dynamics is identified are defined below.
Matlab

%% Tested bending stiffnesses [Nm/rad]
kRs = [3, 4, 5, 6, 7];

Then the identification is performed for all the values of the bending stiffnesses.
Matlab

%% Idenfity the transfer function from actuator to encoder for all bending stiffnesses
Gs = {zeros(length(kRs), 1)};

for i = 1:length(kRs)
n_hexapod.flex_bot = initializeBotFlexibleJoint(...

'type', '4dof', ...
'kRx', kRs(i), ...
'kRy', kRs(i));

n_hexapod.flex_top = initializeTopFlexibleJoint(...
'type', '4dof', ...
'kRx', kRs(i), ...
'kRy', kRs(i));

G = exp(-s*Ts)*linearize(mdl, io, 0.0, options);
G.InputName = {'Va'};
G.OutputName = {'de'};

98



Gs(i) = {G};
end

The obtained dynamics from DAC voltage to encoder measurements are compared in Figure 6.11.
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Figure 6.11: Dynamics from DAC output to encoder for several bending stiffnesses

Important

The bending stiffness of the joints has little impact on the transfer function from Va to de.

6.3.2 Effect of axial stiffness of the flexible joints

The axial stiffnesses for which the dynamics is identified are defined below.

Matlab
%% Tested axial stiffnesses [N/m]
kzs = [5e7 7.5e7 1e8 2.5e8];

Then the identification is performed for all the values of the bending stiffnesses.
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Matlab
%% Idenfity the transfer function from actuator to encoder for all bending stiffnesses
Gs = {zeros(length(kzs), 1)};

for i = 1:length(kzs)
n_hexapod.flex_bot = initializeBotFlexibleJoint(...

'type', '4dof', ...
'kz', kzs(i));

n_hexapod.flex_top = initializeTopFlexibleJoint(...
'type', '4dof', ...
'kz', kzs(i));

G = exp(-s*Ts)*linearize(mdl, io, 0.0, options);
G.InputName = {'Va'};
G.OutputName = {'de'};

Gs(i) = {G};
end

The obtained dynamics from DAC voltage to encoder measurements are compared in Figure 6.12.
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Figure 6.12: Dynamics from DAC output to encoder for several axial stiffnesses

Important

The axial stiffness of the flexible joint has a large impact on the frequency of the complex
conjugate zero. Using the measured FRF on the test-bench, if is therefore possible to estimate
the axial stiffness of the flexible joints from the location of the zero.
This method gives nice match between the measured FRF and the one extracted from the
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simscape model, however it could give not so accurate values of the joint’s axial stiffness as other
factors are also influencing the location of the zero.
Using this method, an axial stiffness of 70N/µm is found to give good results (and is reasonable
based on the finite element models).

6.3.3 Effect of bending damping

Now let’s study the effect of the bending damping of the flexible joints.

The tested bending damping are defined below:

Matlab
%% Tested bending dampings [Nm/(rad/s)]
cRs = [1e-3, 5e-3, 1e-2, 5e-2, 1e-1];

Then the identification is performed for all the values of the bending damping.

Matlab
%% Idenfity the transfer function from actuator to encoder for all bending dampins
Gs = {zeros(length(kRs), 1)};

for i = 1:length(kRs)
n_hexapod.flex_bot = initializeBotFlexibleJoint(...

'type', '4dof', ...
'cRx', cRs(i), ...
'cRy', cRs(i));

n_hexapod.flex_top = initializeTopFlexibleJoint(...
'type', '4dof', ...
'cRx', cRs(i), ...
'cRy', cRs(i));

G = exp(-s*Ts)*linearize(mdl, io, 0.0, options);
G.InputName = {'Va'};
G.OutputName = {'de'};

Gs(i) = {G};
end

The results are shown in Figure 6.13.

Important

Adding damping in bending for the flexible joints could be a nice way to reduce the effects of
the spurious resonances of the struts.

Question

How to effectively add damping to the flexible joints?
One idea would be to introduce a sheet of damping material inside the flexible joint. Not sure
is would be effect though.

101



10!8

10!7

10!6

10!5

10!4

10!3

A
m

p
li
tu

d
e

d
e
=V

a
[m

/V
]

cR = 0:001 [ Nm
rad=s ]

cR = 0:005 [ Nm
rad=s ]

cR = 0:010 [ Nm
rad=s ]

cR = 0:050 [ Nm
rad=s ]

cR = 0:100 [ Nm
rad=s ]

102 103

Frequency [Hz]

-180

-90

0

90

180

P
h
as

e
[d

eg
]

Figure 6.13: Dynamics from DAC output to encoder for several bending damping
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7 Function

7.1 initializeBotFlexibleJoint - Initialize Flexible Joint

Function description

Matlab
function [flex_bot] = initializeBotFlexibleJoint(args)
% initializeBotFlexibleJoint -
%
% Syntax: [flex_bot] = initializeBotFlexibleJoint(args)
%
% Inputs:
% - args -
%
% Outputs:
% - flex_bot -

Optional Parameters

Matlab
arguments

args.type char {mustBeMember(args.type,{'2dof', '3dof', '4dof'})} = '2dof'

args.kRx (6,1) double {mustBeNumeric, mustBePositive} = ones(6,1)*5
args.kRy (6,1) double {mustBeNumeric, mustBePositive} = ones(6,1)*5
args.kRz (6,1) double {mustBeNumeric, mustBePositive} = ones(6,1)*260
args.kz (6,1) double {mustBeNumeric, mustBePositive} = ones(6,1)*7e7

args.cRx (6,1) double {mustBeNumeric, mustBePositive} = ones(6,1)*0.001
args.cRy (6,1) double {mustBeNumeric, mustBePositive} = ones(6,1)*0.001
args.cRz (6,1) double {mustBeNumeric, mustBePositive} = ones(6,1)*0.001
args.cz (6,1) double {mustBeNumeric, mustBePositive} = ones(6,1)*0.001

end

Initialize the structure

Matlab
flex_bot = struct();
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Set the Joint’s type

Matlab
switch args.type
case '2dof'
flex_bot.type = 1;

case '3dof'
flex_bot.type = 2;

case '4dof'
flex_bot.type = 3;

end

Set parameters

Matlab
flex_bot.kRx = args.kRx;
flex_bot.kRy = args.kRy;
flex_bot.kRz = args.kRz;
flex_bot.kz = args.kz;

Matlab
flex_bot.cRx = args.cRx;
flex_bot.cRy = args.cRy;
flex_bot.cRz = args.cRz;
flex_bot.cz = args.cz;

7.2 initializeTopFlexibleJoint - Initialize Flexible Joint

Function description

Matlab
function [flex_top] = initializeTopFlexibleJoint(args)
% initializeTopFlexibleJoint -
%
% Syntax: [flex_top] = initializeTopFlexibleJoint(args)
%
% Inputs:
% - args -
%
% Outputs:
% - flex_top -

Optional Parameters

Matlab
arguments

args.type char {mustBeMember(args.type,{'2dof', '3dof', '4dof'})} = '2dof'

args.kRx (6,1) double {mustBeNumeric, mustBePositive} = ones(6,1)*5

104



args.kRy (6,1) double {mustBeNumeric, mustBePositive} = ones(6,1)*5
args.kRz (6,1) double {mustBeNumeric, mustBePositive} = ones(6,1)*260
args.kz (6,1) double {mustBeNumeric, mustBePositive} = ones(6,1)*7e7

args.cRx (6,1) double {mustBeNumeric, mustBePositive} = ones(6,1)*0.001
args.cRy (6,1) double {mustBeNumeric, mustBePositive} = ones(6,1)*0.001
args.cRz (6,1) double {mustBeNumeric, mustBePositive} = ones(6,1)*0.001
args.cz (6,1) double {mustBeNumeric, mustBePositive} = ones(6,1)*0.001

end

Initialize the structure

Matlab
flex_top = struct();

Set the Joint’s type

Matlab
switch args.type
case '2dof'
flex_top.type = 1;

case '3dof'
flex_top.type = 2;

case '4dof'
flex_top.type = 3;

end

Set parameters

Matlab
flex_top.kRx = args.kRx;
flex_top.kRy = args.kRy;
flex_top.kRz = args.kRz;
flex_top.kz = args.kz;

Matlab
flex_top.cRx = args.cRx;
flex_top.cRy = args.cRy;
flex_top.cRz = args.cRz;
flex_top.cz = args.cz;
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7.3 initializeAPA - Initialize APA

Function description

Matlab
function [actuator] = initializeAPA(args)
% initializeAPA -
%
% Syntax: [actuator] = initializeAPA(args)
%
% Inputs:
% - args -
%
% Outputs:
% - actuator -

Optional Parameters

Matlab
arguments

args.type char {mustBeMember(args.type,{'2dof', 'flexible frame', 'flexible'})} = '2dof'

% Actuator and Sensor constants
args.Ga (1,1) double {mustBeNumeric} = 0
args.Gs (1,1) double {mustBeNumeric} = 0

% For 2DoF
args.k (6,1) double {mustBeNumeric, mustBePositive} = ones(6,1)*0.38e6
args.ke (6,1) double {mustBeNumeric, mustBePositive} = ones(6,1)*1.75e6
args.ka (6,1) double {mustBeNumeric, mustBePositive} = ones(6,1)*3e7

args.c (6,1) double {mustBeNumeric, mustBePositive} = ones(6,1)*3e1
args.ce (6,1) double {mustBeNumeric, mustBePositive} = ones(6,1)*2e1
args.ca (6,1) double {mustBeNumeric, mustBePositive} = ones(6,1)*2e1

args.Leq (6,1) double {mustBeNumeric} = ones(6,1)*0.056

% Force Flexible APA
args.xi (1,1) double {mustBeNumeric, mustBePositive} = 0.01
args.d_align (3,1) double {mustBeNumeric} = zeros(3,1) % [m]

% For Flexible Frame
args.ks (1,1) double {mustBeNumeric, mustBePositive} = 235e6
args.cs (1,1) double {mustBeNumeric, mustBePositive} = 1e1

end

Initialize Structure

Matlab
actuator = struct();
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Type

Matlab
switch args.type
case '2dof'
actuator.type = 1;

case 'flexible frame'
actuator.type = 2;

case 'flexible'
actuator.type = 3;

end

Actuator/Sensor Constants

Matlab
if args.Ga == 0

switch args.type
case '2dof'
actuator.Ga = -30.0;

case 'flexible frame'
actuator.Ga = 1; % TODO

case 'flexible'
actuator.Ga = 23.4;

end
else

actuator.Ga = args.Ga; % Actuator gain [N/V]
end

Matlab
if args.Gs == 0

switch args.type
case '2dof'
actuator.Gs = 0.098;

case 'flexible frame'
actuator.Gs = 1; % TODO

case 'flexible'
actuator.Gs = -4674824;

end
else

actuator.Gs = args.Gs; % Sensor gain [V/m]
end

2DoF parameters

Matlab
actuator.k = args.k; % [N/m]
actuator.ke = args.ke; % [N/m]
actuator.ka = args.ka; % [N/m]

actuator.c = args.c; % [N/(m/s)]
actuator.ce = args.ce; % [N/(m/s)]
actuator.ca = args.ca; % [N/(m/s)]

actuator.Leq = args.Leq; % [m]
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Flexible frame and fully flexible

Matlab
switch args.type
case 'flexible frame'
actuator.K = readmatrix('APA300ML_b_mat_K.CSV'); % Stiffness Matrix
actuator.M = readmatrix('APA300ML_b_mat_M.CSV'); % Mass Matrix
actuator.P = extractNodes('APA300ML_b_out_nodes_3D.txt'); % Node coordinates [m]

case 'flexible'
actuator.K = readmatrix('full_APA300ML_K.CSV'); % Stiffness Matrix
actuator.M = readmatrix('full_APA300ML_M.CSV'); % Mass Matrix
actuator.P = extractNodes('full_APA300ML_out_nodes_3D.txt'); % Node coordiantes [m]
actuator.d_align = args.d_align;

end

actuator.xi = args.xi; % Damping ratio

actuator.ks = args.ks; % Stiffness of one stack [N/m]
actuator.cs = args.cs; % Damping of one stack [N/m]

7.4 generateSweepExc : Generate sweep sinus excitation

Function description

Matlab
function [U_exc] = generateSweepExc(args)
% generateSweepExc - Generate a Sweep Sine excitation signal
%
% Syntax: [U_exc] = generateSweepExc(args)
%
% Inputs:
% - args - Optinal arguments:
% - Ts - Sampling Time - [s]
% - f_start - Start frequency of the sweep - [Hz]
% - f_end - End frequency of the sweep - [Hz]
% - V_mean - Mean value of the excitation voltage - [V]
% - V_exc - Excitation Amplitude for the Sweep, could be numeric or TF - [V]
% - t_start - Time at which the sweep begins - [s]
% - exc_duration - Duration of the sweep - [s]
% - sweep_type - 'logarithmic' or 'linear' - [-]
% - smooth_ends - 'true' or 'false': smooth transition between 0 and V_mean - [-]

Optional Parameters

Matlab
arguments

args.Ts (1,1) double {mustBeNumeric, mustBePositive} = 1e-4
args.f_start (1,1) double {mustBeNumeric, mustBePositive} = 1
args.f_end (1,1) double {mustBeNumeric, mustBePositive} = 1e3
args.V_mean (1,1) double {mustBeNumeric} = 0
args.V_exc = 1
args.t_start (1,1) double {mustBeNumeric, mustBeNonnegative} = 5
args.exc_duration (1,1) double {mustBeNumeric, mustBePositive} = 10
args.sweep_type char {mustBeMember(args.sweep_type,{'log', 'lin'})} = 'lin'
args.smooth_ends logical {mustBeNumericOrLogical} = true

end
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Sweep Sine part

Matlab
t_sweep = 0:args.Ts:args.exc_duration;

if strcmp(args.sweep_type, 'log')
V_exc = sin(2*pi*args.f_start * args.exc_duration/log(args.f_end/args.f_start) *
(exp(log(args.f_end/args.f_start)*t_sweep/args.exc_duration) - 1));↪→

elseif strcmp(args.sweep_type, 'lin')
V_exc = sin(2*pi*(args.f_start + (args.f_end - args.f_start)/2/args.exc_duration*t_sweep).*t_sweep);

else
error('sweep_type should either be equal to "log" or to "lin"');

end

Matlab
if isnumeric(args.V_exc)

V_sweep = args.V_mean + args.V_exc*V_exc;
elseif isct(args.V_exc)

if strcmp(args.sweep_type, 'log')
V_sweep = args.V_mean + abs(squeeze(freqresp(args.V_exc,

args.f_start*(args.f_end/args.f_start).^(t_sweep/args.exc_duration), 'Hz')))'.*V_exc;↪→
elseif strcmp(args.sweep_type, 'lin')

V_sweep = args.V_mean + abs(squeeze(freqresp(args.V_exc,
args.f_start+(args.f_end-args.f_start)/args.exc_duration*t_sweep, 'Hz')))'.*V_exc;↪→
end

end

Smooth Ends

Matlab
if args.t_start > 0

t_smooth_start = args.Ts:args.Ts:args.t_start;

V_smooth_start = zeros(size(t_smooth_start));
V_smooth_end = zeros(size(t_smooth_start));

if args.smooth_ends
Vd_max = args.V_mean/(0.7*args.t_start);

V_d = zeros(size(t_smooth_start));
V_d(t_smooth_start < 0.2*args.t_start) = t_smooth_start(t_smooth_start < 0.2*args.t_start)*Vd_max/(0.2*args.t_start);
V_d(t_smooth_start > 0.2*args.t_start & t_smooth_start < 0.7*args.t_start) = Vd_max;
V_d(t_smooth_start > 0.7*args.t_start & t_smooth_start < 0.9*args.t_start) = Vd_max - (t_smooth_start(t_smooth_start >

0.7*args.t_start & t_smooth_start < 0.9*args.t_start) - 0.7*args.t_start)*Vd_max/(0.2*args.t_start);↪→

V_smooth_start = cumtrapz(V_d)*args.Ts;

V_smooth_end = args.V_mean - V_smooth_start;
end

else
V_smooth_start = [];
V_smooth_end = [];

end

Combine Excitation signals

Matlab
V_exc = [V_smooth_start, V_sweep, V_smooth_end];
t_exc = args.Ts*[0:1:length(V_exc)-1];
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Matlab
U_exc = [t_exc; V_exc];

7.5 generateShapedNoise : Generate Shaped Noise excitation

Function description

Matlab
function [U_exc] = generateShapedNoise(args)
% generateShapedNoise - Generate a Shaped Noise excitation signal
%
% Syntax: [U_exc] = generateShapedNoise(args)
%
% Inputs:
% - args - Optinal arguments:
% - Ts - Sampling Time - [s]
% - V_mean - Mean value of the excitation voltage - [V]
% - V_exc - Excitation Amplitude, could be numeric or TF - [V rms]
% - t_start - Time at which the noise begins - [s]
% - exc_duration - Duration of the noise - [s]
% - smooth_ends - 'true' or 'false': smooth transition between 0 and V_mean - [-]

Optional Parameters

Matlab
arguments

args.Ts (1,1) double {mustBeNumeric, mustBePositive} = 1e-4
args.V_mean (1,1) double {mustBeNumeric} = 0
args.V_exc = 1
args.t_start (1,1) double {mustBeNumeric, mustBePositive} = 5
args.exc_duration (1,1) double {mustBeNumeric, mustBePositive} = 10
args.smooth_ends logical {mustBeNumericOrLogical} = true

end

Shaped Noise

Matlab
t_noise = 0:args.Ts:args.exc_duration;

Matlab
if isnumeric(args.V_exc)

V_noise = args.V_mean + args.V_exc*sqrt(1/args.Ts/2)*randn(length(t_noise), 1)';
elseif isct(args.V_exc)

V_noise = args.V_mean + lsim(args.V_exc, sqrt(1/args.Ts/2)*randn(length(t_noise), 1), t_noise)';
end
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Smooth Ends

Matlab
t_smooth_start = args.Ts:args.Ts:args.t_start;

V_smooth_start = zeros(size(t_smooth_start));
V_smooth_end = zeros(size(t_smooth_start));

if args.smooth_ends
Vd_max = args.V_mean/(0.7*args.t_start);

V_d = zeros(size(t_smooth_start));
V_d(t_smooth_start < 0.2*args.t_start) = t_smooth_start(t_smooth_start < 0.2*args.t_start)*Vd_max/(0.2*args.t_start);
V_d(t_smooth_start > 0.2*args.t_start & t_smooth_start < 0.7*args.t_start) = Vd_max;
V_d(t_smooth_start > 0.7*args.t_start & t_smooth_start < 0.9*args.t_start) = Vd_max - (t_smooth_start(t_smooth_start >
0.7*args.t_start & t_smooth_start < 0.9*args.t_start) - 0.7*args.t_start)*Vd_max/(0.2*args.t_start);↪→

V_smooth_start = cumtrapz(V_d)*args.Ts;

V_smooth_end = args.V_mean - V_smooth_start;
end

Combine Excitation signals

Matlab
V_exc = [V_smooth_start, V_noise, V_smooth_end];
t_exc = args.Ts*[0:1:length(V_exc)-1];

Matlab
U_exc = [t_exc; V_exc];

7.6 generateSinIncreasingAmpl : Generate Sinus with increasing
amplitude

Function description

Matlab
function [U_exc] = generateSinIncreasingAmpl(args)
% generateSinIncreasingAmpl - Generate Sinus with increasing amplitude
%
% Syntax: [U_exc] = generateSinIncreasingAmpl(args)
%
% Inputs:
% - args - Optinal arguments:
% - Ts - Sampling Time - [s]
% - V_mean - Mean value of the excitation voltage - [V]
% - sin_ampls - Excitation Amplitudes - [V]
% - sin_freq - Excitation Frequency - [Hz]
% - sin_num - Number of period for each amplitude - [-]
% - t_start - Time at which the excitation begins - [s]
% - smooth_ends - 'true' or 'false': smooth transition between 0 and V_mean - [-]
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Optional Parameters

Matlab
arguments

args.Ts (1,1) double {mustBeNumeric, mustBePositive} = 1e-4
args.V_mean (1,1) double {mustBeNumeric} = 0
args.sin_ampls double {mustBeNumeric, mustBePositive} = [0.1, 0.2, 0.3]
args.sin_period (1,1) double {mustBeNumeric, mustBePositive} = 1
args.sin_num (1,1) double {mustBeNumeric, mustBePositive, mustBeInteger} = 3
args.t_start (1,1) double {mustBeNumeric, mustBePositive} = 5
args.smooth_ends logical {mustBeNumericOrLogical} = true

end

Sinus excitation

Matlab
t_noise = 0:args.Ts:args.sin_period*args.sin_num;
sin_exc = [];

Matlab
for sin_ampl = args.sin_ampls

sin_exc = [sin_exc, args.V_mean + sin_ampl*sin(2*pi/args.sin_period*t_noise)];
end

Smooth Ends

Matlab
t_smooth_start = args.Ts:args.Ts:args.t_start;

V_smooth_start = zeros(size(t_smooth_start));
V_smooth_end = zeros(size(t_smooth_start));

if args.smooth_ends
Vd_max = args.V_mean/(0.7*args.t_start);

V_d = zeros(size(t_smooth_start));
V_d(t_smooth_start < 0.2*args.t_start) = t_smooth_start(t_smooth_start < 0.2*args.t_start)*Vd_max/(0.2*args.t_start);
V_d(t_smooth_start > 0.2*args.t_start & t_smooth_start < 0.7*args.t_start) = Vd_max;
V_d(t_smooth_start > 0.7*args.t_start & t_smooth_start < 0.9*args.t_start) = Vd_max - (t_smooth_start(t_smooth_start >
0.7*args.t_start & t_smooth_start < 0.9*args.t_start) - 0.7*args.t_start)*Vd_max/(0.2*args.t_start);↪→

V_smooth_start = cumtrapz(V_d)*args.Ts;

V_smooth_end = args.V_mean - V_smooth_start;
end

Combine Excitation signals

Matlab
V_exc = [V_smooth_start, sin_exc, V_smooth_end];
t_exc = args.Ts*[0:1:length(V_exc)-1];
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Matlab
U_exc = [t_exc; V_exc];
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