%% Clear Workspace and Close figures clear; close all; clc; %% Intialize Laplace variable s = zpk('s'); %% Add useful folders to the path addpath('test_bench_apa300ml/'); addpath('png/'); addpath('mat/'); addpath('src/'); %% Frequency vector used for many plots freqs = 2*logspace(0, 3, 1000); %% Open Simscape Model options = linearizeOptions; options.SampleTime = 0; % Name of the Simulink File mdl = 'test_bench_apa300ml'; open(mdl) %% Initialize the structure with default values n_hexapod = struct(); n_hexapod.actuator = initializeAPA(... 'type', '2dof', ... 'Ga', 1, ... % Actuator constant [N/V] 'Gs', 1); % Sensor constant [V/m] %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/Va'], 1, 'openinput'); io_i = io_i + 1; % DAC Voltage io(io_i) = linio([mdl, '/Vs'], 1, 'openoutput'); io_i = io_i + 1; % Sensor Voltage io(io_i) = linio([mdl, '/de'], 1, 'openoutput'); io_i = io_i + 1; % Encoder io(io_i) = linio([mdl, '/da'], 1, 'openoutput'); io_i = io_i + 1; % Interferometer %% Run the linearization Ga = linearize(mdl, io, 0.0, options); Ga.InputName = {'Va'}; Ga.OutputName = {'Vs', 'de', 'da'}; %% Bode plot of the transfer function from u to taum freqs = logspace(1, 3, 1000); figure; tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; plot(freqs, abs(squeeze(freqresp(Ga('Vs', 'Va'), freqs, 'Hz'))), 'k-') hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude $V_s/V_a$ [V/V]'); set(gca, 'XTickLabel',[]); hold off; ax2 = nexttile; hold on; plot(freqs, 180/pi*angle(squeeze(freqresp(Ga('Vs', 'Va'), freqs, 'Hz'))), 'k-') set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; yticks(-360:45:360); ylim([-180, 0]) linkaxes([ax1,ax2],'x'); xlim([freqs(1), freqs(end)]); %% Bode plot of the transfer function from Va to de and da freqs = logspace(1, 3, 1000); figure; tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; plot(freqs, abs(squeeze(freqresp(Ga('de', 'Va'), freqs, 'Hz'))), 'DisplayName', 'Encoder') plot(freqs, abs(squeeze(freqresp(Ga('da', 'Va'), freqs, 'Hz'))), 'DisplayName', 'Interferometer') hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude $d/V_a$ [m/V]'); set(gca, 'XTickLabel',[]); hold off; legend('location', 'southwest'); ax2 = nexttile; hold on; plot(freqs, 180/pi*angle(squeeze(freqresp(Ga('de', 'Va'), freqs, 'Hz')))) plot(freqs, 180/pi*angle(squeeze(freqresp(Ga('da', 'Va'), freqs, 'Hz')))) set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; yticks(-360:45:360); ylim([-180, 0]) linkaxes([ax1,ax2],'x'); %% Load Data load('meas_apa_frf.mat', 'f', 'Ts', 'enc_frf', 'iff_frf', 'apa_nums'); %% Initialize a 2DoF APA with Ga=Gs=1 n_hexapod.actuator = initializeAPA(... 'type', '2dof', ... 'ga', 1, ... 'gs', 1); %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/Va'], 1, 'openinput'); io_i = io_i + 1; % Actuator Voltage io(io_i) = linio([mdl, '/Vs'], 1, 'openoutput'); io_i = io_i + 1; % Sensor Voltage io(io_i) = linio([mdl, '/de'], 1, 'openoutput'); io_i = io_i + 1; % Encoder io(io_i) = linio([mdl, '/da'], 1, 'openoutput'); io_i = io_i + 1; % Attocube %% Identification Gs = linearize(mdl, io, 0.0, options); Gs.InputName = {'Va'}; Gs.OutputName = {'Vs', 'de', 'da'}; %% Estimated Actuator Constant ga = -mean(abs(enc_frf(f>10 & f<20)))./dcgain(Gs('de', 'Va')); % [N/V] %% Estimated Sensor Constant gs = -mean(abs(iff_frf(f>400 & f<500)))./(ga*abs(squeeze(freqresp(Gs('Vs', 'Va'), 1e3, 'Hz')))); % [V/m] %% Set the identified constants n_hexapod.actuator = initializeAPA(... 'type', '2dof', ... 'ga', ga, ... % Actuator gain [N/V] 'gs', gs); % Sensor gain [V/m] %% Identify again the dynamics with correct Ga,Gs Gs = linearize(mdl, io, 0.0, options); Gs = Gs*exp(-Ts*s); Gs.InputName = {'Va'}; Gs.OutputName = {'Vs', 'de', 'da'}; %% Bode plot of the transfer function from u to de freqs = logspace(1,4,1000); figure; tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; for i = 1:length(apa_nums) plot(f, abs(enc_frf(:, i)), 'color', [0,0,0,0.2]); end set(gca,'ColorOrderIndex',1); plot(freqs, abs(squeeze(freqresp(Gs('de', 'Va'), freqs, 'Hz')))) hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude $d\mathcal{L}_m/u$ [m/V]'); set(gca, 'XTickLabel',[]); hold off; ylim([1e-8, 1e-3]); ax2 = nexttile; hold on; for i = 1:length(apa_nums) plot(f, 180/pi*angle(enc_frf(:,1)), 'color', [0,0,0,0.2]); end set(gca,'ColorOrderIndex',1); plot(freqs, 180/pi*angle(squeeze(freqresp(Gs('de', 'Va'), freqs, 'Hz')))) hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; yticks(-360:90:360); ylim([-180, 180]); linkaxes([ax1,ax2],'x'); xlim([10, 2e3]); %% Bode plot of the transfer function from Va to Vs (both Simscape and measured FRF) freqs = logspace(1,4,1000); figure; tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; for i = 1:length(apa_nums) plot(f, abs(iff_frf(:, i)), 'color', [0,0,0,0.2]); end set(gca,'ColorOrderIndex',1); plot(freqs, abs(squeeze(freqresp(Gs('Vs', 'Va'), freqs, 'Hz')))) hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude $\tau_m/u$ [V/V]'); set(gca, 'XTickLabel',[]); hold off; ylim([1e-2, 1e2]); ax2 = nexttile; hold on; for i = 1:length(apa_nums) plot(f, 180/pi*angle(iff_frf(:,1)), 'color', [0,0,0,0.2]); end set(gca,'ColorOrderIndex',1); plot(freqs, 180/pi*angle(squeeze(freqresp(Gs('Vs', 'Va'), freqs, 'Hz')))) hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; yticks(-360:90:360); ylim([-180, 180]); linkaxes([ax1,ax2],'x'); xlim([10, 2e3]); %% Initialize the APA as a flexible body n_hexapod.actuator = initializeAPA(... 'type', 'flexible', ... 'ga', 1, ... 'gs', 1); %% Identify the dynamics Gs = linearize(mdl, io, 0.0, options); Gs.InputName = {'Va'}; Gs.OutputName = {'Vs', 'de', 'da'}; %% Actuator Constant ga = -mean(abs(enc_frf(f>10 & f<20)))./dcgain(Gs('de', 'Va')); % [N/V] %% Sensor Constant gs = -mean(abs(iff_frf(f>400 & f<500)))./(ga*abs(squeeze(freqresp(Gs('Vs', 'Va'), 1e3, 'Hz')))); % [V/m] %% Set the identified constants n_hexapod.actuator = initializeAPA(... 'type', 'flexible', ... 'ga', ga, ... % Actuator gain [N/V] 'gs', gs); % Sensor gain [V/m] %% Identify with updated constants Gs = linearize(mdl, io, 0.0, options); Gs = Gs*exp(-Ts*s); Gs.InputName = {'Va'}; Gs.OutputName = {'Vs', 'de', 'da'}; %% Bode plot of the transfer function from V_a to d_e (both Simscape and measured FRF) figure; tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; for i = 1:length(apa_nums) plot(f, abs(enc_frf(:, i)), 'color', [0,0,0,0.2]); end set(gca,'ColorOrderIndex',1); plot(freqs, abs(squeeze(freqresp(Gs('de', 'Va'), freqs, 'Hz')))) hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude $d\mathcal{L}_m/u$ [m/V]'); set(gca, 'XTickLabel',[]); hold off; ylim([1e-9, 1e-3]); ax2 = nexttile; hold on; for i = 1:length(apa_nums) plot(f, 180/pi*angle(enc_frf(:,1)), 'color', [0,0,0,0.2]); end set(gca,'ColorOrderIndex',1); plot(freqs, 180/pi*angle(squeeze(freqresp(Gs('de', 'Va'), freqs, 'Hz')))) hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; yticks(-360:90:360); ylim([-180, 180]); linkaxes([ax1,ax2],'x'); xlim([10, 2e3]); %% Bode plot of the transfer function from Va to Vs (both Simscape and measured FRF) figure; tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; for i = 1:length(apa_nums) plot(f, abs(iff_frf(:, i)), 'color', [0,0,0,0.2]); end set(gca,'ColorOrderIndex',1); plot(freqs, abs(squeeze(freqresp(Gs('Vs', 'Va'), freqs, 'Hz')))) hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude $\tau_m/u$ [V/V]'); set(gca, 'XTickLabel',[]); hold off; ylim([1e-2, 1e2]); ax2 = nexttile; hold on; for i = 1:length(apa_nums) plot(f, 180/pi*angle(iff_frf(:,1)), 'color', [0,0,0,0.2]); end set(gca,'ColorOrderIndex',1); plot(freqs, 180/pi*angle(squeeze(freqresp(Gs('Vs', 'Va'), freqs, 'Hz')))) hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; yticks(-360:90:360); ylim([-180, 180]); linkaxes([ax1,ax2],'x'); xlim([10, 2e3]); %% Optimized parameters n_hexapod.actuator = initializeAPA('type', '2dof', ... 'Ga', -32.2, ... 'Gs', 0.088, ... 'k', ones(6,1)*0.38e6, ... 'ke', ones(6,1)*1.75e6, ... 'ka', ones(6,1)*3e7, ... 'c', ones(6,1)*1.3e2, ... 'ce', ones(6,1)*1e1, ... 'ca', ones(6,1)*1e1 ... ); %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/Va'], 1, 'openinput'); io_i = io_i + 1; % Actuator Voltage io(io_i) = linio([mdl, '/Vs'], 1, 'openoutput'); io_i = io_i + 1; % Sensor Voltage io(io_i) = linio([mdl, '/de'], 1, 'openoutput'); io_i = io_i + 1; % Encoder %% Identification with optimized parameters Gs = exp(-s*Ts)*linearize(mdl, io, 0.0, options); Gs.InputName = {'Va'}; Gs.OutputName = {'Vs', 'de'}; %% Comparison of the experimental data and Simscape Model freqs = 5*logspace(0, 3, 1000); figure; tiledlayout(3, 2, 'TileSpacing', 'None', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; for i = 1:length(apa_nums) plot(f, abs(enc_frf(:, i)), 'color', [0,0,0,0.2]); end set(gca,'ColorOrderIndex',1); plot(freqs, abs(squeeze(freqresp(Gs('de', 'Va'), freqs, 'Hz')))) hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude $d_e/V_a$ [m/V]'); set(gca, 'XTickLabel',[]); hold off; ylim([1e-8, 1e-3]); ax1b = nexttile([2,1]); hold on; for i = 1:length(apa_nums) plot(f, abs(iff_frf(:, i)), 'color', [0,0,0,0.2]); end set(gca,'ColorOrderIndex',1); plot(freqs, abs(squeeze(freqresp(Gs('Vs', 'Va'), freqs, 'Hz')))) hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude $V_s/V_a$ [V/V]'); set(gca, 'XTickLabel',[]); hold off; ylim([1e-2, 1e2]); ax2 = nexttile; hold on; for i = 1:length(apa_nums) plot(f, 180/pi*angle(enc_frf(:, i)), 'color', [0,0,0,0.2]); end set(gca,'ColorOrderIndex',1); plot(freqs, 180/pi*angle(squeeze(freqresp(Gs('de', 'Va'), freqs, 'Hz')))) hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; yticks(-360:90:360); ylim([-180, 180]); ax2b = nexttile; hold on; for i = 1:length(apa_nums) plot(f, 180/pi*angle(iff_frf(:, i)), 'color', [0,0,0,0.2]); end set(gca,'ColorOrderIndex',1); plot(freqs, 180/pi*angle(squeeze(freqresp(Gs('Vs', 'Va'), freqs, 'Hz')))) hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; yticks(-360:90:360); ylim([-180, 180]); linkaxes([ax1,ax2,ax1b,ax2b],'x'); xlim([10, 2e3]);